Image-finite first-order structures

Amanda Vidal ${ }^{1}$

Joint work with Félix Bou ${ }^{21}$

${ }^{1}$ IIIA - CSIC
${ }^{2}$ University of Barcelona

Barcelona, Spain

ManyVal13 - Prague, 4th-6th September 2013

Introduction

- Formulae over Predicate Łukasiewcz Logic: primitive symbols $(\forall, \exists, \rightarrow, \odot, 0)+$ relational vocabulary \mathcal{V}.

Introduction

- Formulae over Predicate Łukasiewcz Logic: primitive symbols $(\forall, \exists, \rightarrow, \odot, 0)+$ relational vocabulary \mathcal{V}.
- A-structure: $\mathcal{M}=\left\langle M,\left\{P^{\mathcal{M}}\right\}\right\rangle$ with $P^{\mathcal{M}}: M^{a r(P)} \rightarrow \mathbf{A}$. An evaluation is a function $v: \mathcal{V} \rightarrow M$.

Introduction

- Formulae over Predicate $Ł u k a s i e w c z$ Logic: primitive symbols $(\forall, \exists, \rightarrow, \odot, 0)+$ relational vocabulary \mathcal{V}.
- A-structure: $\mathcal{M}=\left\langle M,\left\{P^{\mathcal{M}}\right\}\right\rangle$ with $P^{\mathcal{M}}: M^{a r(P)} \rightarrow \mathbf{A}$. An evaluation is a function $v: \mathcal{V} \rightarrow M$.
- The interpretation of a formulae over an algebra with an structure \mathcal{M} and an evaluation v :

$$
\begin{aligned}
\left\|P\left(x_{1}, \ldots, x_{n}\right)\right\|_{\mathcal{M}, v}^{\mathbf{A}} & =P^{\mathcal{M}}\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \\
\|\varphi \odot \psi\|_{\mathcal{M}, v}^{\mathbf{A}} & =\|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}} \odot\|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \\
\|\varphi \rightarrow \psi\|_{\mathcal{M}, v}^{\mathbf{A}} & =\|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}}\|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \\
\|\exists x \varphi\|_{\mathcal{M}, v}^{\mathbf{A}} & =\sup _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\} \\
\|\forall x \varphi\|_{\mathcal{M}, v}^{\mathbf{A}} & =\inf _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\}
\end{aligned}
$$

Introduction

- An structure is safe (relative to v) if all needed inf and sup exist in the algebra, i.e. for each formula ψ

$$
\begin{aligned}
& \sup _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v}^{\mathbf{A}}\right\} \in \mathbf{A} \\
& \inf _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v}^{\mathbf{A}}\right\} \in \mathbf{A}
\end{aligned}
$$

- An structure is witnessed whenever all infimum and supremum have a witness in the universe, i.e. for each formula ψ and variable x there exist m_{0}, m_{1} such that

$$
\begin{aligned}
\sup _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\} & =\|\psi\|_{\mathcal{M}, v\left[x \mapsto m_{0}\right]}^{\mathbf{A}} \\
\inf _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\} & =\|\psi\|_{\mathcal{M}, v\left[x \mapsto m_{1}\right]}^{\mathbf{A}}
\end{aligned}
$$

Introduction

- An structure is safe (relative to v) if all needed inf and sup exist in the algebra, i.e. for each formula ψ

$$
\begin{array}{ll}
\sup _{m \in \mathcal{M}}\left\{\|\psi\| \|_{\mathcal{M}, v}^{\mathbf{A}}\right\} & \in \mathbf{A} \\
\inf _{m \in M}\left\{\|\psi\| \|_{\mathcal{M}, v}\right\} \in \mathbf{A}
\end{array}
$$

- An structure is witnessed whenever all infimum and supremum have a witness in the universe, i.e. for each formula ψ and variable x there exist m_{0}, m_{1} such that

$$
\begin{aligned}
\sup _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\} & =\|\psi\|_{\mathcal{M}, v\left[x \mapsto m_{0}\right]}^{\mathbf{A}} \\
\inf _{m \in M}\left\{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}}\right\} & =\|\psi\|_{\mathcal{M}, v\left[x \mapsto m_{1}\right]}^{\mathbf{A}}
\end{aligned}
$$

- Standard semantics: [0, 1]-valued structures.
- General semantics: A-valued (A chain) safe structures (product, Gödel, MV).

Introduction

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)

Introduction

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

Introduction

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

Theorem (I)

First order tautologies over $[0,1],[0,1] \cap \mathbb{Q}$ and all t_{n} coincide.

