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1. Unconstrained optimization
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Introduction

Consider the following unconstrained optimization problem

x⋆ = arg minx∈Rn F (x)

where

● F (x) : Rn → R

● F is twice continuously differentiable
● F is bounded from below

Notation:

● g(x) = ∇F (x) . . . gradient
● B(x) = ∇2F (x) . . . Hessian (or its approximation)

We focus on finding local minima.
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Necessary and sufficient conditions for a minimum

● first-order necessary conditions:

If x⋆ is a local minimum of F ∈ C1 then

g(x⋆) = 0

● second-order necessary conditions:

If x⋆ is a local minimum of F ∈ C2 then

g(x⋆) = 0 and B(x⋆) � 0

● second-order sufficient conditions:

The point x⋆ is a strict local minimum of F ∈ C2 if

g(x⋆) = 0 and B(x⋆) ≻ 0
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Basic optimization methods

Basic optimization methods (line-search and trust-region methods)
generate points xk ∈ R, k ∈ N , in such a way that x1 is arbitrary and

xk+1 = xk + αkdk

where

● dk ∈ Rn are direction vectors
– determination is based on quantities

xj , F (xj), g(xj), B(xj), 1 < j < k

● αk > 0 are step-sizes
– determination is based on a behaviour of F in a neghbourhood of xk

Basic optimization method is globally convergent if

lim inf
k→∞

‖g(xk)‖ = 0

for an arbitrary initial vector x1.
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General optimization algorithm

A typical pattern:

1. Choose an arbitrary x1 and compute F (x1). Set k = 1.

2. Compute a direction vector dk and a step-length αk.

3. Set xk+1 = xk + αkdk and compute F (xk+1).

4. Check termination criterion. If not achieved, set k := k + 1 and goto 2.

Stopping tolerances:

● the gradient is small:
|g(xk+1)| < εg

● the reduction in F is insignificant:

|F (xk+1) − F (xk)| < εF

● the changes in all variables are insignificant:

|xk+1 − xk| < εx
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Optimization methods I.

1. Steepest descent method:

dk = −g(xk), αk = arg min
α≥0

F (xk + αdk)

+ globally convergent
+ uses only vectors from Rn

– exact choice of a step-length

– only linearly convergent

2. Newton’s method:

dk = −B(xk)−1g(xk), αk = 1

+ simple choice of a step-length
+ convergence is quadratic
– not globally convergent
– solving a system of linear equations
– computation of second-order derivatives
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Optimization methods II.

1. Line-search methods:

– developed from the steepest descent method
● use inexact choice of a step-length
● faster convergence
● conjugate gradient method, variable metric method

2. Trust-region methods:

– developed from the Newton’s method
● ensuring global convergence
● decreased number of operations
● Hessian matrix can be indefinite, ill-conditioned, singular
● excellent convergence properties
● realization of Newton’s method and Gauss-Newton’s method for sum

a squares minimization
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2. Trust region methods



ALGORITMY 2009 L.Lukšan, C.Matonoha, J.Vlček: Trust region methods for unconstrained optimization - 11

The idea

1. choose an initial approximation x1 and compute F (x1)

2. construct a quadratic model Qk(d) of F at xk

3. choose a trust region radius ∆k > 0

4. find a minimum dk of Qk(d) for which ‖dk‖ ≤ ∆

5. if the decrease predicted by the model corresponds to the actual
decrease in xk + dk, then set

xk+1 = xk + dk

and possibly increase ∆k+1

6. in the opposite case, the step dk is too long, set xk+1 = xk and
decrease the radius ∆k+1

{d ∈ Rn : ‖d‖ ≤ ∆}

is a region where we trust the model Q(d) is a good representation of F



ALGORITMY 2009 L.Lukšan, C.Matonoha, J.Vlček: Trust region methods for unconstrained optimization - 12

Notation

We define:

● the quadratic function

Qk(d) =
1

2
dT Bkd + gT

k d

which locally approximates the difference F (xk + d) − F (xk);

● the vector
ωk(d) = (Bkd + gk)/‖gk‖

for the accuracy of a computed direction;
● the number

ρk(d) =
F (xk + d) − F (xk)

Qk(d)

for the ratio of actual and predicted decrease of the objective function.

