Propositional Dynamic Logic for Searching Games with Errors

Bruno Teheux

University of Luxembourg

The RÉNYI – ULAM game is a searching game with errors

- 1. ALICE chooses an element in $\{1, \ldots, M\}$.
- 2. BOB tries to guess this number by asking Yes/No questions.
- 3. ALICE is allowed to lie n 1 times in her answers.

BOB tries to guess ALICE's number as fast as possible.

RÉNYI - ULAM game is used to illustrate \mathcal{MV}_n -algebras

Model of the game (MUNDICI)

- 1. Knowledge space $K = \Bbbk_n^M$.
- 2. A state of knowledge (for BOB) $s \in L_n^M : s(m)$ is the seen as the distance between *m* and the set of elements of $\{1, \ldots, M\}$ that can be safely discarded.
- 3. A question Q is a subset of $\{1, \ldots, M\}$.
- 4. A way to compute states of knowledge from ALICE's answers (MV-algebra operations).

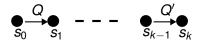
This model provides a *static* representation of the game

The model only talks about *states* of an instance of the game.

This model provides a *static* representation of the game

The model only talks about *states* of an instance of the game.

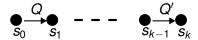
We want a language to talk about whole instances of the game.



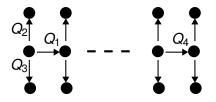
This model provides a *static* representation of the game

The model only talks about *states* of an instance of the game.

We want a language to talk about whole instances of the game.



We want a language to talk about all instances of any game.



We use a language designed for stating many-valued program specifications

Programs $\alpha \in \Pi$ and formulas $\phi \in$ Form are mutually defined by

Formulas
$$\phi ::= p \mid 0 \mid \phi \rightarrow \phi \mid \neg \phi \mid [\alpha] \phi$$

Programs $\alpha ::= a \mid \phi? \mid \alpha; \alpha \mid \alpha \cup \alpha \mid \alpha^*$

where p is a propositional variable and a is an atomic program/question.

Word	Reading
$\alpha;\beta$	α followed by β
$\alpha\cup\beta$	lpha or eta
α^*	any number of execution of $lpha$
ϕ ?	test ϕ
$[\alpha]$	after any execution of α

We consider KRIPKE models in which worlds are many-valued

Definition

A (*dynamic* n + 1-valued) KRIPKE model $\mathcal{M} = \langle W, R$, Val \rangle where

- W is a non empty set,
- ▶ *R* maps any atomic program *a* to $R_a \subseteq W \times W$,
- Val assigns a truth value Val(u, p) ∈ Ł_n for any u ∈ W and any propositional variable p.

Val(.,.) and *R* are extended to every formulas and programs

Val and *R* are extended by mutual induction :

- In a truth functional way for \neg and \rightarrow ,
- ► $\operatorname{Val}(\boldsymbol{u}, [\alpha]\psi) := \bigwedge \{\operatorname{Val}(\boldsymbol{v}, \psi) \mid (\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{R}_{\alpha}\},\$

$$\blacktriangleright \ \mathbf{R}_{\alpha;\beta} := \mathbf{R}_{\alpha} \circ \mathbf{R}_{\beta},$$

$$\blacktriangleright \ \mathbf{R}_{\alpha\cup\beta}:=\mathbf{R}_{\alpha}\cup\mathbf{R}_{\beta},$$

•
$$R_{\phi?} = \{(u, u) \mid \operatorname{Val}(u, \phi) = 1\},\$$

$$\bullet \ R_{\alpha^*} := (R_\alpha)^* = \bigcup_{k \in \omega} R_\alpha^k.$$

Definition

We note $\mathcal{M}, u \models \phi$ if $Val(u, \phi) = 1$ and $\mathcal{M} \models \phi$ if $\mathcal{M}, u \models \phi$ for every $u \in W$.

RÉNYI - ULAM game has a KRIPKE model

Language :

- ► a propositional variable p_m for any m ∈ M that qualifies how m is far from the set of rejected elements.
- an atomic program *m* for any $\{m\} \subseteq \{1, \ldots, M\}$.

Model :

- $W = k_n^M$ is the knowledge space.
- (s, t) ∈ R_{{m}} if t is a state of knowledge that can be obtained by updating s with an answer of ALICE to question {m}.
- ► $\operatorname{Val}(s, p_m) = s(m)$.

We want to axiomatize the theory of the KRIPKE models

Definition

$$T_n = \bigcap \{ \{ \phi \mid \mathcal{M} \models \phi \} \mid \mathcal{M} \text{ is a Kripke model} \}.$$

We aim to give an axiomatization of T_n .

There are three ingredients in the axiomatization

Definition

An n + 1-valued propositional dynamic logic is a set of formulas that contains formulas in Ax₁, Ax₂, Ax₃ and closed for the rules in Ru₁, Ru₂.

