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Strongly semisimple MV-algebras and tangents
Leonardo Manuel Cabrer∗

A formula φ is provable in Łukasiewicz propositional logic Ł∞ iff it is a tautology in
[0, 1]. More generally, a classical result by Hay [3] and Wójcicki [4] states that for every
finite set of formulas Φ, a formula ϕ is a semantic consequence of Φ (any valuation satisfying
all formulas of Φ also satisfies ϕ) iff ϕ is syntactic consequence Φ (there is a derivation of
ϕ from Φ in Ł∞).

The semantic consequences of a (possibly infinite) set Θ of formulas in Łukasiewicz
logic coincide with the syntactic consequences of Θ iff the Lindenbaum MV-algebra of Θ
is semisimple (the intersection of its maximal ideals only contains 0).

Following Dubuc and Poveda [2], we say that an MV-algebra A is strongly semisimple
if all its principal quotients are semisimple. If A is the Lindenbaum algebra of a set of
Ł∞-formulas Θ, then the strong semisimplicity of A means that semantic consequences
and the syntactic consequences Θ ∪ {θ} coincide for each formula θ.

Busaniche and Mundici [1] characterize 2-generated strongly semisimple MV-algebras
using Bouligand-Severi tangents. In this paper we will present a description of strongly
semisimple MV-algebras. Our result depends on a generalisation of the notion of Bouligand-
Severi tangent which is reminiscent of k-dimensional tangents of k-dimensional manifolds
in Rn. Our tangents consist of tuples (u1, . . . , uk) of orthogonal unit vectors in Rn. The
two main differences between k-dimensional tangents and our tangents are: (a) our tan-
gents are defined for arbitrary compact sets, and (b) the listing order of the vectors ui is
crucial.

References
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Non-standard states, conditional probability
and strong coherence

Franco Montagna∗

1 Why non-standard states?

There are several reasons for introducing non-standard states. Suppose, for instance, that
we want to choose a natural number at random in such a way that all natural numbers
have the same probability. Then, a natural choice would be to give each natural number
an infinitesimal probability.

Moreover, non-standard probabilities allow us to treat conditional probability in terms
of bets, according to Bruno de Finetti, in the case where the conditioning event has prob-
ability zero (see for instance Borel’s example of the probability of chosing a point in the
Western Hemisphere given that it belongs to the Equator). Our proposed solution is to
replace zero-probabilities by infinitesimal, but positive probabilities.

Finally, non-standard probabilities allow us to treat the so called strong coherence. An
assessment is said to be strongly coherent if not only it avoids sure loss, but also prevents us
from bets which exclude any loss for the gambler and at the same time do not exclude the
possibility of a win. An assessment of this kind cannot be considered completely rational,
even if it avoids sure loss for the bookmaker.

2 The non-standard paradigm

Following Mundici, we treat many-valued events, represented as elements of an MV-algebra.
Such elements can be regarded as [0, 1]-valued random variables. MV-probabilities are in
terms of states, that is, positive, normalized, homogeneous and additive maps from the
given MV-algebra into [0, 1]. But for our purposes, we need hyperstates, which are positive,
normalized, additive and homogeneous maps into [0, 1]∗, a non-standard extension of [0, 1].
Note that hyperstates H satisfy H(α · x) = α · H(x) even for non-standard α. Hence,
hyperstates do not kill infinitesimals and allow us to treat bets in which non-standard
betting odds, non-standard truth values and non-standard bets are allowed.

One first result is about faithful states and strong coherence. A (hyper)state H is
faithful if H(A) = 1 implies that A = 1, that is, A is the certain event. An MV-algebra
may fail to have faithful states. However, for every coherent assessment on an MV-algebra,

∗Università degli Studi di Siena, Italy
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there is a faithful hyperstate on it which differs from the given assessment by an infinites-
imal. Moreover, an assessment which can be extended to a faithful hyperstate is strongly
coherent. It follows that for every coherent assessment there is a hyperassessment which
differs from it by an infinitesimal, which is strongly coherent.

3 Conditional probability

A typical example of coherent, but not strongly coherent assessment, is constituted by a
bad assessment of conditional probability where the betting odd for the conditioning event
is 0. For instance, let, in Borel’s example, Eq be the event: the chosen point belongs to the
Equator, let W and Ea be the events: the point belongs to the Western Hemisphere and
the point belongs to the Eastern Hemisphere, respectively. Then the assessment Eq 7→ 0,
W |Eq 7→ 0, Ea|Eq 7→ 0 avoids sure loss (if the point does not belong to the Equator,
there is no loss for the bookmaker). However, betting 1 Euro on each of the three events
produces no loss for the gambler, because the betting odd is 0, and possibly a win (if the
point beongs to the Equator).

We introduce a new rationality criterion which is based on the concept of stable coher-
ence: an assessment Λ of conditional probability is stably coherent if there is a coherent
non-standard assessment Λ′ such that: (a) Λ and Λ′ differ by an infinitesimal, and (b) every
conditioning event is assessed by Λ′ to a strictly positive (possibly infinitesimal) number.
The main result says:

An assessment is stably coherent if it can be extended, modulo an infinitesimal, to a
faithful hyperstate H∗, where H∗(A|B) = H∗(A·B)

H∗(B) .

Time permitting, we will also discuss non-standard imprecise conditional probabilities.

3
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Nash equilibrium semantics for languages
of imperfect information

Gabriel Sandu∗

I will first introduce Independence-friendly logic (IF logic), a logical system which can
defines two-player win-lose games of imperfect information. The syntax of the underlying
language is designed to express the players knowledge in the imperfect information games
which constitutes its interpretation. For sentences which are indeterminate (neither true
nor false in a given model), one can implement a suggestion by Ajtai and take the value
of the sentence to be given by von Neumanns Minimax theorem. We review some of the
known results and analyze two proofs of the fact that IF logic realizes all rational numbers.

∗Helsinki University, Finland
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Collective learning versus informational cascades:
towards a logical approach to social information flow

Sonja Smets∗

In this presentation I use ideas from (Probabilistic) Dynamic Epistemic Logic, Belief
Revision Theory and Formal Learning Theory to analyse examples of both successful col-
lective learning (the “wisdom of the crowds”) and its distortions (informational cascades).
I argue that the standard Bayesian analysis, though useful, is insufficient for a full under-
standing of these phenomena. What is typically absent from the standard Bayesian models
is the agents’ higher-order reasoning about other agents’ minds. A full understanding of
these phenomena shows that even in the ideal context of unlimited higher-order reasoning
or when agents adopt a qualitative heuristic method instead of probabilistic conditioning
(e.g. by simply counting their evidence), cascades can still appear and examples can be
given in which individual rationality may lead to group “irrationality”. This presentation
is based on recent joint work in [1] and provides a first step towards investigating in more
generality the logical dynamics of social information.

References

[1] A. Baltag, Z. Christoff, J.U. Hansen and S. Smets, "Logical Models of Informational
Cascades" in proceedings of the workshop on "Logic across the university, Foundations
and Applications", Tsinghua University, to appear in Springer LNCS/Folli series 2013.

∗University of Amsterdam, The Netherlands

5



MANYVAL 2013: Games, decisions and rationality 4–6 September 2013, Prague

Logics of cognitive strategies: Referentiality vs.
many-valuedeness

Ryszard Wójcicki∗

∗Polish Academy of Sciences, Poland
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Involutive left-continuous t-norms arising from
completion of MV-chains

Stefano Aguzzoli∗ Anna Rita Ferraioli† Brunella Gerla‡

Chang’s MV-algebra is the prototypical example of a linearly ordered MV-algebra hav-
ing infinitesimals. It can be defined as

Γ(Z lexZ, (1, 0)) ,

where Z lexZ is the abelian ℓ-group obtained as the lexicographic product of two copies
of the ℓ-group Z of the integer numbers, and Γ is Mundici’s functor, which implements
a categorical equivalence between abelian ℓ-groups with a distinguished strong unit and
MV-algebras [1].

Notice that Chang’s MV-algebra is not complete as a lattice, as clearly the set S− =
{(0, a) | a ∈ Z , a ≥ 0} is a subset of Γ(Z lexZ, (1, 0)) having no supremum, and, analo-
gously, the set S+ = {(1, a) | a ∈ Z , a ≤ 0} has no infimum. However, the lattice reduct
of Chang’s MV-algebra can clearly be completed by adjoining just one new point, forming
both the supremum of S− and the infimum of S+. One drawback of this construction is
that the resulting structure is no more an MV-algebra.

Consider now the MV-algebra

Γ(Z lexR, (1, 0)) .

Trivially, Γ(Z lexZ, (1, 0)) is a subalgebra of Γ(Z lexR, (1, 0)). Moreover, we can represent
Γ(Z lexR, (1, 0)) isomorphically as an MV-algebra A over the universe [0, 1] \ {1/2}, which
is clearly not a subalgebra of the standard MV-algebra [0, 1], nor it is complete as a lattice.
We can then embed A in a standard IMTL-algebra B (i.e., one with universe [0, 1]), which
is a lattice completion of [0, 1] \ {1/2}. Actually it turns out that B is the left-continuous,
but not continuous t-norm defined as the Jenei’s (connected) rotation [5] of the product
t-norm [6, Example 4].

This fact throws light on the close relationship between the algebras in the variety
generated by Chang’s MV-algebra, and the algebras in the variety generated by the product
t-norm, and hence with cancellative hoops. Moreover, it provides us with an interesting
family of left-continuous involutive t-norms, arising as lattice completion of some MV-
chains.

∗Università degli Studi di Milano, Italy
†Università dell’Insubria, Italy
‡Università dell’Insubria, Italy
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For what concerns the relationship with the product t-norm, we discuss different char-
acterisations of the free algebras in the variety DLMV generated by Chang’s MV-algebra
(the name reflects the fact that this variety is axiomatised by adding to MV-algebra equa-
tions the Di Nola–Lettieri axiom 2(x2) = (2x)2, see [3, 2]). In particular we consider the
well known representation by means of weak Boolean products of disconnected rotations
of the free cancellative hoop (cfr. [2, 4, 7]), and a more concrete representation by means
of a class of continuous functions (w.r.t. the usual Euclidean topology) from a power of
[0, 1] \ {1/2} to [0, 1] \ {1/2}.

