Numerical optimization of the non-axisymmetric bleaching pattern for FRAP experiments

Ctirad Matonoha¹, Štěpán Papáček²

¹Institute of Computer Science, AS CR, Prague

²Institute of Complex Systems, CENAKVA, FFPW, USB in České Budějovice

matonoha@cs.cas.cz, spapacek@frov.jcu.cz

Problem formulation & Results & Conclusion

W^E continue to look for an optimal bleaching pattern used in FRAP (Fluorescence Recovery After Photobleaching), being the initial condition of the Fickian diffusion equation maximizing a sensitivity measure [2]-[5]. In contrast to our previous papers, we will concentrate on non-axisymmetric domain. For this reason we consider the Fickian diffusion equation in polar coordinates

$$\frac{\partial u}{\partial t} = \delta \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right), \tag{1}$$

where $r \in (0,1], \ \theta \in [0,2\pi], \ t \in [0,1]$, with the initial and Neumann boundary conditions

$$u(r,\theta,0) = u_0(r,\theta), \quad \frac{\partial u}{\partial u}(1,\theta,t) = 0.$$
 (2)

When computing a numerical solution $u_{i,k,j}$ of the IBV problem (1)-(2), the finite difference CN scheme is used. Starting with an initial $u_0 \in \mathcal{R}^{np+1}$ and after some algebraic manipulation we arrive at a linear system with a symmetric positive definite matrix

$$A^{(j)}u_j = A^{(j-1)}u_{j-1}$$

for
$$u_j \in \mathcal{R}^{np+1}, j = 1 \dots m$$
.

To find a global solution of problem (3), small values of n, p have to be used due to a combinatory problem of a boundary solution and a large dimension (np+1). Thus, for our preliminary results, we first put n = 10, p = 8 and m = 21to obtain a global solution. Optimal initial condition obtained is shown in the tables below, where the *k*-th row corresponds to the *k*-th ray (the values for $\theta_0, \ldots, \theta_{p-1}$). Left table is for $\delta = 1.0D0$, right table is for $\delta = 1.0D6$.

The main issue in FRAP and related estimation problems is to find the value of the diffusion coefficient δ from spatio-temporal measurements of the concentration $u(r, \theta, t)$, see, e.g., [1].

The measured data are discrete uniformly distributed in a finite domain

$$u(r_i, \theta_k, t_j), \qquad i = 0 \dots n, \qquad r_i = i \,\Delta r, \qquad \Delta r = 1/n$$
$$k = 0 \dots p - 1, \qquad \theta_k = k \,\Delta \theta, \qquad \Delta \theta = 2\pi/p$$
$$j = 0 \dots m, \qquad t_j = j \,\Delta t, \qquad \Delta t = 1/m$$

(note that $\theta_0 = \theta_p$). The initial condition $u_0(r, \theta)$ is considered as an (np + 1)-dimensional vector $u_0 \in \mathcal{R}^{np+1}$ containing p rays (angles) each divided into n points and one center point r = 0. The diffusion coefficient δ can be computed numerically by solving the inverse problem to (1)-(2) using the CN scheme.

A key issue is to find the narrowest confidence interval of the true diffusion parameter δ_T . This can be done by maximizing the so called sensitivity measure

$$S_{app}(u_0) = \sum_{j=1}^m j^2 ||u_j - u_{j-1}||^2,$$

see [4], where

 $u_j = (u_{0,0,j}, u_{1,0,j}, \dots, u_{n,0,j}, u_{1,1,j}, \dots, u_{n,1,j}, \dots, u_{1,p-1,j}, \dots, u_{n,p-1,j})^T \in \mathcal{R}^{np+1},$

 $u_{i,k,j} := u(r_i, \theta_k, t_j), \quad i = 1 \dots n, \quad k = 0 \dots p - 1, \quad j = 1 \dots m.$

Note that the subvector $u_{1,k,j}, \ldots, u_{n,k,j}$ is the k-th ray (angle) of the domain.

