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Introduction

Formulae over Predicate  Lukasiewcz Logic: primitive symbols
(∀,∃,→,�, 0) + relational vocabulary V.

A-structure: M = 〈M, {PM}〉 with PM : Mar(P) → A. An
evaluation is a function v : V → M.

The interpretation of a formulae over an algebra with an structure
M and an evaluation v :

‖P(x1, ..., xn)‖A
M,v = PM(v(x1), ..., v(xn))

‖ϕ� ψ‖A
M,v = ‖ϕ‖A

M,v � ‖ψ‖A
M,v

‖ϕ→ ψ‖A
M,v = ‖ϕ‖A

M,v→‖ψ‖A
M,v

‖∃xϕ‖A
M,v = sup

m∈M
{‖ψ‖A

M,v [x 7→m]}

‖∀xϕ‖A
M,v = inf

m∈M
{‖ψ‖A

M,v [x 7→m]}
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Introduction

An structure is safe (relative to v) if all needed inf and sup exist in
the algebra, i.e. for each formula ψ

sup
m∈M
{‖ψ‖A

M,v} ∈ A

inf
m∈M
{‖ψ‖A

M,v} ∈ A

An structure is witnessed whenever all infimum and supremum have
a witness in the universe, i.e. for each formula ψ and variable x
there exist m0,m1 such that

sup
m∈M
{‖ψ‖A

M,v [x 7→m]} = ‖ψ‖A
M,v [x 7→m0]

inf
m∈M
{‖ψ‖A

M,v [x 7→m]} = ‖ψ‖A
M,v [x 7→m1]

Standard semantics: [0, 1]-valued structures.

General semantics: A-valued (A chain) safe structures (product,
Gödel, MV).

Amanda Vidal Image-finite first-order structures



Introduction

An structure is safe (relative to v) if all needed inf and sup exist in
the algebra, i.e. for each formula ψ

sup
m∈M
{‖ψ‖A

M,v} ∈ A

inf
m∈M
{‖ψ‖A

M,v} ∈ A

An structure is witnessed whenever all infimum and supremum have
a witness in the universe, i.e. for each formula ψ and variable x
there exist m0,m1 such that

sup
m∈M
{‖ψ‖A

M,v [x 7→m]} = ‖ψ‖A
M,v [x 7→m0]

inf
m∈M
{‖ψ‖A

M,v [x 7→m]} = ‖ψ‖A
M,v [x 7→m1]

Standard semantics: [0, 1]-valued structures.

General semantics: A-valued (A chain) safe structures (product,
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Introduction

Problem: not easy to determine which structures are safe (besides
witnessed and complete algebras)

Working in fragments of the logic, simpler notions of this. Two
results by Rutledge [Rut59, Chapter IV]:

Theorem (I)

First order tautologies over [0, 1], [0, 1] ∩Q and all  Ln coincide.

Theorem (II)

Standard and general semantics over MV-chains coincide for monadic
1-variable first order language.
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Introduction

Scope of this presentation

1 Generalize Rutledge’s theorem (II) and present an alternative proof
for it (until now, quite messy and only available in Rutledge’s thesis).

2 Characterization of tautologies over a subalgebra of [0, 1] L generated
by one irrational.
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Image-finite structures

Definition

M is an image-finite structure (over A) if for each n-ary predicate symbol
of the language, the sets {P(m1, ...,mn) : 〈m1, ..,mn〉 ∈ Mn} are finite.
IFs(A) denotes all image-finite structures over A.

In particular, if the universe is finite or if the algebra is finite, all
structures are image-finite.

Lemma

If M is image-finite, then M is witnessed (and in particular, safe).
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Image-finite structures

It is well known that at a propositional level

Var(K1) = Var(K2) ⇔ Th(K1) = Th(K2).

At a predicate level we can get:

Lemma

Let K1 and K2 be two classes of MTL-chains that generate the same
variety. Then, image-finite structures over chains in K1 and image-finite
structures over chains in K2 share the same 1-valid sentences, i.e.

Var(K1) = Var(K2) ⇒ Th(IFs(K1)) = Th(IFs(K2))

Proof (sketch):
ϕ s.t. ‖ϕ‖A

M,v< 1, A ∈ K1

Add |M| FO variables evaluated to its correspondent element of M.
Change quantified subformulae of ϕ by (finite) disjunctions or
conjunctions over these new variables. Resulting (still FO,
non-quantified) formula evaluates to the same value.
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Image-finite structures

Proof (cont.)

Transform the non-quantified formula into a propositional one ϕ,
and the structure defines a (propositional) evaluation e such that
e(ϕ) =‖ϕ‖A

M,v< 1.

Since K1 and K2 generate the same variety, there exists e′ over
B ∈ K2 s.t. e′(ϕ) < 1.

An image-finite structure M′ over B can be defined from e′ over the
same universe M such that ‖ϕ‖B

M′,v = e′(ϕ) < 1.
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Image-finite structures

From Rutledge’s theorem (I) we have

Lemma

A formula is a [0, 1] L tautology iff it is 1-valid for each image-finite
structure over [0, 1] L.

Applying the continuity idea from Rutledge’s proof, we also get

Lemma

A formula is a tautology of some subalgebra of the standard MV-chain
generated by one irrational iff it is 1-valid for each image-finite structure
over it.
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Image-finite structures

Using previous results we get a list of structures that share 1-valid
sentences

Theorem ( Lukasiewicz Standard Semantics.)

The following families of first-order structures have the same set of
1-valid sentences.

Image-finite structures over the class of all MV-chains;

(Image-finite) structures over the standard MV-chain;

(Image-finite) structures over the rational standard MV-chain;

(Image-finite) first-order structures over some subalgebra of the
standard MV-chain generated by one irrational.
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Monadic Restriction

Lemma

Let ϕ be a monadic formula with only one variable x, M a witnessed
structure over A and v an M-evaluation. There exists Mϕ ⊆ M finite
such that

‖ϕ‖A
M,v =‖ϕ‖A

Mϕ,v
.

Proof (sketch)

Let ‖∀xψ(x)‖A
M=‖ψ(x)‖A

M,[x 7→m∀ψ ]
(anag. ∃ witness)

With only one variable, quantified formulae are always
sentences.
Mϕ = {v(x)} ∪ {m∀ψ : ∀xψ is a subformula of
ϕ} ∪ {m∃ψ : ∃xψ is a subformula of ϕ}
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Monadic restriction

As a corollary (using completeness wrt witnessed models of  L∀, [Háj07])
we get Rutledge’s theorem (II) ([Rut59]):

Theorem

1-valid sentences with one variable over the class of all MV-chains
coincide with those over [0, 1] L.

Note that Bou has (still unpublished) some results showing this is not
true in general (with three variables it fails).
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Conclusions and Future work

Rutledge’s result (II) gets an alternative (nicer?) proof.

Generating the same variety implies relations among the 1-validity at
first order.

Open problems:

What happens with two variables?
Monadic product logic with one variable? (do standard and general
semantics coincide?)
Stronger relation at FO when same variety is generated?

Thank you!
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