We then consider the variety JΠ of IMTL-algebras generated by Jenei’s (connected)
rotation of product t-norm. We introduce characterisations of the free algebras in this
variety both as weak Boolean products and by a class of functions from a power of [0, 1] to
[0, 1]. We show that functions in the free algebras of DLMV are obtained by restricting the
domain of the functions of free JΠ-algebras to the set of points having no 1/2 components.

For what regards the t-norms arising as completion of MV-chains, let us fix some
notation: we set

Sωn = Γ(Z lexZ, (n− 1, 0)) ,

Sc
n = Γ(Z lexR, (n− 1, 0)) ,

Sn = Γ(Z, n− 1) .

Note that each Sn is MV-isomorphic to the n-element standard Łukasiewicz chain
Ln =

{
0, 1

n−1 ,
2

n−1 . . . ,
n−2
n−1 , 1

}
. Analogously, for each integer n > 1, we can find an MV-

chain Lc
n with universe [0, 1] \ (Ln+1 \ {0, 1}) such that

Sωn ⊆ Sc
n
∼= Lc

n .

Note Lc
n is not complete, but it can be completed by adding a finite number of new points.

We can then define for each integer n > 1 an involutive left-continuous t-norms ⊙∗
n

defined, for every x, y ∈ [0, 1], by:

x⊙∗
n y =


x⊙c

n y if x, y /∈ Ln+1

x⊙n+1 y if x, y ∈ Ln+1

x⊙n+1 ⌈y⌉n+1 if x ∈ Ln+1, y /∈ Ln+1

⌈x⌉n+1 ⊙n+1 y if x /∈ Ln+1, y ∈ Ln+1

where ⊙c
n is the monoidal conjunction of Lc

n, ⊙n+1 is the monoidal conjunction of Ln+1

and for each x ∈ [0, 1], ⌈x⌉n+1 is the smallest element of Ln+1 greater or equal to x.

It turns out that Lc
n is an IMTL-subalgebra of the standard algebra ([0, 1],⊙∗

n,→∗
n, 0)

(where →∗
n is the residuum of ⊙∗

n).

We can hence investigate the properties of the subvarieties of IMTL-algebras generated
by the t-norms ⊙∗

n, and relate them to the corresponding MV-algebras. In particular we
note that, for each n > 1, the MV-algebras in the variety generated by ([0, 1],⊙∗

n,→∗
n, 0)

are exactly those in the subvariety of MV-algebras generated by {Sωn , Sn+1}.
Some consequences and further generalisations of this construction are explored.
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A proof theoretical approach to standard
completeness

Paolo Baldi∗

Standard completeness, that is completeness of a logic with respect to algebras based
on the real interval [0, 1], is one of the major issues in Mathematical Fuzzy logic. Checking
or discovering whether a logic is standard complete is sometimes a challenging task which
often deserves a paper on its own, see e.g., [6, 7, 12, 4, 9]. The usual approach to the
problem is algebraic and consists of the following steps. Let L be a logic described in a
Hilbert-style system.

1. The algebraic semantics of the logic are identified (L-algebras).

2. The completeness of the logic is shown w.r.t countable L-chain (linearly ordered
L-algebra).

3. It is shown that any countable L-chain can be embedded into a countable dense
L-chain by adding countably many new elements to the algebra and extending the
operations appropriately. This establishes rational completeness: a formula is deriv-
able in L iff it is valid in all countable dense L-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra, that is an
L-algebra with lattice reduct [0, 1], using a Dedekind-MacNeille-style completion.

The crucial step 3. above (rational completeness) is the most difficult to establish, as it
relies on finding the right embedding, if any. A different approach to step 3. was introduced
in [10] by using proof-theoretic techniques. The idea there is that the admissibility in a logic
L of a particular syntactic rule (called density) can lead to a proof of rational completeness
for L.

Introduced by Takeuti and Titani [13], the density rule formalized Hilbert-style has the
following form

(A→ p) ∨ (p→ B) ∨ C
(A→ B) ∨ C

where p is a propositional variable not occurring in A, B, or C. Ignoring C, this can be
read contrapositively as saying (very roughly) “if A > B, then A > p and p > B for some
p”; hence the name “density” and the intuitive connection with rational completeness.

The proof-theoretic method was used in [10] to establish standard completeness for
various logics for which algebraic techniques do not appear to work. In this approach, to
establish standard completeness for a logic L we need to:

∗Technische Universität Wien, Austria
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(a) define a suitable proof system PSL for L extended with the density rule

(b) check that this rule is eliminable (or admissible) in PSL, i.e. that density does not
enlarge the set of provable formulas

(c) standard completeness may then be obtained in many cases (but not in general) by
means of the Dedekind-MacNeille completion.

Convenient proof system for fuzzy logic are based on hypersequents, that are simple
generalizations of Gentzen sequents whose basic objects of inference are “disjunctions" of
sequents, see [1, 11] for an overview. Step (b) above (density-elimination) was established
in [2, 10] for various hypersequent calculi. These proofs are however calculi-specific and
use heavy combinatorial arguments, in close analogy with Gentzen style cut-elimination
proofs. A different method to eliminate applications of the density rule from derivations
was introduced in [5] and called density elimination by substitutions. In this approach,
inspired to normalization for natural deduction systems, applications of the density rule
are removed by making suitable substitutions for the newly introduced propositional vari-
ables. In this talk, we will show some generalization of the method of density elimination
by substitutions, extending the results in [5]. We systematically investigate which classes
of sequent and hypersequent structural rules allow for density elimination [3]. In partic-
ular, we will focus on axiomatic extensions of UL (uninorm logic), whose corresponding
hypersequent calculi lack the weakening rule, but may contain other structural rules, such
as contraction, mingle, n-contraction (see e.g. [11]). Density elimination will be proved for
classes of hypersequent calculi, thus leading to standard completeness for the formalized
logics. An interesting feature of this proof theoretic approach is that standard complete-
ness can be achieved in a completely automated way. This means that, besides subsuming
existing results the method allows for the automated discovery of new fuzzy logics.
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A temporal semantics for Nilpotent Minimum logic
Matteo Bianchi∗

Abstract

Nilpotent Minimum logic NM was introduced in [EG01] as the logical calculi as-
sociated to Nilpotent Minimum t-norm [Fod95]. In this talk we present a very simple
and natural temporal like semantics for NM ([Fod95, EG01]), in which the logic of ev-
ery instant is given by three-valued Łukasiewicz logic Ł3: a completeness theorem will
be shown. This is the prosecution of the work initiated in [AGM08] and [ABM09], in
which the authors construct a temporal semantics for the many-valued logics of Gödel
([God32], [Dum59]) and Basic Logic ([Haj98]).

Extended Abstract

In recent years there has been a development for alternative semantics, for many-valued log-
ics: some examples are given by dialogue game semantics for Łukasiewicz and Gödel logics
(see [Fer08] for an overview), evaluation games for first-order Łukasiewicz logic ([CM09]),
and temporal like semantics for Gödel logic and BL ([AGM08, ABM09]). Every seman-
tics (algebraic, game-theoretic, temporal like. . . ) has its peculiarities and allows to show
different aspects and peculiarities of the logical counterpart.

In this talk we focus our attention on Nilpotent Minimum logic (NM): this logic was
introduced in [EG01] as the logical system associated to the variety of algebras generated
by [0, 1]NM, an algebraic structure induced by Nilpotent Minimum t-norm ([Fod95]).

However, the algebraic semantics is only a possible candidate for this logic. Here we
present a temporal like semantics, in which the formulas are evaluated over a temporal flow
of time, and the logic of every instant is given by three-valued Łukasiewicz logic Ł3. In
particular, a temporal flow is given by any totally ordered infinite set ⟨T,≤⟩: a temporal
assignment (over a temporal flow ⟨T,≤⟩) is a map v that associates to every formula φ
and instant of time t ∈ T a value in

{
0, 12 , 1

}
, satisfying one of the following conditions,

for every formula φ:

• v(φ, ·) is constant (to 0, 12 , or 1) for every instant of time.

• There is an instant t such that v(φ, t′) = 1, for every t′ ≥ t, and v(φ, t′′) = 1
2 , for

every t′′ < t.

• There is an instant t such that v(φ, t′) = 0, for every t′ ≥ t, and v(φ, t′′) = 1
2 , for

every t′′ < t.
∗Università degli Studi di Milano, Italy
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As we will see these temporal assignments will be “truth-functional” over the negation
connective, whilst on the implication the truth value of a formula like φ → ψ, at the
instant t, will depends also on the truth values of φ,ψ in the instants t′ ≥ t.

We will show a completeness theorem of this form:

Theorem 1 (Completeness theorem). Let ⟨T,≤⟩ be a temporal flow. Then for each formula
φ and finite theory Γ.

Γ ⊢NM φ iff Γ |=T φ.

All the technical details will be developed during the talk.
We conclude by pointing out that in [AM12] the authors, by using the temporal seman-

tics for Gödel logic introduced in [AGM08], have developed a de Finetti’s like coherence
criterion for events (described by formulas) whose truth value varies over a temporal flow
of time. Also the semantics presented in this talk could be at the base for a similar work
for Nilpotent Minimum logic.

References

[ABM09] S. Aguzzoli, M. Bianchi, and V. Marra, A temporal semantics for basic logic,
Studia Logica 92 (2009), 147–162.

[AGM08] S. Aguzzoli, B. Gerla, and V. Marra, Embedding Gödel propositional logic into
Prior’s tense logic, Proceedings of IPMU’08 (Torremolinos (Málaga)) (L. Mag-
dalena, M. Ojeda-Aciego, and J.L. Verdegay, eds.), June 2008, pp. 992–999.

[AM12] S. Aguzzoli and V. Marra, Betting on events observed over time: de Finetti’s
Dutch-Book argument for Gödel logic, Logic, Algebra and Truth Degrees 2012,
10-14 September 2012.

[CM09] P. Cintula and O. Majer, Towards evaluation games for fuzzy logics, Games: Unify-
ing Logic, Language, and Philosophy (Ondrej Majer, Ahti-Veikko Pietarinen, and
Tero Tulenheimo, eds.), Logic, Epistemology, and the Unity of Science, vol. 15,
Springer Netherlands, 2009, pp. 117–138.

[Dum59] M. Dummett, A Propositional Calculus with Denumerable Matrix, The Journal
of Symbolic Logic 24 (1959), no. 2, 97–106.

[EG01] F. Esteva and L. Godo, Monoidal t-norm based logic: Towards a logic for left-
continuous t-norms, Fuzzy sets and Systems 124 (2001), no. 3, 271–288.