The optimal initial condition giving the narrowest confidence interval is a solution of the following optimization problem

 $\left|u_{0}^{opt} = \operatorname{arg\,max}_{u_{0} \in \mathcal{R}^{np+1}} S_{app}(u_{0}) \quad \text{subject to} \quad 0 \le u_{0} \le 1 \right|$ (3)

The function S_{app} is quadratic and nonnegative. The maximum is achieved at a vertex of the constrained set $0 \le u_0 \le 1$, which is the (np + 1)-dimensional hypercube. Thus, u_0^{opt} is a $\{1, 0\}$ -function, see also [2].

	r_0	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}		r_0	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}
θ_0	0	0	1	0	1	0	1	0	1	0	1	 θ_0	1	1	1	0	0	0	0	1	0	0	1
$ heta_1$		1	0	1	0	1	0	1	1	0	1	θ_1		1	1	1	0	1	1	0	0	0	0
θ_2		0	1	0	1	0	1	0	1	1	0	θ_2		1	1	1	1	0	1	0	0	0	1
θ_3		1	0	1	0	1	0	1	0	1	0	θ_3		0	1	1	1	0	1	0	1	0	0
$ heta_4$		0	1	0	1	0	1	0	1	0	1	θ_4		1	0	1	1	1	1	1	0	1	0
$ heta_5$		1	0	1	0	1	0	1	0	1	0	θ_5		0	0	1	1	0	0	0	0	0	0
$ heta_6$		0	1	0	1	0	1	0	1	0	1	θ_6		0	1	1	1	0	1	0	0	0	1
θ_7		1	0	1	0	0	1	0	1	0	1	θ_7		1	0	0	1	0	1	1	0	0	1

Second, we used a finer grid and sought for only a local solution using several randomly chosen starting points for the optimization process. We put n = 25, p = 24 and m = 21. Below there are four rays for k = 0, 1, 2, 3 of optimal u_0^{opt} giving the best function value S_{app} for $\delta = 1.0D0$ and $\delta = 1.0D6$.

	$ r_0 $	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}	r_{11}	r_{12}	r_{13}	r_{14}	r_{15}	r_{16}	r_{17}	r_{18}	r_{19}	r_{20}	r_{21}	r_{22}	r_{23}	r_{24}	r_{25}
θ_0	1	0	1	0	1	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
$ heta_1$		1	0	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	1	0
θ_2		1	1	0	1	1	0	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1
θ_3		0	1	1	0	1	0	1	0	1	0	1	0	0	1	0	1	1	0	1	0	1	0	1	0	1
	$ r_0 $	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}	r_{11}	r_{12}	r_{13}	r_{14}	r_{15}	r_{16}	r_{17}	r_{18}	r_{19}	r_{20}	r_{21}	r_{22}	r_{23}	r_{24}	r_{25}
θ_0	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
$ heta_1$		0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	1	1	0	0	1	0
θ_2		1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	0	1	0	0	1	1	0	0	0	1
$ heta_3$		1	1	1	1	0	0	1	1	1	0	1	0	1	0	0	1	0	0	1	1	0	0	0	1	1

To compare the results also with some symmetric structures, we computed the values S_{app} also for optimal disc, optimal rays (only subvectors $u_{1,k,0}, \ldots, u_{n,k,0}$ have nonzero components for $k \in \{0, \ldots, p-1\}$), and optimal cross (combination of disc and rays) with $\delta = 1.0$ D0. The table below shows the results.

u_0	optimal of all	optimal disc	optimal rays	optimal cross
S_{app}	64.51	3.75	19.75	4.56

From the preliminary results above we deduce that optimal patterns need not be symmetric at all. For small values of δ we see more jumps between ones and zeros in optimal initial condition than for larger values of δ . It corresponds to our previous results obtained in [4].

- [1] Papáček Š., Kaňa R., Matonoha C.: Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images. Mathematical and Computer Modelling 57 (2013), 1907–1912.
- [2] Kindermann S., Papáček Š.: Optimization of the shape (and topology) of the initial conditions for diffusion parameter identification. Computers & Mathematics with Applications 77 (2019), 3102–3116.
- [3] Matonoha C., Papáček, Š.: On the optimal initial conditions for an inverse problem of model parameter estimation. Proceedings of Seminar "Seminar on Numerical Analysis SNA'17", Ostrava (2017), 72–75.
- [4] Matonoha C., Papáček Š., Kindermann S.: Disc vs. Annulus: On the Bleaching Pattern Optimization for FRAP Experiments. In: Kozubek T. et al. (eds) High Performance Computing in Science and Engineering 2017. Lecture Notes in Computer Science, Springer, Cham 11087 (2018), 160–173.
- [5] Matonoha C., Papáček, Š.: On the optimal initial conditions for an inverse problem of model parameter estimation a complementarity principle. Proceedings of Seminar "Seminar on Numerical Analysis SNA'19", Ostrava (2019), 100–103.

Acknowledgment

This work was supported by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807) and by the Ministry of Education, Youth and Sport of the Czech Republic – projects CENAKVA (No. CZ.1.05/2.1.00/01.0024) and CENAKVA II (No. LO1205 under the NPU I program).