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Describe a way to model partial predicates

Define a logic which preserves exactness in partial contexts

Some issues of abstract algebraic logic

Provide a Gentzen calculus for the logic
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Partial Predicates

A partial predicate over a set X is a pair 〈A,B〉 such that A,B ⊆ X and
A ∩ B = ∅. D(X ) := {〈A,B〉 : 〈A,B〉 is a partial predicate over X}.
Given 〈A,B〉, 〈C ,D〉 ∈ D(X ) we let

〈A,B〉 ∩ 〈C ,D〉 := 〈A ∩ C ,B ∪ D〉

〈A,B〉 ∪ 〈C ,D〉 := 〈A ∪ C ,B ∩ D〉

¬〈A,B〉 := 〈B,A〉

n := 〈∅, ∅〉.

3 / 18



Partial Predicates

A partial predicate over a set X is a pair 〈A,B〉 such that A,B ⊆ X and
A ∩ B = ∅. D(X ) := {〈A,B〉 : 〈A,B〉 is a partial predicate over X}.
Given 〈A,B〉, 〈C ,D〉 ∈ D(X ) we let

〈A,B〉 ∩ 〈C ,D〉 := 〈A ∩ C ,B ∪ D〉

〈A,B〉 ∪ 〈C ,D〉 := 〈A ∪ C ,B ∩ D〉

¬〈A,B〉 := 〈B,A〉

n := 〈∅, ∅〉.

3 / 18



Partial Predicates

How to describe fields of partial sets? An algebra A = 〈A,∧,∨,¬, n〉 is a
DMF lattice if it is a distributive lattice that satisfies the following
equations:

x ∨ y = ¬(¬x ∧ ¬y) x ∧ y = ¬(¬x ∨ ¬y)

¬¬x = x ¬n = n

x ∧ ¬x ≤ y ∨ ¬y .

We will denote by DMF the variety of DMF lattices. Let Z2m+1 the
2m + 1-element DMF chain with universe {−m, . . . ,−1, n, 1, . . . ,m}.
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Leibniz Hierarchy

We are interested in logics related to the variety DMF. Let A be an
algebra and F ⊆ A. θ ∈ Co(A) is compatible with F if it satisfies the
following condition

if a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F .

The Leibniz congruence of F over A is the largest congruence over A
compatible with F . We denote it by ΩF . The map Ω : P(A)→ Co(A)
such that

F 7−→ ΩF

is called the Leibniz operator.
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Leibniz Hierarchy

Let A be an algebra. F ⊆ A is a deductive filter of L if for every
Γ ∪ {ϕ} ⊆ Fm

if Γ `L ϕ, then for every homomorphism h : Fm→ A

if h[Γ] ⊆ F , then h(ϕ) ∈ F .

We let F iL(A) := {F ⊆ A : F is a deductive filter of L}.
We let

Mod∗L = {〈A,F 〉 : F ∈ F iL(A) and ΩF = ∆}

Alg∗L = {A : there is F ∈ F iL(A) such that ΩF = ∆}.

be the classes of Leibniz-reduced models and that of Leibniz-reduced
algebras of L.
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Leibniz Hierarchy

A logic L is protoalgebraic if there is a set ∆(x , y ,−→z ) ⊆ Fm such that for
every algebra A, F ∈ F iL(A) and a, b ∈ A

〈a, b〉 ∈ ΩF ⇐⇒ ∆A(a, b,−→c ) ⊆ F for every −→c ∈ A.

Theorem

A logic L is protoalgebraic if and only if Ω : P(A)→ Co(A) is monotone
over F iL(A) for every algebra A.

A logic L is truth-equational if there is a set E (x) ⊆ Eq such that
F = {a ∈ A : A |= E (a)} for every algebra 〈A,F 〉 ∈ Mod∗L.

Theorem ([3])

A logic L is truth-equational if and only if Ω : P(A)→ Co(A) is
completely order reflecting over F iL(A) for every algebra A.
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Leibniz Hierarchy

Theorem

If Z3 ∈ Alg∗L, then L is not protoalgebraic.

Theorem

If Z5 ∈ Alg∗L, then L is not truth-equational.

Proof.

Up to equivalence terms in one variable in DMF are
T (x) := {n, x ∨ ¬x , x ∨ n,¬x ,¬x ∨ n, x ∧ ¬x , x ∧ n,¬x ∧ n, x ,¬x};
if α, β ∈ T (x) and A ∈ DMF, then
{a ∈ A : A |= α(a) ≈ β(a)} ∈ {{n}, ↓ n, ↑ n,A};
if L truth-equational, then Z5 /∈ Alg∗L.
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The Logic L{1}

A concrete logic L{1}:

Γ `L{1} ϕ⇐⇒ for every homomorphism h : Fm→ Z3

if h[Γ] ⊆ {1}, then h(ϕ) = 1.

Observe that

(i) L{1} is finitary;

(ii) L{1} has no theorems;

(iii) L{1} is neither protoalgebraic, nor truth-equational, nor
selfextensional.
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Leibniz-Reduced Models

Let A ∈ DMF. F in(A) is the set of lattice filters F such that n /∈ F and

if a ∨ n ∈ F , then a ∈ F .

Lemma

Let A ∈ DMF. F iL{1}(A) = F in(A) ∪ {∅,A}.

