Image-finite first-order structures

Amanda Vidal¹

Joint work with Félix Bou²¹

¹ IIIA - CSIC

² University of Barcelona

Barcelona, Spain

ManyVal13 - Prague, 4th-6th September 2013

向下 イヨト イヨト

Formulae over Predicate Łukasiewcz Logic: primitive symbols
 (∀, ∃, →, ⊙, 0) + relational vocabulary 𝒱.

Introduction

- Formulae over Predicate Łukasiewcz Logic: primitive symbols $(\forall, \exists, \rightarrow, \odot, 0)$ + relational vocabulary \mathcal{V} .
- **A**-structure: $\mathcal{M} = \langle M, \{P^{\mathcal{M}}\} \rangle$ with $P^{\mathcal{M}} \colon M^{ar(P)} \to \mathbf{A}$. An evaluation is a function $v \colon \mathcal{V} \to M$.

■ ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ ■ ∽ Q ∩

Introduction

- Formulae over Predicate Łukasiewcz Logic: primitive symbols (∀, ∃, →, ⊙, 0) + relational vocabulary 𝒱.
- A-structure: *M* = ⟨*M*, {*P^M*}⟩ with *P^M*: *M^{ar(P)}* → A. An evaluation is a function *v*: *V* → *M*.
- The interpretation of a formulae over an algebra with an structure \mathcal{M} and an evaluation v:

$$\begin{aligned} |P(x_1, ..., x_n)||_{\mathcal{M}, v}^{\mathbf{A}} &= P^{\mathcal{M}}(v(x_1), ..., v(x_n)) \\ \|\varphi \odot \psi\|_{\mathcal{M}, v}^{\mathbf{A}} &= \|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}} \odot \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \\ \|\varphi \to \psi\|_{\mathcal{M}, v}^{\mathbf{A}} &= \|\varphi\|_{\mathcal{M}, v}^{\mathbf{A}} \to \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \\ \|\exists x \varphi\|_{\mathcal{M}, v}^{\mathbf{A}} &= \sup_{m \in \mathcal{M}} \{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} \\ \|\forall x \varphi\|_{\mathcal{M}, v}^{\mathbf{A}} &= \inf_{m \in \mathcal{M}} \{\|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} \end{aligned}$$

母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ ① ● ●

• An structure is *safe* (relative to v) if all needed inf and sup exist in the algebra, i.e. for each formula ψ

$$\sup_{m \in M} \{ \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \} \in \mathbf{A}$$
$$\inf_{m \in M} \{ \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \} \in \mathbf{A}$$

• An structure is *witnessed* whenever all infimum and supremum have a witness in the universe, i.e. for each formula ψ and variable x there exist m_0, m_1 such that

$$\sup_{m \in M} \{ \|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} = \|\psi\|_{\mathcal{M}, v[x \mapsto m_0]}^{\mathbf{A}} \}$$
$$\inf_{m \in M} \{ \|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} = \|\psi\|_{\mathcal{M}, v[x \mapsto m_1]}^{\mathbf{A}} \}$$

• An structure is *safe* (relative to v) if all needed inf and sup exist in the algebra, i.e. for each formula ψ

$$\sup_{m \in M} \{ \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \} \in \mathbf{A}$$
$$\inf_{m \in M} \{ \|\psi\|_{\mathcal{M}, v}^{\mathbf{A}} \} \in \mathbf{A}$$

• An structure is *witnessed* whenever all infimum and supremum have a witness in the universe, i.e. for each formula ψ and variable x there exist m_0, m_1 such that

$$\sup_{m \in M} \{ \|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} = \|\psi\|_{\mathcal{M}, v[x \mapsto m_0]}^{\mathbf{A}}$$

$$\inf_{m \in M} \{ \|\psi\|_{\mathcal{M}, v[x \mapsto m]}^{\mathbf{A}} \} = \|\psi\|_{\mathcal{M}, v[x \mapsto m_1]}^{\mathbf{A}}$$

- Standard semantics: [0,1]-valued structures.
- General semantics: A-valued (A chain) safe structures (product, Gödel, MV).

• Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)

A B M A B M

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

() <) <)
 () <)
 () <)
</p>

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

Theorem (I)

First order tautologies over [0,1], $[0,1] \cap \mathbb{Q}$ and all L_n coincide.