[Fer08] C. G. Fermüller, Dialogue games for many-valued logics - an overview, Studia
Logica 90 (2008), no. 1, 43–68.

[Fod95] J. Fodor, Nilpotent minimum and related connectives for fuzzy logic, Fuzzy Sys-
tems, 1995. International Joint Conference of the Fourth IEEE International Con-
ference on Fuzzy Systems and The Second International Fuzzy Engineering Sym-
posium., Proceedings of 1995 IEEE International Conference on, IEEE, 1995,
pp. 2077–2082.

18



MANYVAL 2013: Games, decisions and rationality 4–6 September 2013, Prague

[God32] K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wis-
senschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse 69 (1932), 65–
66, English translation in [God01].

[God01] , Collected works, paperback ed., vol. 1 Publications: 1929-1936, Oxford
University Press, 2001.

[Haj98] P. Hájek, Metamathematics of fuzzy logic, Trends in Logic, vol. 4, Kluwer Aca-
demic Publishers, 1998.

19



MANYVAL 2013: Games, decisions and rationality 4–6 September 2013, Prague

On logics of formal inconsistency and fuzzy logics
Marcelo Coniglio∗ Francesc Esteva† Lluís Godo‡

Paraconsistency is the study of logics (as deductive systems) having a negation operator
¬ such that not every contradiction {φ,¬φ} trivializes or explodes. In other words, a
paraconsistent logic is a logic having at least a contradictory, non-trivial theory.

Among the plethora of paraconsistent logics proposed in the literature, the so-called
Logics of Formal Inconsistency (LFIs), proposed in [3] (see also [2]), play an important
role, since they internalize in the object language the very notions of consistency and
inconsistency by means of specific connectives (either primitive or not). This generalizes
the strategy of da Costa, which introduced in [5] the well-known hierarchy of systems Cn,
for n > 0. Besides being able to distinguish between contradiction and inconsistency,
on the one hand, and non-contradiction and consistency, on the other, LFIs are non-
explosive logics, that is, paraconsistent: in general, a contradiction does not entail arbitrary
statements, and so the Principle of Explosion φ,¬φ ⊢ ψ does not hold. However, LFIs
are gently explosive, in the sense that, adjoining the additional requirement of consistency,
then contradictoriness does cause explosion: ⃝(φ), φ,¬φ ⊢ ψ for every φ and ψ. Here,
⃝(φ) denotes the consistency of φ. The general definition of LFIs we will adopt here,
slightly modified from the original one proposed in [3] and [2], is the following:

Definition 1. Let (L,⊢) be a logic defined in a language L containing a negation ¬,
and let ⃝(p) be a nonempty set of formulas of L depending exactly on the propositional
variable p. Then L is an LFI (with respect to ¬ and ⃝(p)) if the following holds (here,
⃝(φ) = {ψ[p/φ] : ψ(p) ∈ ⃝(p)}):

(i) φ,¬φ ⊬ ψ for some φ and ψ, i.e. the logic is not explosive;

(ii) ⃝(φ), φ ⊬ ψ for some φ and ψ;

(iii) ⃝(φ),¬φ ⊬ ψ for some φ and ψ; and

(iv) ⃝(φ), φ,¬φ ⊢ ψ for every φ and ψ.

In many situations ⃝(φ) is a singleton, whose element will we denoted by ◦φ, and ◦ is
called a consistency operator in L with respect to ¬. It has to be noticed that in the frame
of LFIs, the term consistent rather refers to formulas that basically exhibit a classical logic
behaviour, so in particular an explosive behaviour. Such a consistency operator can be
primitive (as in the case of most of the systems treated in [3] and [2]) or, on the contrary,
it can be defined in terms of the other connectives of the language. For instance, in the

∗State University of Campinas, Brazil
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well-known system C1 by da Costa, consistency is defined by the formula ◦φ = ¬(φ∧¬φ)
(see [5]).

Systems of mathematical fuzzy logic, understood as truth-preserving many-valued log-
ics in the sense of [7, 4], are not paraconsistent. Indeed, in these systems, φ&¬φ is always
evaluated to 0, and hence any formula can be deduced from the set of premises {φ,¬φ}.
However, the situation is different if one considers, for each truth-preserving logic L, its
companion L≤ that preserves degrees of truth as studied in [1]. In fact, in these systems
L≤, a formula φ follows from a (finite) set of premises Γ when, for all evaluations e on a
corresponding class of L-chains, e(φ) ≥ min{e(ψ) | ψ ∈ Γ}. Obviously, if L is not pseudo-
complemented, there is always some evaluation e such that e(φ ∧ ¬φ) > 0. This says that
{φ,¬φ} is not explosive in L≤ and thus, there are fuzzy logics preserving degrees of truth
that are paraconsistent (see [6] for a preliminary study).

In this paper, given an axiomatic extension L of MTL that is not SMTL, we first study
natural conditions a consistency operator ◦ on L-chains has to satisfy. These conditions
are used then to define both a semilinear truth-preserving logic L◦, over the language of
L expanded with a new unary connective ◦, as well as its paraconsistent companion L≤

◦ .
Finally we consider several extensions of L≤

◦ , capturing several further properties one can
ask to the consistency operator ◦. For instance, we introduce the logics (L¬¬

◦ )≤ (where the
negation in the chains of the quasi-variety of L-algebras satisfies the condition ¬¬x = 1 iff
x = 1), the logic (Lc◦)

≤ (where the operator ◦ is Boolean) and the logics (Lmin
◦ )≤ or (Lmax

◦ )≤

(where the consistency operators are the minimum and the maximum ones respectively).
Finally we study in the above logics the problem of recovering the classical reasoning

by means of the consistency connective ◦, a very desirable property in the context of LFIs
(see [2]), called DAT (Derivability Adjustment Theorem). When the operator ◦ enjoys
a suitable propagation property in the logic L with respect to the classical connectives,
then the DAT in L≤

◦ assumes the following simplified form: for every finite set of formulas
Γ ∪ {φ} in the language of classical propositional logic (CPL),

(PDAT) Γ ⊢CPL φ iff {◦p1, . . . , ◦pn} ∪ Γ ⊢
L≤
◦
φ

where {p1, . . . , pn} is the set of propositional variables occurring in Γ ∪ {φ}.
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Lexicographic MV-algebras through
a generalization of the Di Nola-Lettieri functors

Denisa Diaconescu∗ Tommaso Flaminio† Ioana Leuştean‡

An MV-algebra is a structure (A,⊕,∗ , 0), where (A,⊕, 0) is an abelian monoid and the
following identities hold for all x, y ∈ A: (x∗)∗ = x, 0∗⊕x = 0∗, (x∗⊕y)∗⊕y = (y∗⊕x)∗⊕x.
We refer to [1] for all the unexplained notions concerning the theory of MV-algebras. MV-
algebras are categorically equivalent with abelian lattice-ordered groups with a strong unit
(henceforth called abelian ℓu-groups). This categorical equivalence is due to Mundici [6]
and the corresponding functor is denoted by Γ. As a consequence, for any MV-algebra A
there exists an ℓu-group (G, u) such that A ≃ Γ(G, u).

The subclass of perfect MV-algebras was introduced and studied by Di Nola and Lettieri
in [3]. They proved that ∆(G) = Γ(Z×lexG, (1, 0)) is a perfect MV-algebra for any abelian
ℓ-group G, where ×lex is the usual lexicographic product of groups. Moreover, the above
construction gives rise to a categorical equivalence between the category P of perfect MV-
algebras and the category G of abelian ℓ-groups. The functors ∆ : G → P and D : P → G
establishing the equivalence are called the Di Nola-Lettieri functors.

In this paper we study the class of MV-algebras which is obtained by replacing, in the
definition of the functor ∆, the ℓu-group (Z, 1) by an arbitrary ℓu-group (H,u) and we
aim to prove a generalization of the Di Nola-Lettieri categorical equivalence.

We say that an MV-algebra M is lexicographic if

M ≃ Γ(H ×lex G, (u, 0)),

where (H,u) is an abelian ℓu-group and G is an abelian ℓ-group.
There are two important examples of lexicographic MV-algebras:

• Perfect MV-algebras [3], which are obtained by taking the abelian ℓu-group (H,u)
to be the group (Z, 1) of integers,

• Local MV-algebras with retractive radical [4], which are obtained by taking the
abelian ℓu-group (H,u) to be a, ℓu-subgroup of (R, 1).

The lexicographic MV-algebras are characterized as follows:

Theorem 1. An MV-algebra M is lexicographic iff there there exists a retractive ideal
I ̸= {0} of M such that

ϵ ≤ x ≤ ϵ∗, for any ϵ ∈ I and x ∈M \ (I ∪ I∗), where I∗ = {x∗|x ∈ I}.
∗University of Bucharest, Romania
†Univesity of Insubria, Italy
‡University of Bucharest, Romania
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Let A be an arbitrary, but fixed, MV-algebra. If M is a lexicographic MV-algebra
such that M/I ≃ A where I ⊆ M is the corresponding retractive ideal, then M contains
a subalgebra that is isomorphic with A. We denote by ιM : A → M the embedding of
A in M . We can now define the category LexMVA whose objects are the lexicographic
MV-algebras as above and whose morphisms are MV-algebra morphisms f : M1 → M2

such that f(ιM1(a)) = ιM2(a) for any a ∈ A. The following result generalizes the Di
Nola-Lettieri equivalence:

Theorem 2. The categories LexMVA and G are equivalent.

We also study the theory of states defined on lexicographic MV-algebras. States on
MV-algebras were introduced by Mundici in [7] as [0, 1]-valued, additive and normalized
mappings. The categorical equivalence between MV-algebras and abelian ℓu-groups has a
counterpart from the point of view of states. Indeed, following [5], a state on an abelian
ℓu-group (H,u) is a positive homomorphism h from (H,u) into the additive group of reals
(R, 1) such that h(u) = 1, and the following holds:

Theorem 3. [7] If A = Γ(H,u) then any state on A can be uniquely extended to a state
on (H,u). The states on A are in bijective correspondence with the states on (H,u).

Following Theorem 2, we introduce the lexicographic states defined on lexicographic
MV-algebras and we prove an analogue of Theorem 3. If M is a lexicographic MV-algebra
then a lexicographic state is a hyperreal-valued additive and normalized functions, whose
codomain is isomorphic with ∆(R).

