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Partial Predicates

A partial predicate over a set X is a pair (A, B) such that A, B C X and
ANB=0. D(X) = {{(A,B) : (A B) is a partial predicate over X}.
Given (A, B),(C,D) € D(X) we let

(A,B)n{(C,D) =(AnC,BUD)

(A,B)U(C,D) = (AUC,BN D)
~(A, B) == (B, A)
n:=(0,0).
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Partial Predicates

How to describe fields of partial sets? An algebra A = (A, A,V,—,n) is a
DMF lattice if it is a distributive lattice that satisfies the following

equations:
xVy==(-xA-"y) x Ay =-=(-xV-y)
X = X -n=n
XNAN=x < yV-y.

We will denote by DMF the variety of DMF lattices. Let Z;,, 11 the
2m + 1l-element DMF chain with universe {—m,...,—1,n,1, ... m}.
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Leibniz Hierarchy

We are interested in logics related to the variety DMF. Let A be an
algebra and F C A. § € Co(A) is compatible with F if it satisfies the
following condition

if a€ F and (a,b) € 6, then b€ F.

The Leibniz congruence of F over A is the largest congruence over A

compatible with F. We denote it by QF. The map Q: P(A) — Co(A)
such that

F—s QF

is called the Leibniz operator.



Leibniz Hierarchy

Let A be an algebra. F C A is a deductive filter of L if for every
ru{e} C Fm

if I k£ ¢, then for every homomorphism h: Fm — A

if Al C F, then h(y) € F.
We let Fic(A) = {F C A: F is a deductive filter of L}.
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Leibniz Hierarchy

Let A be an algebra. F C A is a deductive filter of L if for every
ru{e} C Fm

if I k£ ¢, then for every homomorphism h: Fm — A

if h[I'] C F, then h(p) € F.

We let Fic(A) = {F C A: F is a deductive filter of L}.
We let
Mod*L = {(A,F) : F € Fiz(A) and QF = A}

Alg*L = {A : there is F € Fiz(A) such that QF = A}.

be the classes of Leibniz-reduced models and that of Leibniz-reduced
algebras of L.
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A logic L is truth-equational if there is a set E(x) C Eq such that
F={acA: AR E(a)} for every algebra (A, F) € Mod™*L.
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Leibniz Hierarchy

IfZ3 € Alg*L, then L is not protoalgebraic.

IfZs € Alg*[l, then L is not truth-equational.

Proof.
@ Up to equivalence terms in one variable in DMF are
T(x) ={n,xV -x,xVn,—x,=xVnxA\-x,x An,—=xA n,x,x};
o if a, 8 € T(x) and A € DMF, then
{acA: AE a(a) ~ Ba)} € {{n},} n,1 n, A};
e if £ truth-equational, then Zs ¢ Alg™ L.
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The Logic Ly,

A concrete logic Lyy;:
['Fc,, ¢ <= for every homomorphism h: Fm — Z3

if h[l'] C {1}, then h(p) = 1.
Observe that
(i) Lyqy is finitary;
(i) L1y has no theorems;

(iii) L1y is neither protoalgebraic, nor truth-equational, nor
selfextensional.

9/18
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Leibniz-Reduced Models

Let A € DMF. Fi,(A) is the set of lattice filters F such that n ¢ F and

ifavne F,thenace F.

Let A € DMF. Fig,,(A) = Fi,(A) U {0, A}.

Let A be a De Morgan Lattice, F C A a lattice filter and a, b € A.
(a, b) € QF if and only if for every c € A the following conditions hold

aVceF<=bVvceF

—aVce F«< -bVceF.




Leibniz-Reduced Models

Let A be non-trivial. (A, F) € Mod*Lyyy if and only if the following
conditions hold:

(i) A € DMF;
(i) A has a maximum 1 and F = {1},

(i) if a < b, then there is c € A such that aV ¢ < bV c =1 for every
a,b>n.
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A logic L is uniequational if there is a set E(x,y) C Eq such that
F={acA: A E(a,b) for every b € A} for every (A, F) € Mod*L
such that F # ().