Lemma ([1])

Let A be a De Morgan Lattice, F ⊆ A a lattice filter and a, b ∈ A.
〈a, b〉 ∈ ΩF if and only if for every c ∈ A the following conditions hold

a ∨ c ∈ F ⇐⇒ b ∨ c ∈ F

¬a ∨ c ∈ F ⇐⇒ ¬b ∨ c ∈ F .
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Leibniz-Reduced Models

Theorem

Let A be non-trivial. 〈A,F 〉 ∈ Mod?L{1} if and only if the following
conditions hold:

(i) A ∈ DMF;

(ii) A has a maximum 1 and F = {1};
(iii) if a < b, then there is c ∈ A such that a ∨ c < b ∨ c = 1 for every

a, b ≥ n.
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Leibniz-Reduced Models

A logic L is uniequational if there is a set E (x , y) ⊆ Eq such that
F = {a ∈ A : A |= E (a, b) for every b ∈ A} for every 〈A,F 〉 ∈ Mod∗L
such that F 6= ∅.

Theorem

A logic L is uniequational if and only if Ω : P(A)→ Co(A) is completely
order reflecting over F iL(A) \ {∅} for every algebra A.

Corollary

Let L be an uniequational logic. L is truth-equational if and only if it has
theorems.

Lemma

L{1} is uniequational with defining equations {x ∧ y ≈ y}.
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Leibniz-Reduced Models

Theorem ([2])

A ∈ Alg?CPC{∧,∨,⊥} if and only if the following conditions hold:

(i) A ∈ DL⊥;

(ii) A has a maximum 1;

(iii) if a < b, then there is c ∈ A such that a ∨ c < b ∨ c = 1 for every
a, b ∈ A.

Corollary

Let A ∈ DMF. A ∈ Alg∗L{1} if and only if ↑ (A) ∈ Alg?CPC{∧,∨,⊥}.
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A Gentzen System

Let A be an algebra and C ⊆ P(A) be a closure system. The Tarski
congruence of C over A is the largest congruence over A compatible with
every X ∈ C. We denote it by

∼
ΩC. 〈A, C〉 is a g-model of L if

X ∈ F iL(A) for every X ∈ C.

AlgL = {A : there is a g-models 〈A, C〉 of L such that
∼
ΩC = ∆}.

AlgL is the algebraic counterpart of L.

Lemma

AlgL{1} = DMF.
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A Gentzen System

Let A ∈ DMF. A g-matrix 〈A, C〉 has:

(i) the (PC) if C{a ∧ b} = C{a, b} for every a, b ∈ A;

(ii) the (PDI) if C{X , a ∨ b} = C{X , a} ∩ C{X , b} for every a, b ∈ A;

(iii) the (PDN) if C{¬¬a} = C{a} for every a ∈ A;

(iv) the (PDM) if C{¬(a ∧ b)} = C{¬a ∨ ¬b} and
C{¬(a ∨ b)} = C{¬a ∧ ¬b} for every a, b ∈ A;

(v) the (PN) if a ∈ C{n ∨ ¬n} and a ∈ C (X )⇒ n ∈ C{X ,¬a} for every
a ∈ A.

Theorem

Let 〈A, C〉 be a g-matrix. 〈A, C〉 is a full g-model of L{1} if and only if it
is finitary, without theorems and has (PC), (PDI), (PDN), (PDM) and
(PN).
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A Gentzen System

Let G be the Gentzen system (premisses are non-empty finite sets of
formulas) defined by the following rules:

α� α (R)
Γ � α

Γ, β � α
(W )

Γ � α Γ, α� β

Γ � β
(Cut)

Γ, α, β � γ

Γ, α ∧ β � γ
(∧�)

Γ � α Γ � β

Γ � α ∧ β
(�∧)

Γ, α� γ Γ, β � γ

Γ, α ∨ β � γ
(∨�)

Γ � α

Γ � α ∨ β
,

Γ � α

Γ � β ∨ α
(�∨)

Γ, α� β

Γ¬¬α,�β
(¬�)

Γ � α

Γ � ¬¬α
(�¬)

Γ,¬α� γ Γ,¬β � γ

Γ,¬(α ∧ β) � γ
(¬ ∧�)

Γ � ¬α
Γ � ¬(α ∧ β)

,
Γ � ¬β

Γ � ¬(α ∧ β)
(�¬∧)

Γ,¬α,¬β � γ

Γ,¬(α ∨ β) � γ
(¬ ∨�)

Γ � ¬α Γ � ¬β
Γ � ¬(α ∨ β)

(�¬∨)

n ∨ ¬n � α (n�)
Γ � α

Γ,¬α� n
(�n)
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A Gentzen System

Let τ : P(Seq) −→ P(Eq) : ρ be the residuated mappings defined as

τ (Γ � α) =
∧

Γ ≤ α ∨ n ρ(α ≈ β) = {α��β,¬α��¬β}

for every Γ � α ∈ Seq and α ≈ β ∈ Eq.

Theorem

G is algebraizable with equivalent algebraic semantics DMF via τ and ρ.
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Future Work

Begin a general study of uniequational logics and their relation with
algebraic semantics;

Develop the relation between uniequational logics and the Frege
hierarchy;

There are interesting examples of logics which arise from an
analogous weakening of protoalgebraic logics?

Is there a logic which has a universal semantics and is neither
uniequational, nor has an algebraic semantics?
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Characterization of the reduced matrices for the {∧,∨}-fragment of
classical logic.
Bulletin of the Section of Logic, 20:124–128, 1991.

J. G. Raftery.
The equational definability of truth predicates.
Reports on Mathematical Logic, (41):95–149, 2006.

18 / 18