For an abelian ℓ-group G we call state any positive morphism of groups from G to R.
Our main theorem is the following:

Theorem 4. Assume (H,u) is an abelian ℓu-group, G is an abelian ℓ-group and A =
Γ(H,u) and M = Γ(H ×lex G, (u, 0)). Then any lexicographic state on M is uniquely
determined by a state on A and a state on G.

As a consequence of our definition, we get a notion of lexicographic state for the par-
ticular cases of perfect and local MV-algebras. It is worth noticing that our notion of
lexicographic state, when applied to perfect MV-algebras, gives a definition of state which
is analogous to that of local state that was already introduced by Di Nola, Georgescu and
Leuştean [2], with the unique difference that the codomain of a lexicographic state on a
perfect MV-algebra is the perfect MV-algebra described as ∆(R), while every local state in
the sense of [2] ranges over the positive cone of R. Moreover, while any perfect MV-algebra
A has just one state in the sense of Mundici [7], which coincides with that unique homomor-
phism from A into the two-valued Boolean algebra {0, 1}, lexicographic states for perfect
MV-algebras offer several non-trivial examples of monotone and normalized functions for
this particular case of MV-algebras. In particular, for every perfect MV-algebra A, each
positive morphism of groups from D(A) into the group of reals, induces a lexicographic
state on A.
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Games, equilibrium semantics,
and many-valued connectives

Christian G. Fermüller∗

Jaakko Hintikka [7] famously introduced a game based characterization of Tarski’s
central semantic notion of ‘truth in a model’. It can be presented as follows: A Proponent P
defends the claim that a formula F is true in a given model M by engaging in a game
against an Opponent O who aims at refuting the claim. At each stage of the game one of
the two players asserts a subformula of F . The game is initiated by P’s assertion of F and
proceeds in accordance with the following rules (here stated for P, but analogously for O):

(R∧) If P asserts G∧H then O may choose between G and H as the formula to be asserted
by P at the next stage.

(R∨) If P asserts G ∨H then Phas a choice between asserting G or H at the next stage.

(R¬) If P asserts ¬G then the roles of the two players are switched and the game continues
with O asserting G.

(R∀) If P asserts ∀xF (x) then O may choose any constant1 c and P has to assert F (c) at
the next stage.

(R∃) If P asserts ∃xF (x) then P has to chose some constant c and as F (c) at the next
stage.

When the players arrive at an atomic formula A, P wins and O looses if A is true in M;
otherwise O wins an P looses. P has a winning strategy in this game if and only if F
is true in M according to classical logic. A whole new branch of logic, called IF-logic
(Independency Friendly logic, see [9]) arises by investigating the consequences of imperfect
knowledge in the above game. Not knowing all previous choices of the other player at a
stage of the game implies that in general neither P nor O has a winning strategy for the
formula under consideration. In this manner IF-logic goes beyond bivalent (classical) logic
and achieves a higher level of expressibility. Equilibrium semantics [11, 9], considers mixed
strategies in the strategic game that corresponds to the extensive (imperfect information)
game just presented. At least when restricting attention to finite models, one may compute
a unique Nash equilibrium for any given initial formula of IF-logic. By identifying P’s
winning of a game run with the pay off value 1 and losing with 0, a link with many-valued
logic emerges: the Nash equilibrium of the game for a formula F can be interpreted as (in
general intermediate) truth value of F in the given model. As shown in [11, 9] this results

∗Technische Universität Wien, Austria
1We assume that there is a constant for every element of the domain of the model in question.
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in a justification of standard many-valued truth functions: the values for F ∨ G and for
F ∧G equal the minimum and maximum, respectively, of the values for F and G. Likewise,
negation corresponds to λx.1 − x, existential quantification to supremum, and universal
quantification to infimum. In other words, one recovers the truth functional semantics of
the so-called weak fragment of Łukasiewicz logic.

The main purpose of this contribution is to connect this result with another game based
interpretation of Łukasiewicz logic that, at least at a first glimpse, seems to be incompatible
with the principles of IF-logic. Already in the 1970s, Robin Giles, in an attempt to model
logical reasoning in physics from constructivist point of view, introduced a game in which,
like in Hintikka’s game, two players systematically reduce logical complex assertions to
atomic assertions. Although Giles referred to Lorenzen, rather than to Hintikka, his rules
for disjunction, conjunction, and the two quantifiers are virtually identical to those stated
above. An essential difference between the two games only emerges with Giles’ rule for
implication, which may be presented as follows.

(R→) If P asserts G→ H then, if O asserts G, P has to assert H.

This rule2, if invoked by O, leads to two assertions, one of O and one of P, that
have to be considered in the continuation of the game. Consequently, Giles’ game calls
for a more general notion of the state of the game. A state can now be specified by
[F1, . . . , Fn G1, . . . , Gm] where {F1, . . . , Fn} denotes the multiset of formulas currently
asserted by O and {G1, . . . , Gm} denotes the multiset of of formulas currently asserted
by P. Giles’ procedural constraint for admissible runs of the game is quite liberal: at
every stage any player can pick any occurrence of non-atomic formula asserted by the
other player for attack or to declare that the chosen formula will not be attacked at all
and thus is to be discarded. Once a state is reached, where all formulas are atomic, an
experiment is performed for each atomic assertion to check whether it is true or false.
These experiments are dispersive, i.e., if a player asserts the same atomic formula twice,
it may happen that one of the assertions is evaluated as false and the other is true. Only
a certain probability of a positive result is associated with each experiment. The players
have to pay a unit of money to the other player for each of their atomic assertions that is
evaluated as false and seek to minimize the total of money that they are expected to pay to
the other player. In this setting, a many-valued model is given by identifying the success
probability of an experiment with the truth of the corresponding atomic formula. Giles
proved that a formula F evaluates to truth value v in a given many-valued model according
to the standard truth functions of Łukasiewicz logic if and only if, for every ϵ > 0, P has
a strategy in the above game that limits her expected (average) loss by 1− v + ϵ units of
money, while O has a strategy that guarantees an average gain of 1− v − ϵ units.

Note that Giles’ game semantics goes beyond equilibrium semantics in also justifying
the following truth function i for implication: i(x, y) = 1− x+ y if x ≥ y and i(x, y) = 1
otherwise. Moreover, as shown in [3] and [4] one can extend Giles’ game by a simple rule
for so-called strong conjunction & , that is characterized by taking the Łukasiewicz t-norm
λx, y.max(0, x+y−1) as truth function. In other words, we obtain a game that is adequate
for full (standard) first-order Łukasiewicz logic.

2A rule for negation arises by identifying ¬A with A → ⊥, where ⊥ is a constantly false statement.
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To relate equilibrium semantics to the seemingly quite different set-up of Giles’ game,
we consider a richer language that consists of an inner level, corresponding to the syntax
of IF-logic, and an outer one that employs the propositional connectives and quantifiers of
full Łukasiewicz logic. The levels remain separated in the sense Łukasiewicz connectives
can only be used to join pure IF-formulas to yield new formulas at the outer level. (This
kind of two-tiered language is familiar from the literature on combining fuzzy logic with
probability theory in the manner initiated by [6].) For this compound language we propose
a matching game semantics with the following features:

• On the outer level, where the leading connective of a formula refers to Łukasiewicz
logic, the game proceeds exactly as specified in [5, 3, 4]: the attacked formula F is
replaced by (some of) the subformulas of F in the corresponding multiset of currently
asserted formulas.

• As soon as a pure IF-formula F is attacked the game switches to a ‘Hintikka-style’
mode for the corresponding formula occurrence of current state. In other words,
F is iteratively replaced by one of its subformulas in accordance with the rules of
Hintikka’s game until an atomic formulas is reached, for which the given model
determines whether P or O wins this sub-game of the overall game.

• The overall pay off for the game is specified in analogy to Giles’ game: at the end of
each Hintikka-style sub-game the loosing player has to pay one unit of money to the
other player. The players seek to minimize the total amount of money that they owe
according to this arrangement.

From the point of view of Giles’ analysis of reasoning under uncertainty, one may
understand the compound game as a straightforward extension of Giles’ original game,
where IF-formulas take the place of atomic Łukasiewicz formulas. In this manner results
of dispersive experiments are replaced by results of runs of a Hintikka-style game for an
IF-formula. This amounts to an interpretation of intermediate truth values as equilibria
in games of imperfect information that involve only ordinary bi-valued atomic predicates.
In the context of mathematical fuzzy logics, of which Łukasiewicz logic is a particularly
prominent example, this is a non-trivial achievement that should be compared to other
attempts to justify truth values and truth functions with respect to principles that do
not simply take the notion of (real-valued) graded truth for granted (cf. the overview
paper [10]).

On the other hand, from the viewpoint of equilibrium semantics, new modes of combin-
ing results of individual sub-games emerge that can only be modeled in the more general
framework of Giles-style games, where for each player may assert more than one formula
at any given state of the game. We emphasize that we here focus on just those forms of
combining games that preserve truth-functionality. This is achieved by stipulating that no
information is passed between individual runs of sub-games for IF-formulas. As soon as
one lifts this restriction, a plethora of non-truth-functional connectives emerge as seen in
game semantics for linear logics [2] or in Japaridze’s Computability Logic [8].
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A betting metaphor for belief functions
on MV-algebras and fuzzy epistemic states

Tommaso Flaminio∗ Lluís Godo†

Consider the following game. Two players, Bookmaker (B) and Gambler (G) agree in
betting on a finite set of events described by functions e1, . . . , en from a set of possible
worlds X = {w1, . . . , wk} into [0, 1] whose realizations are unknown now and which, in the
future, will be evaluated in the possible worlds of X.

The events will be evaluated by the following stipulation: the two players will share a
common epistemic state about the whole class of possible worlds which is represented by a
map π : X → [0, 1] such that, for each wi ∈ X, π(wi) represents the feasibility degree of wi
for both B and G. Therefore, given any epistemic state π and an event ei, the aggregated
value of ei from π is computed by the following formula:

Nπ(ei) = min{π(wj) ⇒ wj(ei) : j = 1, . . . , k}.

The game can hence be described by the following steps:

Stage 1 G fixes finitely many events e1, . . . , en ∈ [0, 1]X and publishes her book β : ei 7→
βi (for i = 1, . . . , n).

Stage 2 B chooses stakes σ1, . . . , σn each for each event in the book β and pays
∑n

i=1 σi ·βi
to G.

Now, assume that an epistemic state π : X → [0, 1] is reached by both players as according
to the rule previously described. Then the game proceeds in the following way:

Stage 3 Both players B and G, evaluate Nπ of each event ei of β in π. In other words
they calculate Nπ(ei) for each i = 1, . . . , n.