Theorem

A logic L is uniequational if and only if : P(A) — Co(A) is completely
order reflecting over Fi(A)\ {0} for every algebra A.
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Corollary

Let L be an uniequational logic. L is truth-equational if and only if it has
theorems.
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Leibniz-Reduced Models

A logic L is uniequational if there is a set E(x,y) C Eq such that
F={acA: A E(a,b) for every b € A} for every (A, F) € Mod*L
such that F # ().

Theorem

A logic L is uniequational if and only if : P(A) — Co(A) is completely
order reflecting over Fi(A)\ {0} for every algebra A.

| \

Corollary

Let L be an uniequational logic. L is truth-equational if and only if it has
theorems.

L1y is uniequational with defining equations {x Ny =~ y}.




Leibniz-Reduced Models

Theorem ([2])

A € Aig"CPCx,v,1} if and only if the following conditions hold:
(i) AeDLy;
(i) A has a maximum 1;
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Theorem ([2])

A € Aig"CPCx,v,1} if and only if the following conditions hold:
(i) AeDLy;
(i) A has a maximum 1;

(iii) if a < b, then there is c € A such that aV ¢ < bV ¢ =1 for every
a,beA.

v
Corollary

Let A € DMF. A € Alg*ﬁ{l} if and only if 1 (A) € Alg"CPCp v, 13-
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A Gentzen System

Let A be an algebra and C C P(A) be a closure system. The Tarski
congruence of C over A is the largest congruence over A compatible with
every X € C. We denote it by ic. (A,C) is a g-model of L if

X € Fig(A) for every X € C.

Algl = {A : there is a g-models (A,C) of £ such that {IC = A}.

AlgL is the algebraic counterpart of L.

AlgL1y = DMF. \
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Let A € DMF. A g-matrix (A,C) has:
(i) the (PC) if C{aA b} = C{a, b} for every a, b € A;
(ii) the (PDI)if C{X,aV b} = C{X,a} N C{X, b} for every a,b € A;
(iii) the (PDN) if C{——a} = C{a} for every a € A;
(iv) the (PDM) if C{—=(a A b)} = C{—aV —b} and
C{—(aV b)} = C{—a A b} for every a,b € A;
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A Gentzen System

Let A € DMF. A g-matrix (A,C) has:

(i) the (PC) if C{aA b} = C{a, b} for every a, b € A;

(ii) the (PDI)if C{X,aV b} = C{X,a} N C{X, b} for every a,b € A;
(iii) the (PDN) if C{——a} = C{a} for every a € A;
(iv) the (PDM) if C{=(a A b)} = C{—-aV —b} and

C{—(aV b)} = C{—a A —b} for every a,b € A,

(v) the (PN) if a€ C{nV —n} and a € C(X) = n e C{X,—a} for every
acA

Let (A,C) be a g-matrix. (A,C) is a full g-model of L1y if and only if it
is finitary, without theorems and has (PC), (PDI), (PDN), (PDM) and
(PN).
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A Gentzen System

Let & be the Gentzen system (premisses are non-empty finite sets of
formulas) defined by the following rules:

ata(R) %(W) W(Cut)
rja?lvﬁgfbv(v” rLZ%rLZ@a(W)
: ﬁii(va A 55’;5 e >ri;i BT DFE(;f B
N>«

n\/—\nl>a(n>) m(bn)

16 /18



A Gentzen System

Let 7: P(Seq) — P(Eq): p be the residuated mappings defined as
T(Fba):/\rga\/n pla=pf)={a<>p,~a<>-06}

for every [ > a € Seq and o = 5 € Eq.
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A Gentzen System

Let 7: P(Seq) — P(Eq): p be the residuated mappings defined as
T(Fba):/\rga\/n pla=pf)={a<>p,~a<>-06}

for every [ > a € Seq and o = 5 € Eq.

& is algebraizable with equivalent algebraic semantics DMF via 7 and p.
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@ Begin a general study of uniequational logics and their relation with
algebraic semantics;

@ Develop the relation between uniequational logics and the Frege
hierarchy;

@ There are interesting examples of logics which arise from an
analogous weakening of protoalgebraic logics?

@ Is there a logic which has a universal semantics and is neither
uniequational, nor has an algebraic semantics?
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