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Introduction ✠ ODE (IVP) Formulation ✠ Bohl-Marek decomposition ✠ Numerical case study

THis study presents an application of one special method, further called as
Bohl-Marek decomposition, related to the mathematical modeling of bio-

chemical networks with mass conservation properties. Erich Bohl and Ivo
Marek used this method in series of papers, e.g. [1, 2, 3], to transform sys-
tems of nonlinear ODEs arising in biochemical networks into a set of smaller,
quasi-linear subsystems. The smaller subsystems can be expressed as linear
ODEs with matrices that are negative M-matrices, i.e. ẋM(t) = M(x(t))xM(t).
While Erich Bohl and Ivo Marek used this method to prove existence and
uniqueness results, here we show computational advantages when compared
with solving the original system of nonlinear ODEs in form ẋ(t) = Ax(t) + b(t).
Although our ultimate goal is to propose an efficient and reliable procedure for
fitting model parameters to experimental data of a corresponding biochemical
process, i.e., to solve an inverse problem, here, we study specific numerical is-
sues within the framework of the forward initial value problem for ODEs. More
precisely, for the two model formulations, (i) the classical formulation and (ii)
the ’quasi-linear’ Bohl-Marek formulation, we determine and compare the com-
putational costs related to both.

ODESystem governing the wide class of biochemical systems (non-
autonomous due to the input u(t) = ddose(t)) has the form of

dx(t)

d t
= Ax(t) + b(x(t)) + u(t), (1)

where the state variables x(t) ∈ Rn. Given initial conditions x(0) = x0, an IVP is
well defined. The matrix of constant coefficient A represents the linear part of
the system, while the vector b represents nonlinear (bilinear) parts (xi xj), i ̸= j.

ExampleThe ODE system (1) describing the processes under
study, see Fig. 1 and the table below, can be system-

atically derived as a linear transformation (imposed by the matrix S, the so-
called stoichiometric matrix S ∈ Rn×q, q is the number of reactions including
the transport of species X) of the vector of reaction rates ν ∈ Rq, which de-
pends on corresponding states x = (Xext, Xint, E, C, P )T and model parameter
vector p = (k0, k1, k−1, k2)

T . I. e., ẋ(t) = S ν(x, p).
Reaction networks frequently possess subsets of reactants that remain con-
stant at all times. Generally, there exists a conservation matrix Γ (with dimen-
sion h × n), where the rows represent the linear combination of conserved
species, which are constant in time. It can be solved explicitly for large sys-
tems (0 = Γ S). For our case, the conservation property reads

x3 + x4 = e0, x1 + x2 + x4 + x5 = u0, Γ =

(
0 0 1 1 0
1 1 0 1 1

)
. (2)

Description of the related process Chem. notation Param.
R0: Substrate Xext dosing (model input) ∅ → Xext u(t)
R1: Substrate transport between compartments Xext ⇌ Xint k0
R2,3: Enzyme E binds to substrate, reversibly Xint + E ⇌ C k1, k−1

R4: Complex breaks down into E plus Product C → E + P k2

The existence of relations (2) signifies not only the possibility to reduce the
number of state variables, but also induces the reformulation of the governing
equations for species concentration using negative M-matrices, see (3).

Figure 1: Graph representation of the biochemical process. Reaction nodes
identified by squares represent reactions between species nodes (circles).

M -Matrix In our case study, the state variables can be listed in
two subsets {x3, x4} and {x1, x2, x4, x5}, and thus the

non-linear ODEs (1) can be represented as a linear system with the system ma-
trix of a special form, a negative M-matrix. These two subsets of state variables
can be assembled and merged together as follows: x̃(t)T =

(
x1

T
(t), x2

T
(t)

)
.

Then the ODE system for modified state variable vector x̃(t) is

dx̃(t)

dt
= Mx̃(t), M =

(
M1 0
0 M2

)
, (3)

M1 =

(
−k1 · x2 k−1 + k2
k1 · x2 −(k−1 + k2)

)
, M2 =


−k0 k0 0 0
k0 −k0 − k1 · x3 k−1 0
0 k1 · x3 −(k−1 + k2) 0
0 0 k2 0

 .

ResultsNumerical experiments consist of comparison of three
methods: (i) ODE system (1), 5 equations; (ii) simplified

ODEs (1) using Conservation Property (2), 3 equations; and (iii) Bohl-Marek
decomposition (3), 6 equations. The first two systems contain nonlinear terms
(so the Newton method as an inner iteration must be used) while the third one
not. Stopping criteria for the inner Newton method are 10−6 and max number
of extra inner Newton iterations is set to 1. NWT is the total number of extra
Newton iterations, while Relative error and Time mean the total relative dif-
ference of the solutions and time speedup, both related to the full system (1),
respectively.

Model NWT Relative error Time (speed up)
Full ODE (1) 88 - 1.00

Simplified (1) using CP 381 2.20E-3 0.86
Bohl-Marek (3) - 8.14E-2 0.61
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