Stage 4 B pays to G the amount
∑n

i=1 σi ·Nπ(ei).

Definition 1. According with the previous game, a book β : ei 7→ βi is called B-coherent
iff there is no possible choice of stakes σ1, . . . , σn ensuring G a sure win in every epistemic
state π.

In [8, 5] a generalization of belief function theory in the frame of MV-algebras has been
proposed. The main idea of this approach is to define a belief function b over an MV-
algebra of fuzzy sets M = [0, 1]X (where X is a finite set of cardinality k that represents
the set of possible worlds we will take in consideration) as a state [12] over a separable

∗University of Insubria, Italy
†IIIA - CSIC, Spain
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MV-subalgebra R of [0, 1]M , that strictly contains the free MV-algebra over k generators
Free(k) (see [4]). More precisely, we call a mapping b : M → [0, 1] a generalized belief
function if there is an state s : R → [0, 1] such that, for every f ∈M ,

b(f) = s(ρf ),

where ρf :M → [0, 1] is defined as

ρf (g) = inf
x∈X

g(x) ⇒ f(x),

with ⇒ being Łukasiewicz implication function in the standard MV-algebra [0, 1]MV .
The following result shows that B-coherence is a characterization of belief functions

on MV-algebras in the same way as de Finetti’s coherence [2] is a characterization for
probability measures on Boolean algebras. It is worth recalling that a generalization of de
Finetti’s coherence criterion to the case of MV-algebras has been proved by Mundici [12]
and Kühr and Mundici [9]. Moreover the following theorem generalizes classical results by
Jaffray [6] and Paris [13].

Theorem 2. Let X be a finite set of possible worlds, let e1, . . . , en ∈ [0, 1]X be events and
let β : ei 7→ βi be a book. Then the following are equivalent:

• β is B-coherent;

• There exists a belief function b on [0, 1]X extending β.

It is worth noticing that, if we restrict our attention to those particular possibility
distributions like πw : X → [0, 1] such that πw(w′) = 0 if w ̸= w′ and πw(w) = 1, then
Nπw(·) = w(·) and hence the resulting betting game coincides with the usual betting game
for states. On the other hand, in the general case, a natural notion of indeterminacy of an
event e in an epistemic state defined by a possibility distribution π, is given by the value
Iπ(e) = Ππ(e)−Nπ(e), where Ππ(e) = 1−Nπ(¬e).

In this setting, following [3, 10], we can consider a variant of the above discussed betting
game in which, for every event ei, the Bookmaker is obliged to give back to the Gambler a
proportional amount of the balance regarding ei according to Iπ(ei). In particular, when
Iπ(ei) = 1 (i.e. when there is total indeterminacy about ei) the Bookmaker is obliged
to call off the bet on ei. The resulting game is hence a conditional game in which the
realization of each event ei is conditioned by its determinacy whose total balance is given
by the expression

n∑
i=1

(1− Iπ(ei)) · (σi · (αi −Nπ(ei))).

The measure which characterizes the coherence of this variant of the game we have dis-
cussed can be regarded as a conditional probability on modal formulas. In particular a
book β : ei 7→ βi is coherent iff there exists a conditional state s(· | ·) in the sense of [7] on
a suitably defined MV-algebra such that, for every i = 1, . . . , n, βi = s(□ei | ♢ei → □ei),
where □ is the many-valued modal operator defined on Łukasiewicz logic as in [1] and as
usual ♢e = ¬□¬e.
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New involutive FLe-algebra constructions
Sándor Jenei∗†

FLe-algebras are algebraic counterparts of substructural logics with exchange. A structural
description and also a classification of certain subclasses of involutive FLe-algebras have
been obtained in [4] and [3], respectively, as follows:
If an involutive FLe-monoid ⟨X, ∗◦,≤, t, f⟩ is conic then ∗◦ is the twin-rotation of the two
cone operations ⊗ and ⊕, that is,

x ∗◦ y =



x⊗ y if x, y ∈ X−

x⊕ y if x, y ∈ X+

¬(⊕→∗◦ x¬y) if x ∈ X+, y ∈ X−, and x ≤ ¬y
¬(⊕→∗◦ y¬x) if x ∈ X−, y ∈ X+, and x ≤ ¬y
¬(⊗→∗◦ y(¬x ∧ t)) if x ∈ X+, y ∈ X−, and x ̸≤ ¬y
¬(⊗→∗◦ x(¬y ∧ t)) if x ∈ X−, y ∈ X+, and x ̸≤ ¬y

.

If U is an absorbent-continuous group-like FLe-algebra on a subreal chain then its negative
cone is a BL-algebra with components (see [1]) which are either cancellative or MV-algebras
with two elements, and with no two consecutive cancellative components, its positive cone
is the dual of its negative cone with respect to ¬, and its monoidal operation is given by
the twin-rotation of its cones.

In this talk we introduce several new construction methods resulting in involutive (but not
group-like) FLe-algebras along with some related characterizations.

Acknowledgement: Supported by the SROP-4.2.2.C-11/1/KONV-2012-0005 grant and the
MC ERG grant 267589.
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f-MV-algebras
and piecewise polynomial functions

Serafina Lapenta∗ Ioana Leuştean†

MV-algebras are the structures of Łukasiewicz ∞-valued logic. An MV-algebra is a
structure (A,⊕,∗ , 0), where (A,⊕, 0) is an abelian monoid and the following identities
hold for all x, y ∈ A:

(x∗)∗ = x, 0∗ ⊕ x = 0∗, (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
A fundamental result in the theory of MV-algebras is their categorical equivalence with
the category of abelian lattice-ordered groups with strong unit, proved by Mundici in [15].

Di Nola and Dvurečenskij introduced in [3] the PMV-algebras, which are MV-algebras
endowed with a product operation · : A × A → A, satisfying some particular identities.
The category of PMV-algebras is equivalent with the category of lattice-ordered rings with
strong unit. In [4] the internal product is replaced by a scalar multiplication with scalars
from [0, 1], so the MV-algebra is endowed with a map ⋆ : [0, 1] × A → A. The structures
obtained in this way are called Riesz MV-algebras and they are categorically equivalent
with Riesz spaces with strong unit.

We consider in the following MV-algebras endowed with both internal and external
product. They are connected, by extensions of Mundici’s categorical equivalence, with
unital f -algebras. s

Definition 1. An f -MV-module A is an algebraic structure (A, ⋆, ·,⊕, ∗, 0) where · and
⊕ are binary operations, ∗ is unary, 0 is a constant and ⋆ : [0, 1]×A→ A is such that:
(F1) (A, ·,⊕, ∗, 0) is a unital PMV-algebra,
(F2) (A, ⋆,⊕, ∗, 0) is a Riesz MV-algebra,
(F3) r ⋆ (x · y) = (r ⋆ x) · y = x · (r ⋆ y) for any r ∈ [0, 1] and x, y ∈ A,
(F4) (z · (x⊙ y∗)) ∧ (y ⊙ x∗) = 0 for any x, y, z ∈ A.

In the following we simply write rx for r ⋆ x for any r ∈ [0, 1] and x ∈ A.
Note that one can assume that the PMV-algebra reduct is not unital, but the present

approach is more suitable for our purposes.
Recall that an f -algebra V is an f -ring endowed with a structure of Riesz space such

that α(x · y) = (αx) · y = x · (αy) for any α ∈ R and x, y ∈ V . They were introduced by
Birkhoff and Pierce in [1] and we refer to [2] for a survey on this topic. A unital f -algebra
is an f -algebra with strong unit such that the strong unit is also unit for the product.

Theorem 2. The category of f -MV-algebras is equivalent with the category of f -algebras
with strong unit with unit-preserving morphisms.

∗Universitá degli Studi della Basilicata, Italy
†University of Bucharest, Romania
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The real interval [0, 1] is obviously an f -MV-algebra if the both products coincide with
the real one. By a result of Hion [6], one can prove that this is the only structure of
f -MV-algebra that can be defined on [0, 1]. Following [10], we say that a f-MV-algebra is
formally real if it belongs to HSP([0, 1]).

We denote by FR the class of formally real f -MV-algebras and we note that it is a
proper subvariety of f -MV-algebras. By well-known results of universal algebra [7], the
free f -MV-algebra in FR exists an its elements are term functions defined on [0, 1]. More
precisely, the language of f -MV-algebras is Lf = {⊕, ·,∗ , 0, }∪{δr | r ∈ [0, 1]}, where δr is a
unary operation that is interpreted by x 7→ rx for any r ∈ [0, 1]. For any n ≥ 1, let Termn

be the set of Lf -terms with n variables and let us denote by FRn the free f -MV-algebra
in FR with n free generators. It follows that

FRn = {t̃ | t ∈ Termn, t̃ : [0, 1]
n → [0, 1] is the term function of t}.

In order to characterize FRn we give the following definition.

Definition 3. A piecewise polynomial function defined on the n-cube is a function

f : [0, 1]n → [0, 1]

such that there exists a finite number of polynomials f1, . . ., fk ∈ R[x1, . . . , xn] with the
property that f(a1, . . . , an) = fi(a1, . . . , an) for any (a1, . . . , an) ∈ [0, 1]n and for some
i ∈ {1, . . . , k}.

Proposition 4. The elements of FRn are continuous piecewise polynomial functions de-
fined on the n-cube.

The converse of the above proposition is related to the Birkhoff-Pierce conjecture [1, 10].
Since the conjecture is true for n ≤ 2 [12], we get the following.

Theorem 5. For n ≤ 2, the f -MV-algebra FRn is the set of all continuous piecewise poly-
nomial functions defined on the n-cube, i.e any continuous piecewise polynomial function
defined on the n-cube is a term function from FRn.

The notion of state has been introduced by Mundici in [16], as MV-algebraic counterpart
of the boolean probability theory. A state on an f -MV-algebra is just a state on its
MV-algebra reduct.

The Hausdorff moment problem [8, 9] gives the necessary and sufficient conditions for
a sequence {mk|k ≥ 0} ⊆ [0, 1] to be the sequence of moments of a probability measure µ
on [0, 1], i.e. mk =

∫ 1
0 x

kdµ for any k ≥ 0. We prove a similar result within the theory of
PMV-algebras and f -MV-algebras. Our main ingredient is the integral representation for
states on MV-algebras, proved independently by Kroupa [11] and Panti [17].