A B + A B +

- Problem: not easy to determine which structures are safe (besides witnessed and complete algebras)
- Working in fragments of the logic, simpler notions of this. Two results by Rutledge [Rut59, Chapter IV]:

Theorem (I)

First order tautologies over [0,1], $[0,1] \cap \mathbb{Q}$ and all \mathfrak{L}_n coincide.

Theorem (II)

Standard and general semantics over MV-chains coincide for monadic 1-variable first order language.

→ < E → < E →</p>

Scope of this presentation

 Generalize Rutledge's theorem (II) and present an alternative proof for it (until now, quite messy and only available in Rutledge's thesis).

A B M A B M

-

Scope of this presentation

 Generalize Rutledge's theorem (II) and present an alternative proof for it (until now, quite messy and only available in Rutledge's thesis).

Characterization of tautologies over a subalgebra of [0, 1]_t generated by one irrational.

() <) <)
 () <)
 () <)
</p>

Definition

 \mathcal{M} is an *image-finite* structure (over **A**) if for each *n*-ary predicate symbol of the language, the sets $\{P(m_1, ..., m_n) : \langle m_1, ..., m_n \rangle \in M^n\}$ are finite. *IFs*(**A**) denotes all image-finite structures over **A**.

In particular, if the universe is finite or if the algebra is finite, all structures are image-finite.

→ ∃ → → ∃ →

Definition

 \mathcal{M} is an *image-finite* structure (over **A**) if for each *n*-ary predicate symbol of the language, the sets $\{P(m_1, ..., m_n) : \langle m_1, ..., m_n \rangle \in M^n\}$ are finite. *IFs*(**A**) denotes all image-finite structures over **A**.

In particular, if the universe is finite or if the algebra is finite, all structures are image-finite.

Lemma

If \mathcal{M} is image-finite, then \mathcal{M} is witnessed (and in particular, safe).

Image-finite structures

It is well known that at a propositional level

$$Var(K_1) = Var(K_2) \iff Th(K_1) = Th(K_2).$$

At a predicate level we can get:

Lemma

Let K_1 and K_2 be two classes of MTL-chains that generate the same variety. Then, image-finite structures over chains in K_1 and image-finite structures over chains in K_2 share the same 1-valid sentences, i.e.

 $Var(K_1) = Var(K_2) \Rightarrow Th(IFs(K_1)) = Th(IFs(K_2))$

▶ ★ 문 ▶ ★ 문 ▶

Image-finite structures

It is well known that at a propositional level

$$Var(K_1) = Var(K_2) \Leftrightarrow Th(K_1) = Th(K_2).$$

At a predicate level we can get:

Lemma

Let K_1 and K_2 be two classes of MTL-chains that generate the same variety. Then, image-finite structures over chains in K_1 and image-finite structures over chains in K_2 share the same 1-valid sentences, i.e.

$$Var(K_1) = Var(K_2) \Rightarrow Th(IFs(K_1)) = Th(IFs(K_2))$$

Proof (sketch):

- φ s.t. $\|\varphi\|_{\mathcal{M},v}^{\mathbf{A}} < 1$, $\mathbf{A} \in \mathsf{K}_1$
 - Add |M| FO variables evaluated to its correspondent element of M. Change quantified subformulae of φ by (finite) disjunctions or conjunctions over these new variables. Resulting (still FO, non-quantified) formula evaluates to the same value.

Proof (cont.)

- Transform the non-quantified formula into a propositional one $\overline{\varphi}$, and the structure defines a (propositional) evaluation e such that $e(\overline{\varphi}) = \|\varphi\|_{\mathcal{M},v}^{\mathbf{A}} < 1.$
- Since K_1 and K_2 generate the same variety, there exists e' over $\mathbf{B} \in K_2$ s.t. $e'(\overline{\phi}) < 1$.
- An image-finite structure \mathcal{M}' over **B** can be defined from e' over the same universe M such that $\|\varphi\|_{\mathcal{M}',v}^{\mathbf{B}} = e'(\overline{\varphi}) < 1$.