Trust-region methods are based on approximate minimizations of Qk(d)
on the balls ‖d‖ ≤ ∆k followed by updates of radii ∆k > 0.
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Definition

Direction vectors dk ∈ Rn are chosen to satisfy the conditions

‖dk‖ ≤ ∆k,(1)

‖dk‖ < ∆k ⇒ ‖ωk(dk)‖ ≤ ω,(2)

−Qk(dk) ≥ σ‖gk‖min(‖dk‖, ‖gk‖/‖Bk‖),(3)

where 0 ≤ ω < 1 and 0 < σ < 1.

Step sizes αk ≥ 0 are selected so that

ρk(dk) ≤ 0 ⇒ αk = 0,(4)

ρk(dk) > 0 ⇒ αk = 1.(5)

Trust-region radii 0 < ∆k ≤ ∆ are chosen in such a way that

ρk(dk) < ρ ⇒ β‖dk‖ ≤ ∆k+1 ≤ β‖dk‖,(6)

ρk(dk) ≥ ρ ⇒ ∆i ≤ ∆k+1 ≤ ∆,(7)

( 0 < ∆1 ≤ ∆ is arbitrary), where 0 < β ≤ β < 1 and 0 < ρ < 1.



ALGORITMY 2009 L.Lukšan, C.Matonoha, J.Vlček: Trust region methods for unconstrained optimization - 14

Maximum step length ∆

The use of the maximum step length ∆ has no theoretical significance but
is very useful for practical computations:

● The problem functions can sometimes be evaluated only in a relatively
small region (if they contain exponentials) so that the maximum
step-length is necessary.

● The problem can be very ill-conditioned far from the solution point, thus
large steps are unsuitable.

● If the problem has more local solutions, a suitably chosen maximum
step-length can cause a local solution with a lower value of F to be
reached.

Therefore, the maximum step-length ∆ is a parameter which is most
frequently tuned.
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Convergence

Assumptions:

1. F is bounded from below

2. second-order derivatives of F are bounded

3. direction vector dk satisfies (1)-(7)

4. matrices Bk are uniformly bounded or (weaker assumption)
∑

k∈N

M−1

k = ∞

where Mk = max{‖B1‖, . . . , ‖Bk‖}

Theorem:

1. global convergence: for an arbitrary chosen initial x1:

lim inf
k→∞

‖g(xk)‖ = 0

2. Q-superlinear convergence (additional assumptions)
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Two classes of methods

Trust-region subproblem: (to simplify the notation, we omit the major index k)

min Q(d) = 1

2
dT Bd + gT d, ‖d‖ ≤ ∆(8)

Optimal solution – d ∈ Rn solves (8)

● Necessary and sufficient conditions for this solution:

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI � 0, λ ≥ 0, λ(∆ − ‖d‖) = 0,

where λ is a Lagrange multiplier
● Choleski decomposition methods

Approximate solution – if B is not sufficiently small or sparse or explicitly
available, then it is either too expensive or not possible to compute its
Choleski factorization.

● d is found on subspaces of Rn, e.g. Krylov subspaces
● methods based on matrix-vector multiplications are convenient
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3. Computation of direction vectors
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Moré-Sorensen 1983 [MS]

● the most sophisticated method which computes the optimal locally
constrained step.

● based on solving the nonlinear equation

φ(λ) =
1

‖d(λ)‖
−

1

∆
= 0 with (B + λI)d(λ) + g = 0

by the Newton’s method using the Choleski decomposition of B + λI.

● function φ(λ) is convex and decreasing in (−λ1,∞), thus a unique
solution exists (λ1 is the smallest eigenvalue of B)

● this method is very robust but requires 2-3 Choleski decompositions for
one direction determination on the average
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Powell 1970, Dennis-Mei 1975 [DL]

Simpler methods are based on minimization of Q(d) on the
two-dimensional subspace containing the Cauchy and Newton steps

dC = −
gT g

gT Bg
g, dN = −B−1g (‖dC‖ ≤ ‖dN‖).

The most popular is the dogleg method where

d = dN if ‖dN‖ ≤ ∆

and
d = (∆/‖dC‖)dC if ‖dC‖ ≥ ∆.

In the remaining case, d is a combination of dC and dN such that
‖d‖ = ∆.