For any k ≥ 1 we define pk : [0, 1] → [0, 1] by pk(x) = xk for any x ∈ [0, 1]. We also set
p0(x) = 1 for any x ∈ [0, 1]. Note that pk ∈ FR1 for any k ≥ 0.

If {mk|k ≥ 0} a sequence of real numbers from [0, 1] then we define:

∆0mk = mk, ∆rmk = ∆r−1mk+1 −∆r−1mk for any r, k ≥ 0.

35



MANYVAL 2013: Games, decisions and rationality 4–6 September 2013, Prague

The sequence {mk}k satisfies the Hausdorff moment condition whenever m0 = 1 and
(−1)r∆rmk ≥ 0 for any r, k ≥ 0 [5].

Theorem 6. Let P be any archimedean PMV-subalgebra of C([0, 1]) such that p1 ∈ P .
For a sequence {mk|k ≥ 0} ⊆ [0, 1], the following are equivalent:
(i) {mk}k satisfies the Hausdorff moment condition,
(ii) there exists a state s : P → [0, 1] such that s(pk) = mk for any k ≥ 0.

In particular, the theorem applies to f -MV-subalgebras of C([0, 1]) which contains p1
and, consequently, to FR1.
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On discrete Łukasiewicz games
Enrico Marchioni∗ Michael Wooldridge†

We introduce a compact representation of non-cooperative games based on finite-valued
Łukasiewicz logics [2], called Discrete Łukasiewicz Games. Łukasiewicz Games are inspired
by, and greatly extend, a class of logic-based games known as Boolean games [4, 1]. Boolean
games are games in which each individual player strives for the satisfaction of a goal,
represented as a classical Boolean formula; the actions available to players correspond to
valuations that can be made to variables under their control. Łukasiewicz games extend
this idea by considering games played with goals represented as formulae of Łukasiewicz
logic. The key advantage of this approach over conventional Boolean games is that is the
use of Łukasiewicz logic makes it possible to more naturally represent much richer utility
functions for players.

Let V = {x, y, . . . } be a finite set of propositional variables. The types of games with
deal with involve a finite set of players P = {P1, . . . , Pn} (also referred to as “agents”). Each
player Pi is in control of a subset of propositional variables Vi ⊆ V, so that the sets Vi are
mutually disjoint and their union covers V. Being in control of a set Vi of propositional
variables means that Pi assigns to the variables in Vi values from

Lk =

{
0,

1

k
, . . . ,

k − 1

k
, 1

}
.

A strategy for an agent Pi is a function si : Vi → Lk that corresponds to a valuation
of the variables controlled by Pi. A strategy profile is a collection of strategy choices
(s1, . . . , sn), one by each player. Strategies can be interpreted as efforts or costs, and each
player’s strategic choice can be seen as an assignment to each controlled variable carrying
an intrinsic cost.

Each agent has a goal, represented as an Łk-formula ϕi, with propositional variables
from V. The evaluation of this goal formula is interpreted as the payoff function for Pi.
Notice that in general, not all variables in ϕi will be under Pi’s control and, consequently,
the utility that Pi obtains from playing a certain strategy (i.e., choosing a certain variable
assignment) will in part depend on the choices made by other players.

The overall goal of each player Pi is twofold:

1. First and foremost, Pi aims to maximizing its payoff.

2. Second, Pi wants to minimize efforts/costs.

Notice that payoff maximization is the primary consideration for a player; cost minimiza-
tion is a secondary concern.

∗Université Paul Sabatier, France
†University of Oxford, UK
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Discrete Łukasiewicz Games can be seen as a generalization of Boolean Games [4, 1],
since the latter obviously are a special case of the former. However, Discrete Łukasiewicz
Games also incorporate the notion of cost/effort, which makes it possible to formalize
situations in which agents aim at a better tradeoff between the costs of making certain
choices and the resulting payoff.

In this work:

1. We provide a formal definition of Discrete Łukasiewicz Games and show how certain
strategic interactions can be compactly formalized within this framework.

2. We introduce a notion of dominance, best response and Pure Strategy Nash Equilib-
rium for Discrete Łukasiewicz Games.

3. We begin to study the complexity of deciding whether a strategy is dominated and
of determining the existence of a Pure Strategy Nash Equilibrium.
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Decidability for Gödel modal logics∗

George Metcalfe†

Joint work with Xavier Caicedo, Ricardo Rodríguez, and Jonas Rogger

The Gödel modal logics GK and GKC combine the Kripke frames of the modal logic K
with the standard semantics of the many-valued Gödel logic G. More precisely, let Fml□♢
be the set of formulas for a language with connectives ∧, ∨, →, ⊥, ⊤, □, and ♢, over a
countably infinite set of variables Var. Let us also fix ℓ(φ) to be the length of a formula φ.
A fuzzy Kripke frame is a pair F = ⟨W,R⟩ consisting of a non-empty set W and a fuzzy
binary accessibility relation R : W ×W → [0, 1]. If Rxy ∈ {0, 1} for all x, y ∈ W , then
R is called crisp and F is a crisp Kripke frame, writing R ⊆ W ×W and Rxy to mean
Rxy = 1.

A GK-model is a triple M = ⟨W,R, V ⟩ where ⟨W,R⟩ is a fuzzy Kripke frame and
V : Var×W → [0, 1] is a mapping, called a valuation, extended to V : Fml□♢ ×W → [0, 1]
by (where x→G y is y if x > y, and 1 if x ≤ y)

V (⊥, x) = 0

V (⊤, x) = 1

V (φ→ ψ, x) = V (φ, x) →G V (ψ, x)

V (φ ∧ ψ, x) = min(V (φ, x), V (ψ, x))

V (φ ∨ ψ, x) = max(V (φ, x), V (ψ, x))

V (□φ, x) = inf{Rxy →G V (φ, y) : y ∈W}
V (♢φ, x) = sup{min(Rxy, V (φ, y)) : y ∈W}.

A GKC-model satisfies the extra condition that ⟨W,R⟩ is a crisp Kripke frame. In this
case, the conditions for □ and ♢ may also be read as:

V (□φ, x) = inf({1} ∪ {V (φ, y) : Rxy})
V (♢φ, x) = sup({0} ∪ {V (φ, y) : Rxy}).

A formula φ ∈ Fml□♢ is valid in a GK-model M = ⟨W,R, V ⟩ if V (φ, x) = 1 for all x ∈W .
If φ is valid in all L-models for some logic L (in particular GK or GKC), then φ is said to
be L-valid, written |=L φ.

Axiomatizations were obtained for the box and diamond fragments of GK (where the
box fragments of GK and GKC coincide) in [4] and for the diamond fragment of GKC

in [9]. It was subsequently shown in [3] that the full logic GK is axiomatized by adding
∗A full paper with proofs may be downloaded from http://www.philosophie.ch/297.
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the Fischer Servi axioms for intuitionistic modal logic IK to the union of the axioms for
both fragments, or by adding the prelinearity axiom for Gödel logic to IK. Decidability
of the diamond fragment of GK was established in [4] using the fact that the fragment
has the finite model property with respect to its Kripke semantics. This finite model
property fails for the box fragment of GK and GKC and the diamond fragment of GKC;
however, decidability and PSPACE-completeness for these fragments was established in [9]
via analytic Gentzen-style proof systems. We note also that multimodal variants of GK
have also been proposed as the basis for fuzzy description logics in [8, 1]. More general
approaches to many-valued modal logics, focussing mainly on the finite-valued case, have
been developed by Fitting [5, 6] and Bou et al. [2].

Our goal in this work is to establish decidability for GK and GKC by showing that these
logics have a finite model property with respect to a slightly different Kripke semantics.
Let us define a GFK-model as a quadruple M = ⟨W,R, T, V ⟩, where ⟨W,R, V ⟩ is a GK-
model and T : W → P<ω([0, 1]) is a function from worlds to finite sets of truth values
satisfying {0, 1} ⊆ T (x) ⊆ [0, 1] for all x ∈ W . If ⟨W,R, V ⟩ is also a GKC-model, then M
will be called a GFKC-model. The GFK-valuation V is extended using the same clauses
for non-modal connectives as for GK-valuations, and

V (□φ, x) = max{r ∈ T (x) : r ≤ inf{Rxy →G V (φ, y) : y ∈W}}
V (♢φ, x) = min{r ∈ T (x) : r ≥ sup{min(Rxy, V (φ, y)) : y ∈W}}.

As before, a formula φ ∈ Fml□♢ is valid in a GFK-model M = ⟨W,R, T, V ⟩ if V (φ, x) = 1
for all x ∈W .

Theorem 1. For each φ ∈ Fml□♢:

(a) |=GK φ iff |=GFK φ iff φ is valid in all GFK-models M = ⟨W,R, T, V ⟩ satisfying
|W | ≤ (ℓ(φ) + 2)ℓ(φ) and |T (x)| ≤ ℓ(φ) + 2 for all x ∈W .

(b) |=GKC φ iff |=GFKC φ iff φ is valid in all GFKC-models M satisfying |W | ≤ (ℓ(φ) +
2)ℓ(φ) and |T (x)| ≤ ℓ(φ) + 2 for all x ∈W .

Moreover, validity in GK and GKC is decidable.

A similar methodology may be applied to the crisp Gödel modal logic GS5C, character-
ized by validity in GKC-models where R is an equivalence relation, or equivalently, validity
in universal GS5C-models where all worlds are related. Such models may be written as
M = ⟨W,V ⟩ with

V (□φ, x) = inf{V (φ, y) : y ∈W} and V (♢φ, x) = sup{V (φ, y) : y ∈W}.

GS5C can be axiomatized by extending the intuitionistic modal logic MIPC with prelin-
earity and □(□φ∨ψ) → (□φ∨□ψ) [3]. It may also be viewed as the one-variable fragment
of first-order Gödel logic G∀ (see [7]). Making use of GFS5C-models, defined similarly to
GFKC-models above, we obtain:

Theorem 2. Validity in GS5C and the one-variable fragment of first-order Gödel logic is
decidable and indeed co-NP-complete.
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An algebraic study of partial predicates
Tommaso Moraschini∗

Partial predicates were introduced by the neokantian philosopher Körner and studied
from a logical point of view in [7] and [12]. Let X be a set, as classical sets over X are sub-
sets of X, a partial set over X is a pair ⟨A,B⟩ such that A,B ⊆ X and A∩B = ∅, where A
represents the set of individuals ofX which surely belong to ⟨A,B⟩ and B the set of individ-
uals which surely does not. In this sense partial sets provide a good framework to model
exactness in partial contexts. We let D(X) = {⟨A,B⟩ | ⟨A,B⟩ is a partial set over X}.
Conjunctions, disjunctions and complements of partial sets are defined in a very nice way:
for pick ⟨A,B⟩, ⟨C,D⟩ ∈ D(X), we let ⟨A,B⟩∩ ⟨C,D⟩ = ⟨A∩C,B∪D⟩, ⟨A,B⟩∪ ⟨C,D⟩ =
⟨A ∪ C,B ∩ D⟩ and ¬⟨A,B⟩ = ⟨B,A⟩. We say that a subset S ⊆ D(X) is a field of
partial sets over X if S is closed under partial conjunctions, disjunctions, complements
and contains ⟨∅, ∅⟩.