Łukasiewicz $n + 1$ -valued logic	
Ax ₁	Axiomatization
Ru ₁	MP, uniform substitution

Crisp modal $n + 1$ -valued logic	
Ax ₂	$egin{aligned} & [lpha](m{p} ightarrow q) ightarrow ([lpha]m{p} ightarrow [lpha]m{p} ightarrow [lpha]m{p}, \ & [lpha](m{p}\odotm{p})\leftrightarrow [lpha]m{p}\odot[lpha]m{p}, \ & [lpha]m{p}\odot[lpha]m{p}, \end{aligned}$
Ru ₂	$\phi \neq [\alpha]\phi$

Program constructions
$$[\alpha \cup \beta] p \leftrightarrow [\alpha] p \land [\beta] p$$
 $[\alpha; \beta] p \leftrightarrow [\alpha] [\beta] p$, $[\alpha; \beta] p \leftrightarrow (\alpha] [\beta] p$, $[\alpha^{?}] p \leftrightarrow (\neg q^{n} \lor p)$ $[\alpha^{*}] p \leftrightarrow (p \land [\alpha] [\alpha^{*}] p)$, $[\alpha^{*}] p \rightarrow [\alpha^{*}] [\alpha^{*}] p$, $(p \land [\alpha^{*}] (p \rightarrow [\alpha] p)^{n}) \rightarrow [\alpha^{*}] p$.

The last axiom means

'if after an undetermined number of executions of α the truth value of *p* cannot decrease after a new execution of α , then the truth value of *p* cannot decrease after any undetermined number of executions of α '.

Our main result is a completeness theorem

Definition

We denote by PDL_n the smallest n + 1-valued propositional dynamic logic.

Theorem

$$T_n = \mathsf{PDL}_n$$

Sketch of the proof.

- 1. Construction of the canonical model of PDL_n.
- 2. Truth lemma.
- 3. Filtration of the canonical model.

We construct a model in which truth formulas are precisely the elements of PDL_n

The MV-reduct of the LINDENBAUM - TARSKI algebra \mathcal{F}_n of PDL_n is a member of $\mathbb{ISP}(\mathfrak{k}_n)$.

Definition

The *canonical model* of PDL_n is $\mathcal{M}^c = \langle W^c, R^c, \operatorname{Val}^c \rangle$ where

- 1. $W^{c} = \mathcal{MV}(\mathcal{F}_{n}, \mathbf{k}_{n});$
- 2. For any program α ,

$$\mathcal{R}^{c}_{\alpha} := \{(u, v) \mid \forall \phi \in \mathcal{F}_{n} \ (u([\alpha]\phi) = 1 \Rightarrow v(\phi) = 1)\};$$

3. For any formula ϕ ,

$$\operatorname{Val}^{c}(\boldsymbol{u},\phi)=\boldsymbol{u}(\phi).$$

We use filtration to overcome the fact that the canonical model is not a KRIPKE model

 $R_{\alpha^*}^c$ may be a proper extension of $(R_{\alpha}^c)^*$.

Definition

 $FL(\phi)$ is the finite set of formulas that are a subexpression of ϕ .

Definition

Fix a formula ϕ . Let \equiv_{ϕ} be the equivalence defined on W^c by

$$u \equiv_{\phi} v$$
 if $\forall \psi \in FL(\phi) \ u(\psi) = v(\psi)$.

Theorem (Filtration)

 W^c/\equiv_ϕ can be equipped with a Kripke model structure $[\mathcal{M}^c]_\phi$ that satisfies

$$\mathcal{M}^{\mathbf{C}} \models \psi \iff [\mathcal{M}^{\mathbf{C}}]_{\phi} \models \psi, \quad \psi \in \mathrm{FL}(\phi).$$

We can finalize the proof of the completeness theorem

Theorem

$$T_n = \mathsf{PDL}_n$$

Sketch of the proof.

- 1. \checkmark Construction of the canonical model of PLD_n.
- 2. 🗸 Truth lemma.
- 3. \checkmark Filtration of the canonical model.

If ϕ is a tautology then $[\mathcal{M}^c]_{\phi} \models \phi$. Hence $\mathcal{M}^c \models \phi$, which means that $\phi \in \mathsf{PDL}_n$.

If n = 1, everything boils down to PDL (introduced by FISCHER and LADNER in 1979).

There is room for future work

- 1. Shows that PDL_n can actually help in stating many-valued program specifications.
- 2. There is an epistemic interpretation of PDL. Can it be generalized to the n + 1-valued realm?
- 3. What happens if KRIPKE models are not crisp.
- 4. Can coalgebras explain why PDL and PDL_n works are so related?