This method requires only one Choleski decomposition for one direction
determination.
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Steihaug 1983, Toint 1981 [ST]

This method

● is based on the conjugate gradient method applied to the linear system

Bd + g = 0,

● computes only an approximate solution,
● uses the fact that

Q(dj+1) < Q(dj) and ‖dj+1‖ > ‖dj‖

hold in the subsequent CG iterations if the CG coefficients are positive
and no preconditioning is used.

Termination:

● an unconstrained solution with a sufficient precision (‖r‖ ≤ ε)
● stop on the trust-region boundary

❋ a negative curvature is encountered
❋ the constraint is violated
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Preconditioned Steihaug-Toint [PST]

For SPD preconditioner C we have

‖dj+1‖C > ‖dj‖C with ‖dj‖
2
C = dT

j Cdj .

– trust-region can be leaved prematurely
– direction vector can be farther from the optimal step obtained without

preconditioning
+ it is usually compensated by the rapid convergence of the PCG method
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Multiple dogleg [MDL]

The CG steps can be combined with the Newton step dN = −B−1g in
the multiple dogleg method.

1. Let j ≪ n and dj be a vector obtained after j CG steps of the
Steihaug-Toint method (usually j = 5).

2. If ‖dj‖ < ∆, we use dk instead of dC = d1 in the dogleg method.
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Gould-Lucidi-Roma-Toint 1997 [GLRT]

This method solves TRS iteratively by using the Lanczos process.
A solution – vector dj

● is the j−th approximation of the optimal step d

● is contained in the Krylov subspace

Kj = span{g, Bg, . . . , Bj−1g}

of dimension j defined by the matrix B and the vector g.

In this case, dj = Zd̃j , where d̃j is obtained by solving the
j−dimensional subproblem

min 1/2 d̃T T d̃ + ‖g‖eT
1 d̃ subject to ‖d̃‖ ≤ ∆.

Here

● T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal matrix
● e1 is the first column of the unit matrix

Matrix Z has to be stored – we consider only j ≤ n cols (usually j ≤ 100).
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Shifted Steihaug-Toint [SST,PSST]

This method applies the ST method to the shifted subproblem

min Q̃(d) = Qλ̃(d) = 1/2 dT (B + λ̃I)d + gT d s.t. ‖d‖ ≤ ∆(9)

● the number λ̃ ≥ 0 approximates the optimal λ in MS method
● this method combines good properties of the MS and ST methods
● it can be successfully preconditioned
● the solution is closer to the optimal solution than the ST point

1. Carry out j ≪ n steps of the unpreconditioned Lanczos method to
obtain the tridiagonal matrix T = Tj = ZT

j BZj (usually j = 5).

2. Solve the subproblem

min 1/2 d̃T T d̃ + ‖g‖eT
1 d̃ subject to ‖d̃‖ ≤ ∆,

using the MS method to obtain the Lagrange multiplier λ̃.

3. Apply the PST method to (9) to obtain the direction vector d = d(λ̃).



ALGORITMY 2009 L.Lukšan, C.Matonoha, J.Vlček: Trust region methods for unconstrained optimization - 25

Hager 2001 [PH]

There are several techniques for large scale TR subproblems that are not
based on conjugate gradients. This method solves

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆(10)

with the additional constraint that d is contained in a low-dimensional
subspace. They are modified in successive iterations to obtain quadratic
convergence to the optimum. We seek vectors d ∈ S where S contains:

● The previous iterate. This causes that the value of the objective function
can only decrease in consecutive iterations.

● The vector Bd + g. It ensures descent if the current iterate does not
satisfy the first-order optimality conditions.

● An estimate for an eigenvector of B ass. with the smallest eigenvalue. It
will dislodge the iterates from a nonoptimal stationary point.

● The SQP iterate. The convergence is locally quadratic if S contains the
iterate generated by one step of the SQP algorithm applied to (10).
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SQP method

The SQP method is equivalent to the Newton’s method applied to the
nonlinear system

(B + λI)d + g = 0,
1

2
dT d −

1

2
∆2 = 0.