Negri proved that the algebraic structure of fields of partial sets can be abstracted,
yielding a class of algebras which enjoys a strong connection with the original intuitive
framework of partial sets, providing a representation theorem which says that they are
essentially the same (Theorem 3.1 [12]). More precisely we say that A = ⟨A,∧,∨,¬, n⟩ is
a DMF lattice if it is a normal De Morgan lattice with one fixed point n for the negation,
i.e. a distributive lattice that satisfies the following equations:

x ∨ y = ¬(¬x ∧ ¬y) x ∧ y = ¬(¬x ∨ ¬y)

¬¬x = x ¬n = n

x ∧ ¬x ⩽ y ∨ ¬y.

We will denote by DMF the class of DMF lattices. Examples of DMF’s are easy to construct:
for every set X, the field of partial sets over it, D(X), is a DMF. We list below some
basic properties of A ∈ DMF. As we mentioned above, it turns out that every DMF’s is
isomorphic to a field of partial sets. This representation can be converted into a subdirect
one if we reason as follows. Given any A ∈ DMF, we say that F ⊆ A is a partial filter if it
is a prime lattice filter such that n /∈ F . Then let F(A) = {F ⊆ A : F is a partial filter}.
Given any non-trivial A ∈ DMF we defined a function α : A →

∏
F∈F(A)Z3F as

α(a)(F ) =


1 if a ∈ F
n a /∈ F and ¬a /∈ F
−1 if ¬a ∈ F .

for every a ∈ A and F ∈ F(A). It is easy to prove that α is in fact an homomorphism.
∗University of Barcelona, Spain
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Lemma 1. Let A ∈ DMF non-trivial. α : A →
∏
F∈F(A)Z3F is a subdirect embedding.

As a consequence we get that V(Z3) = DMF and that Z3 is the only subdirectly irreducible
member of DMF.

In order to gain more informations about the structure of DMF’s, we need to introduce
a new concept: given A ∈ DMF, we let ↑ n = {a ∈ A |n ⩽ a} be its positive cone. We
denote by DL⊥ the category of distributive lattices with minimum ⊥ and lattice homo-
morphisms which preserve ⊥ as arrows. It is possible to prove that there is an adjunction
between DMF and DL⊥, which is a special case of an adjunction presented in [6]. In order
to do this, we construct a functor π : DL⊥ → DMF. Pick L ∈ DL⊥, we let

π(L) = ⟨{⟨a, b⟩ ∈ L2 : a ∧ b = ⊥},∧,∨,¬, n⟩

where ⟨a, b⟩∧⟨c, d⟩ = ⟨a∧c, b∨d⟩, ⟨a, b⟩∨⟨c, d⟩ = ⟨a ∨c, b∧d⟩, ¬⟨a, b⟩ = ⟨b, a⟩, n = ⟨⊥,⊥⟩ for
every ⟨a, b⟩, ⟨c, d⟩ ∈ π(A). For every arrow f : L → M in DL⊥ we let π(f) : π(L) → π(M)
be defined as

π(f)⟨a, b⟩ = ⟨f(a), f(b)⟩

for every ⟨a, b⟩ ∈ π(L). It is easy to prove π is indeed a functor. The way back from DMF
to DL⊥ is pretty natural: we pick positive cones and restrictions of homomorphisms to
them. More precisely, given A ∈ DMF, we let ↑ (A) = ⟨↑ n,∧,∨, n⟩ and, given a DMF
arrow f : A → B, we let ↑ (f) : ↑ (A) →↑ (B) be the restriction of f to ↑ (A). Clearly
↑ : DL⊥ → DMF is a functor.

Theorem 2. ↑⊣ π is an adjunction.

The relation between DMF’s and partial sets reflects also in the fact that free algebras
enjoy a nice partial behaviour. Let X be an arbitrary set of variables, for every x ∈ X we
let

x = ⟨{⟨A,B⟩ ∈ D(X) |x ∈ A}, {⟨A,B⟩ ∈ D(X) |x ∈ B}⟩.

Then we let FDMF(X) be the field of partial sets over D(X) generated by {x}x∈X.

Theorem 3. Let X be a set of variables. FDMF(X) is the free algebra over DMF with free
generators {x}x∈X, where x ̸= y for every x, y ∈ X such that x ̸= y.

As a consequence we get that, up to equivalence in DMF, terms in just one variable x
are T (x) = {n, x ∨ ¬x, x ∨ n,¬x ∨ n, x ∧ ¬x, x ∧ n,¬x ∧ n, x,¬x}. This fact allows us to
prove the first one of two strong negative results about logics defined over DMF’s, i.e., that
DMF is not the class of Leibniz algebras of any logic which defines truth with equations
in just one variable x. The second one tells us that this is not the case also for every
logic which defines equivalence in terms of a set of formulas in two variables (possibly with
parameters). See respectively [13] and [2] for a precise definition of these two classes of
logics.

Corollary 4. If L be truth-equational or protoalgebraic, then DMF ⊈ Alg∗L.
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Now we turn to define a logic for partial predicates which preserves exact truth. Since
we have seen, both in the intuitive explaination and in the representation theorems, that
partial sets are intrinsically three-valued, the natural choice is to define a logic with the
matrix ⟨Z3, {1}⟩. More precisely we let

Γ ⊢ φ⇐⇒ if h[Γ ] ⊆ {1}, then h(φ) = 1

for every Γ ∪ {φ} ⊆ Fm and every homomorphism H : Fm → A. We will call this logic
L{1} since it is intended to represent exact truth in partial predicates. It is worth to observe
that L{1} is finitary, since it is defined through a finite matrix and that is has no theorems
since {n} is a subalgebra of Z3. The first problem we would like to solve is to individuate
the algebraic cuonterpart of this logic (see [10]), which turns out to coincide with DMF.

Lemma 5. AlgL{1} = DMF.

Nevertheless, since L{1} does not belong to any of the hierarchy typical of abstract al-
gebraic logic (as it is neither protoalgebraic, nor truth-equational, neither selfextensional),
it may be interesting to take a look to the structure of its Leibniz reduced models (whose
algebraic components need not to coincide with DMF). Thank to a result of Font [8] about
the structure of Leibniz reduced models (see [10]) of Belnap four-valued logic, we can prove
the following.

Theorem 6. Let A be non-trivial. ⟨A, F ⟩ ∈ Mod∗L{1} if and only if the following condi-
tions hold:

1. A ∈ DMF;

2. A has a maximum 1 and F = {1};

3. if a < b, then there is c ∈ A such that a ∨ c < b ∨ c = 1 for every a, b ⩾ n.

This result is indeed curious since it tells us that reduced models enjoy a local behaviour,
in the sense that the fact that a model is reduced depends on the structure of the positive
cone of the algebra. This can be stated in a nicer way making use of the characterisation of
the Leibniz reduced models of the {∧,∨}-fragment of classical logic given by Font, Guzmán
and Verdú in [9].

Corollary 7. Let A ∈ DMF. A ∈ Alg∗L{1} if and only if ↑ (A) ∈ Alg∗CPC{∧,∨,⊥}.

We conclude our semantical analysis of L{1}, by providing a fully adeguate, in the
sense of [10], Gentzen system G for it. Even if L{1} is not algebrizable, we can prove
that G is. In order to explain this fact, let us denote by Seq the set of sequents whose
premisses are non-empty finite sets of formulas and by Eq the set of equations. We let
τ : P(Seq) −→ P(Eq) : ρ be the residuated mappings defined as

τ (Γ ▷ α) =
∧
Γ ⩽ α ∨ n ρ(α ≈ β) = {α◁▷β,¬α◁▷¬β}

for every Γ ▷ α ∈ Seq and α ≈ β ∈ Eq.

Theorem 8. G is algebraizable with equivalent algebraic semantics DMF via τ and ρ.
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Dynamic many-valued logics
for searching games with errors

Bruno Teheux∗

Introduction
Providing concrete interpretations of many-valued logics has always been an intriguing

problem. In [6], Mundici develops a model of the Rényi - Ulam searching games with
lies in terms of Łukasiewicz logic and MV-algebras. In this game, a liar picks out a
number in a given search space M . A detective has to guess this number by asking Yes/No
questions to the liar who is allowed to lie a maximum given number of times.

In his model of the game, Mundici interprets the states of knowledge of the detective
at a given step of the game as an element of an MV-algebra. Even though this model
provides a way to interpret the effect of the liar’s answers on the states of knowledge of the
game, its language (the language of MV-algebras) is not rich enough to state specifications
about a whole round of the game.

The starting point of this talk is the will to add a “dynamic” layer to this “static”
interpretation of the game. We actually develop finitely-valued generalizations of Propo-
sitional Dynamic Logic, which is a multi-modal logic designed to reason about programs
(see [2, 5]). Informally, these new logics are a mixture of many-valued modal logics (as
introduced in [1, 3, 4]) and algebras of regular programs.

n+ 1-valued Kripke models
We fix n ≥ 1 for the remainder of the paper and we denote by Łn the sub-MV-algebra

{0, 1n , . . . ,
n−1
n , 1} of [0, 1].

We denote by Π a set of programs and by Form a set of formulas defined from a
countable set Prop of propositional variables p, q, . . . and a countable set Π0 of atomic
programs a, b, . . . by the following Backus-Naur forms (where ϕ are formulas and α are
programs) :

ϕ ::= p | 0 | ¬ϕ | ϕ→ ϕ | [α]ϕ
α ::= a | ϕ? | α;α | α ∪ α | α∗.

Definition 1. An n+ 1-valued Kripke model M = ⟨W,R,Val⟩ is given by a non empty
set W , a map R : Π0 → 2W×W that assigns a binary relation Ra to any a of Π0 and a map
Val : W × Prop → Łn that assigns a truth value to any propositional variable p of Prop in
any world w of W .