From Rutledge's theorem (I) we have

Lemma

A formula is a $[0,1]_{L}$ tautology iff it is 1-valid for each image-finite structure over $[0,1]_{L}$.

→ ∃ → → ∃ →

From Rutledge's theorem (I) we have

Lemma

A formula is a $[0,1]_{t}$ tautology iff it is 1-valid for each image-finite structure over $[0,1]_{t}$.

Applying the continuity idea from Rutledge's proof, we also get

Lemma

A formula is a tautology of some subalgebra of the standard MV-chain generated by one irrational iff it is 1-valid for each image-finite structure over it.

ゆ く き と く ほ と

Using previous results we get a list of structures that share 1-valid sentences

Theorem (Łukasiewicz Standard Semantics.)

The following families of first-order structures have the same set of 1-valid sentences.

- Image-finite structures over the class of all MV-chains;
- (Image-finite) structures over the standard MV-chain;
- (Image-finite) structures over the rational standard MV-chain;
- (Image-finite) first-order structures over some subalgebra of the standard MV-chain generated by one irrational.

Lemma

Let φ be a monadic formula with only one variable x, \mathcal{M} a witnessed structure over **A** and v an \mathcal{M} -evaluation. There exists $M_{\varphi} \subseteq M$ finite such that

 $\|\varphi\|_{\mathcal{M},v}^{\mathbf{A}} = \|\varphi\|_{\mathcal{M}_{\varphi},v}^{\mathbf{A}}.$

A B A A B A

Lemma

Let φ be a monadic formula with only one variable x, \mathcal{M} a witnessed structure over **A** and v an \mathcal{M} -evaluation. There exists $M_{\varphi} \subseteq M$ finite such that

 $\|\varphi\|_{\mathcal{M},\nu}^{\mathbf{A}} = \|\varphi\|_{\mathcal{M}_{\varphi},\nu}^{\mathbf{A}}.$

Proof (sketch)

Let
$$\|\forall x\psi(x)\|_{\mathcal{M}}^{\mathbf{A}} = \|\psi(x)\|_{\mathcal{M},[x\mapsto m_{\forall\psi}]}^{\mathbf{A}}$$
 (anag. \exists witness)

- With only one variable, quantified formulae are always sentences.
- *M*_φ = {v(x)} ∪ {m_{∀ψ} : ∀xψ is a subformula of φ} ∪ {m_{∃ψ} : ∃xψ is a subformula of φ}

As a corollary (using completeness wrt witnessed models of $\pounds \forall$, [Háj07]) we get Rutledge's theorem (II) ([Rut59]):

Theorem

1-valid sentences with one variable over the class of all MV-chains coincide with those over $[0, 1]_{L}$.

() <) <)
 () <)
 () <)
</p>

As a corollary (using completeness wrt witnessed models of $\pounds \forall$, [Háj07]) we get Rutledge's theorem (II) ([Rut59]):

Theorem

1-valid sentences with one variable over the class of all MV-chains coincide with those over $[0, 1]_{L}$.

Note that Bou has (still unpublished) some results showing this is not true in general (with three variables it fails).

A B M A B M

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1-validity at first order.

() <) <)
 () <)
 () <)
</p>

э

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1-validity at first order.
- Open problems:
 - What happens with two variables?
 - Monadic product logic with one variable? (do standard and general semantics coincide?)
 - Stronger relation at FO when same variety is generated?

A B M A B M

Conclusions and Future work

- Rutledge's result (II) gets an alternative (nicer?) proof.
- Generating the same variety implies relations among the 1-validity at first order.
- Open problems:
 - What happens with two variables?
 - Monadic product logic with one variable? (do standard and general semantics coincide?)
 - Stronger relation at FO when same variety is generated?

Thank you!

A B + A B +

Metamathematics of fuzzy logic, volume 4 of Trends in Logic—Studia Logica Library.

Kluwer Academic Publishers, Dordrecht, 1998.

P. Hájek.

On witnessed models in fuzzy logic.

Mathematical Logic Quarterly, 53(1):66–77, 2007.

J. D. Rutledge.

A preliminary investigation of the infinitely-many-valued predicate calculus.

Ph. D. Dissertation, Cornell University, 1959.

() <) <)
 () <)
 () <)
</p>