The Newton iterate can be expressed in the following way:

dSQP = d + z, λSQP = λ + ν,

where z and ν are solutions of the linear system

(B + λI)z + d ν = −
(

(B + λI)d + g
)

,

dT z = 0,

which can be solved by preconditioned CG method with the incomplete
Choleski-type decomposition of matrix B + λI.
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Rojas-Santos-Sorensen 1997, 2000 [RSS]

Consider the bordered matrix

Bα =

(

α gT

g B

)

where α ∈ R and observe that

α

2
+ Q(d) =

1

2
(1, dT )Bα

(

1

d

)

.

Thus there exists a value of α such that min Q(d) is equivalent to

min
1

2
dT

αBαdα subject to ‖dα‖
2 ≤ 1 + ∆2, eT

1 dα = 1,

where dα = (1, dT )T and e1 ∈ Rn+1 is the first canonical unit vector.

● the desired solution is found in terms of eigenpairs of Bα

● the resulting algorithm is superlinearly convergent
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4. Numerical comparison
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Test problems

● The methods are implemented in the interactive system UFO
www.cs.cas.cz/luksan/ufo.html

as subroutines for solving trust region subproblems.
● They were tested by using two collections of 22 sparse test problems

www.cs.cas.cz/luksan/test.html
with 1000 and 5000 variables – subroutines TEST14 and TEST15.

The results are given in the following tables or graphs, where

● NIT is the total number of iterations,
● NFV is the total number of function evaluations,
● NFG is the total number of gradient evaluations,
● NDC is the total number of Choleski-type decompositions

(complete for MS,DL,MDL and incomplete for PH,PST,PSST),
● NMV is the total number of matrix-vector multiplications,
● Time is the total computational time in seconds.
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Table 1 – TEST14 – unconstrained minimization

N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
DL 2272 2409 10653 2195 2347 2.94
MDL 2132 2232 9998 1721 21670 3.17
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PH 1958 2002 8975 3930 57887 5.86
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97
RSS 2183 2337 10075 0 ∞ ∞

5000 MS 8177 8273 34781 13861 8272 49.02
DL 9666 10146 42283 9398 9936 43.37
MDL 8913 9244 38846 7587 91784 48.05
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PH 8657 8869 37372 19652 277547 127.25
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57
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Table 2 – TEST15 – sums of squares

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
DL 2420 12291 12106 2274 2573 9.00
MDL 2204 10586 10420 1844 23139 7.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PH 1987 9491 9444 6861 84563 11.11
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
DL 9607 42498 41958 9299 9963 128.92
MDL 8660 37668 37308 7689 91054 111.89
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PH 8455 36434 36236 20538 281736 182.45
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44
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TEST14 – unconstrained minimization – N=1000
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TEST14 – unconstrained minimization – N=5000
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TEST15 – sums of squares – N=1000



ALGORITMY 2009 L.Lukšan, C.Matonoha, J.Vlček: Trust region methods for unconstrained optimization - 35

TEST15 – sums of squares – N=5000
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Comments

All problems are sparse ⇒ the CD methods (MS,DL,MDL) are very
efficient, much better than unpreconditioned MV methods (ST,SST,GLRT).
Note that the methods PH,RSS are based on a different principle.

1. Since TEST14 contains reasonably conditioned problems, the
preconditioned MV methods are competitive with the CD methods.
Note that NFG is much greater than NFV since the Hessian matrices
are computed by using gradient differences.

2. On the contrary, TEST15 contains several very ill-conditioned
problems and thus the CD methods work better than the MV methods.
Note that the problems are the sums of squares having the form

F (x) =
1

2
fT (x)f(x)

and NFV denotes the total number of the vector f(x) evaluations.
Since f(x) is used in the expression

g(x) = JT (x)f(x),

where J(x) is the Jacobian matrix of f(x), NFG is comparable with NFV.
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5. Conclusion
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Summary

To sum up, our computational experiments indicate the following:

● the CD methods (MS,DL,MDL) are very efficient for ill-conditioned but
reasonably sparse problems;

● if the problems do not have sufficiently sparse Hessian matrices, then
the CD methods can be much worse than the MV methods
(ST,SST,GLRT);

● an efficiency of the MV methods strongly depends on suitable
preconditioning (we use an incomplete Choleski decomposition).

● methods based on computation of eigenvectors (PH and especially RSS)
are not efficient since computation of eigenvalues is time-consuming
(method RSS was developed for regularization of large-scale ill-posed
least-squares problems)
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Thank you for your attention!
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