The maps R and Val are extended by mutual induction to formulas and programs by
the following rules (where ¬[0,1] and →[0,1] denote Łukasiewicz’s interpretation of ¬ and
→ on [0, 1]):

∗University of Luxembourg, Luxembourg
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1. Rα;β = Rα ◦Rβ;
2. Rα∪β = Rα ∩Rβ;
3. Rψ? = {(u, u) | Val(u, ψ) = 1};
4. Rα∗ =

∪
n∈ω(Rα)

n;

5. Val(w, ϕ→ ψ) = Val(w, ϕ) →[0,1] Val(w,ψ);

6. Val(w,¬ψ) = ¬[0,1]Val(w,ψ);

7. Val(w, [α]ψ) =
∧
{Val(v, ψ) | (w, v) ∈ Rα}

If w is a world of a Kripke model M and if Val(w, ϕ) = 1, we write M, w |= ϕ and
say that ϕ is true in w. If ϕ is a formula that is true in each world of a model M then ϕ
is true in M. A formula that is true in every Kripke model is called a tautology.

Hence, we intend to interpret the operator ‘;’ as the concatenation program operator,
the operator ‘∪’ as the alternative program operator and the operator ‘∗’ as the Kleene
program operator.

n+ 1-valued propositional dynamic logics
The purpose of the talk is to characterize the theory of the n+1-valued Kripke models

(Theorem 5).

Definition 2. An n + 1-valued propositional dynamic logic (or simply a logic) is a sub-
set L of Form that is closed under the rules of modus ponens, uniform substitution and
necessitation (generalization) and that contains the following axioms:

1. tautologies of the n+ 1-valued Łukasiewicz logic;

2. for any program α, axioms defining modality [α]:
(a) [α](p→ q) → ([α]p→ [α]q),
(b) [α](p⊕ p) ↔ [α]p⊕ [α]p,

(c) [α](p⊙ p) ↔ [α]p⊙ [α]p,

3. the axioms that define the program operators: for any programs α and β of Π:
(a) [α ∪ β]p↔ [α]p ∧ [β]p,
(b) [α;β]p↔ [α][β]p,
(c) [q?]p↔ (¬qn ∨ p),

(d) [α∗]p↔ (p ∧ [α][α∗]p),

(e) [α∗]p→ [α∗][α∗]p,

4. the induction axiom (p ∧ [α∗](p→ [α]p)n) → [α∗]p for any program α.

We denote by PDLn the smallest n+ 1-valued propositional dynamic logic.
As usual, a formula ϕ that belongs to a logic L is called a theorem of L.

Completeness result
The classical construction of the canonical model can be adapted for PDLn. We denote

by Fn the Lindenbaum - Tarski algebra of PDLn. The reduct of Fn to the language of
MV-algebras is an MV-algebra. We denote by MV(Fn,Łn) the set of MV-homomorphisms
from the MV-reduct of Fn to Łn.
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Definition 3. The canonical model of PDLn is defined as the model Mc = ⟨W c, Rc,Valc⟩
where

1. W c = MV(Fn,Łn);
2. if α ∈ Π, the relation Rcα is defined by

Rcα = {(u, v) | ∀ϕ ∈ Fn (u([α]ϕ) = 1 ⇒ v(ϕ) = 1)};

3. the map Valc is defined by

Valc :W c × Form : (u, ϕ) 7→ u(ϕ).

Even though the valuation in Mc is defined for any formula, it turns out that it is
compatible with the inductive definition of a valuation in a Kripke model.

Proposition 4. 1. If ϕ ∈ Form, if α ∈ Π and if u is a world of W c then Valc(u, [α]ϕ) =∧
{Valc(v, ϕ) | v ∈ Rcαu}.

2. For any α ∈ Π, the relation Rα∗ is a reflexive and transitive extension of Rα.

According to the second item of the previous proposition, the canonical model may not
be Kripke model. Nevertheless, it is possible to use a filtration lemma in order to use the
canonical model to obtain a completeness result for PDLn.

Theorem 5. The logic PDLn is complete with respect to the n+1-valued Kripke models,
i.e., a formula ϕ is a theorem of PDLn if and only if ϕ is a tautology.

References

[1] Félix Bou, Francesc Esteva, Lluís Godo, and Ricardo Oscar Rodríguez. On the min-
imum many-valued modal logic over a finite residuated lattice. J. Logic Comput.,
21(5):739–790, 2011.

[2] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. System Sci., 18(2):194–211, 1979.

[3] Georges Hansoul and Bruno Teheux. Completeness results for many-valued łukasiewicz
modal systems and relational semantics. 2006. arXiv:math/0612542.

[4] Georges Hansoul and Bruno Teheux. Extending łukasiewicz logics with a modal-
ity: Algebraic approach to relational semantics. Studia Logica, 2012. in press,
http://dx.doi.org/10.1007/s11225-012-9396-9.

[5] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. Foundations of Com-
puting Series. MIT Press, Cambridge, MA, 2000.

[6] Daniele Mundici. The logic of Ulam’s game with lies. In Knowledge, belief, and strategic
interaction (Castiglioncello, 1989), Cambridge Stud. Probab. Induc. Decis. Theory,
pages 275–284. Cambridge Univ. Press, Cambridge, 1992.

49



MANYVAL 2013: Games, decisions and rationality 4–6 September 2013, Prague

Lattice BCK logics with Modus Ponens
as the only rule

Antoni Torrens∗ Joan Gispert†

Lattice BCK logic is the expansion of the well known Meredith implicational logic
BCK [4] expanded with lattice conjunction and disjunction obtained by the following cal-
culus.

Axioms:

B (φ→ ψ) → ((ψ → ξ) → (φ→ ξ)

C (φ→ (ψ → ξ)) → (ψ → (φ→ ξ))

K φ→ (ψ → φ)

∨1 φ→ φ ∨ ψ

∨2 ψ → φ ∨ ψ

∧1 φ ∧ ψ → φ

∧2 φ ∧ ψ → ψ

Rules:

M.P. {φ,φ→ ψ} ⊢ ψ

∨ rule {φ→ ξ, ψ → ξ} ⊢ φ ∨ ψ → ξ

∧ rule {ξ → φ, ξ → ψ} ⊢ ξ → φ ∧ ψ

We recall that BCK-logic is an algebraizable logic and its equivalent semantics is the
quasivariety of BCK-algebras [1, 5]. Similarly, lattice BCK logic is algebraizable and its
equivalent semantics is the class of all BCK-lattices.

An algebra ⟨A;→,∧,∨,⊤⟩ of type (2, 2, 2, 0) is a BCK-lattice provided that its reduct
⟨A;→ ⊤⟩ is a BCK-algebra whose natural order gives a lattice, with ∧ as meet and ∨ as
join [2].

In this case the class of BCK-lattices is equational and hence it is a variety. Therefore
axiomatic extensions of Lattice BCK-logic are in one to one correspondence with varieties
of BCK-lattices.

∗Universitat de Barcelona, Spain
†Universitat de Barcelona, Spain
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It is easy to see that in the previous axiomatic presentation of lattice BCK-logic the
∨-rule can be omitted and exchanged by the following axiom

(φ→ ξ) ∧ (ψ → ξ) → (φ ∨ ψ → ξ).

However this can not be done for the ∧-rule. In fact, using algebraizability and a ma-
trix model obtained from a BCK-lattice given by Idziak in [3], we show that there is no
axiomatic presentation of lattice BCK-logic with Modus Ponens as the only rule.

Meanwhile there are (wide enough) known axiomatic extensions of lattice BCK-logic
admitting modus ponens as the only rule. For instance all axiomatic extensions of the
implication, conjunction, disjunction fragment of the FLew logic [3] which can be obtained
from Lattice BCK logic axioms plus

(ξ → φ) ∧ (ξ → ψ) → (ξ → φ ∧ ψ).

For every n, m natural numbers we denote by LatBCKn,m the axiomatic extension
of lattice BCK-logic by adding the axiom

(ξ → φ)n → ((ξ → ψ)m → (ξ → φ ∧ ψ)).

Theorem 1.

1. An axiomatic extension of Lattice BCK logic admits a presentation with modus ponens
as the only rule if and only if it is an axiomatic extension of LatBCKn,m for some
n,m.

2. If n < m, LatBCKn,n is a proper axiomatic extension of LatBCKm,m.

3. There is no weakest axiomatic extension of Lattice BCK-logic admitting modus ponens
as the only rule.
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Image-finite first-order structures
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One of the well known difficulties (see [4, p. 236] or [1]) when dealing with first-order
many-valued logics is the requirement to consider safe structures, i.e., those ones which
have the necessary infima and suprema for computing the values of all first-order formulas.

Besides trivial cases like witnessed structures (which include finite ones) [2], in general
it is quite difficult to show that a particular structure is safe. Another quite simple case,
and apparently not previously considered in the literature, of safe structures is the one
provided by what we call here image-finite. By definition, an structure is image-finite
when, for each one of the predicate symbols in the vocabulary, its interpretation only takes
a finite number of values in the many-valued chain considered. As previously pointed, it
is not difficult to prove that all image-finite structures are safe (indeed witnessed), and
another straightforward result is the following one.
Lemma. Let us assume that K1 and K2 are two classes of MTL-chains generating the
same variety. Then, image-finite structures over chains in K1 and image-finite structures
over chains in K2 share the same 1-valid sentences.

The previous result can be used to prove the statements below.
Theorem (Łukasiewicz Standard Semantics). The following families of first-order
structures have the same set of 1-valid sentences.

• image-finite structures over the class of all MV-chains.

• (image-finite) first-order structures over the standard MV-chain.

• (image-finite) first-order structures over the rational standard MV-chain.

• (image-finite) first-order structures over some subalgebra of the standard MV-chain
generated by one irrational.

Theorem (Monadic vocabulary with just one variable). Let us assume that the
vocabulary only consists on unary predicate symbols, and let us just consider formulas
using only one variable. Then, the family of structures given in the previous theorem and
sharing the very set of 1-valid sentences can be enlarged with:

• (finite) first-order structures over the class of all MV-chains.

• finite first-order structures over the standard MV-chain.
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The statement in this last result was already obtained by a different (and very messy)
method by Rutledge in his PhD dissertation [5, Chapter IV] (see also [3]), but up to now
there were no alternative proofs available in the literature.
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