Introduction

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

Theorem (I)

First order tautologies over $[0,1],[0,1] \cap \mathbb{Q}$ and all t_{n} coincide.

Theorem (II)

Standard and general semantics over MV-chains coincide for monadic 1 -variable first order language.

Introduction

Scope of this presentation

(1) Generalize Rutledge's theorem (II) and present an alternative proof for it (until now, quite messy and only available in Rutledge's thesis).

Introduction

Scope of this presentation

(1) Generalize Rutledge's theorem (II) and present an alternative proof for it (until now, quite messy and only available in Rutledge's thesis).
(2) Characterization of tautologies over a subalgebra of $[0,1]_{ \pm}$generated by one irrational.

Image-finite structures

Definition

\mathcal{M} is an image-finite structure (over \mathbf{A}) if for each n-ary predicate symbol of the language, the sets $\left\{P\left(m_{1}, \ldots, m_{n}\right):\left\langle m_{1}, . ., m_{n}\right\rangle \in M^{n}\right\}$ are finite. $\operatorname{IFs}(\mathbf{A})$ denotes all image-finite structures over \mathbf{A}.

In particular, if the universe is finite or if the algebra is finite, all structures are image-finite.

Image-finite structures

Definition

\mathcal{M} is an image-finite structure (over \mathbf{A}) if for each n-ary predicate symbol of the language, the sets $\left\{P\left(m_{1}, \ldots, m_{n}\right):\left\langle m_{1}, . ., m_{n}\right\rangle \in M^{n}\right\}$ are finite. $\operatorname{IFs}(\mathbf{A})$ denotes all image-finite structures over \mathbf{A}.

In particular, if the universe is finite or if the algebra is finite, all structures are image-finite.

Lemma

If \mathcal{M} is image-finite, then \mathcal{M} is witnessed (and in particular, safe).

Image-finite structures

It is well known that at a propositional level

$$
\operatorname{Var}\left(\mathrm{K}_{1}\right)=\operatorname{Var}\left(\mathrm{K}_{2}\right) \Leftrightarrow \operatorname{Th}\left(\mathrm{K}_{1}\right)=\operatorname{Th}\left(\mathrm{K}_{2}\right) .
$$

At a predicate level we can get:

Lemma

Let K_{1} and K_{2} be two classes of MTL-chains that generate the same variety. Then, image-finite structures over chains in K_{1} and image-finite structures over chains in K_{2} share the same 1-valid sentences, i.e.

$$
\operatorname{Var}\left(\mathrm{K}_{1}\right)=\operatorname{Var}\left(\mathrm{K}_{2}\right) \Rightarrow \operatorname{Th}\left(\operatorname{IFs}\left(\mathrm{K}_{1}\right)\right)=\operatorname{Th}\left(\operatorname{IFs}\left(\mathrm{K}_{2}\right)\right)
$$

Image-finite structures

It is well known that at a propositional level

$$
\operatorname{Var}\left(\mathrm{K}_{1}\right)=\operatorname{Var}\left(\mathrm{K}_{2}\right) \Leftrightarrow \operatorname{Th}\left(\mathrm{K}_{1}\right)=\operatorname{Th}\left(\mathrm{K}_{2}\right)
$$

At a predicate level we can get:

Lemma

Let K_{1} and K_{2} be two classes of MTL-chains that generate the same variety. Then, image-finite structures over chains in K_{1} and image-finite structures over chains in K_{2} share the same 1-valid sentences, i.e.

$$
\operatorname{Var}\left(\mathrm{K}_{1}\right)=\operatorname{Var}\left(\mathrm{K}_{2}\right) \Rightarrow \operatorname{Th}\left(\operatorname{IFs}\left(\mathrm{K}_{1}\right)\right)=\operatorname{Th}\left(\operatorname{IFs}\left(\mathrm{K}_{2}\right)\right)
$$

Proof (sketch):

φ s.t. $\|\varphi\|_{\mathcal{M},{ }_{c}}^{\mathbf{A}}<1, \mathbf{A} \in \mathrm{~K}_{1}$

- Add $|M|$ FO variables evaluated to its correspondent element of M. Change quantified subformulae of φ by (finite) disjunctions or conjunctions over these new variables. Resulting (still FO, non-quantified) formula evaluates to the same value.

Image-finite structures

Proof (cont.)

- Transform the non-quantified formula into a propositional one $\bar{\varphi}$, and the structure defines a (propositional) evaluation e such that $e(\bar{\varphi})=\|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}}<1$.
- Since K_{1} and K_{2} generate the same variety, there exists e^{\prime} over $\mathbf{B} \in \mathrm{K}_{2}$ s.t. $e^{\prime}(\bar{\varphi})<1$.
- An image-finite structure \mathcal{M}^{\prime} over \mathbf{B} can be defined from e^{\prime} over the same universe M such that $\|\varphi\|_{\mathcal{M}^{\prime}, v}^{\mathbf{B}}=e^{\prime}(\bar{\varphi})<1$.

Image-finite structures

From Rutledge's theorem (I) we have

Lemma

A formula is a $[0,1]_{t}$ tautology iff it is 1 -valid for each image-finite structure over $[0,1]_{t}$.

Image-finite structures

From Rutledge's theorem (I) we have

Lemma

A formula is a $[0,1]_{t}$ tautology iff it is 1 -valid for each image-finite structure over $[0,1]_{t}$.

Applying the continuity idea from Rutledge's proof, we also get

Lemma

A formula is a tautology of some subalgebra of the standard MV-chain generated by one irrational iff it is 1 -valid for each image-finite structure over it.

Image-finite structures

Using previous results we get a list of structures that share 1 -valid sentences

Theorem (Łukasiewicz Standard Semantics.)

The following families of first-order structures have the same set of 1 -valid sentences.

- Image-finite structures over the class of all MV-chains;
- (Image-finite) structures over the standard MV-chain;
- (Image-finite) structures over the rational standard MV-chain;
- (Image-finite) first-order structures over some subalgebra of the standard MV-chain generated by one irrational.

Monadic Restriction

Lemma

Let φ be a monadic formula with only one variable x, \mathcal{M} a witnessed structure over \mathbf{A} and v an \mathcal{M}-evaluation. There exists $M_{\varphi} \subseteq M$ finite such that

$$
\|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}}=\|\varphi\|_{\mathcal{M}_{\varphi}, v}^{\mathbf{A}} .
$$

Monadic Restriction

Lemma

Let φ be a monadic formula with only one variable x, \mathcal{M} a witnessed structure over \mathbf{A} and v an \mathcal{M}-evaluation. There exists $M_{\varphi} \subseteq M$ finite such that

$$
\|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}}=\|\varphi\|_{\mathcal{M}_{\varphi}, v}^{\mathbf{A}}
$$

Proof (sketch)
Let $\|\forall x \psi(x)\|_{\mathcal{M}}^{\mathbf{A}}=\|\psi(x)\|_{\mathcal{M},\left[x \mapsto m_{\forall \psi]}\right]}^{\mathbf{A}}$ (anag. \exists witness)

- With only one variable, quantified formulae are always sentences.
- $M_{\varphi}=\{v(x)\} \cup\left\{m_{\forall \psi}: \forall x \psi\right.$ is a subformula of $\varphi\} \cup\left\{m_{\exists \psi}: \exists x \psi\right.$ is a subformula of $\left.\varphi\right\}$

Monadic restriction

As a corollary (using completeness wrt witnessed models of $£ \forall$, [Háj07]) we get Rutledge's theorem (II) ([Rut59]):

Theorem

1-valid sentences with one variable over the class of all MV-chains coincide with those over $[0,1]_{t}$.

Monadic restriction

As a corollary (using completeness wrt witnessed models of $£ \forall$, [Háj07]) we get Rutledge's theorem (II) ([Rut59]):

Theorem

1-valid sentences with one variable over the class of all MV-chains coincide with those over $[0,1]_{t}$.

Note that Bou has (still unpublished) some results showing this is not true in general (with three variables it fails).

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1 -validity at first order.

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1 -validity at first order.
- Open problems:
- What happens with two variables?
- Monadic product logic with one variable? (do standard and general semantics coincide?)
- Stronger relation at FO when same variety is generated?

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1 -validity at first order.
- Open problems:
- What happens with two variables?
- Monadic product logic with one variable? (do standard and general semantics coincide?)
- Stronger relation at FO when same variety is generated?

Thank you!

P. Hájek.

Metamathematics of fuzzy logic, volume 4 of Trends in Logic-Studia Logica Library.
Kluwer Academic Publishers, Dordrecht, 1998.

P. Hájek.

On witnessed models in fuzzy logic.
Mathematical Logic Quarterly, 53(1):66-77, 2007.
睉 J. D. Rutledge.
A preliminary investigation of the infinitely-many-valued predicate calculus.
Ph. D. Dissertation, Cornell University, 1959.

