Decidability for Gödel Modal Logics

George Metcalfe

Mathematical Institute University of Bern, Switzerland

Joint work with Xavier Caicedo, Ricardo Rodríguez, and Jonas Rogger

ManyVal 2013, Prague, 4-6 September 2013

A D M A A A M M

- A 🖻 🕨

Are basic Gödel modal logics with crisp / fuzzy frames decidable?

(Yes, and so is the one-variable fragment of first-order Gödel logic.)

4 A N

Are basic Gödel modal logics with crisp / fuzzy frames decidable?

(Yes, and so is the one-variable fragment of first-order Gödel logic.)

What does it mean for a logic to have a finite model property?

Modal formulas in $\operatorname{Fm}_{\Box\Diamond}$ are built using connectives

 $\wedge,\,\vee,\,\rightarrow,\,\perp,\,\top,\,\Box,\text{ and }\Diamond.$

We also define $\neg \varphi =_{def} \varphi \rightarrow \bot$ and the **length** of a formula φ as $\ell(\varphi)$.

• • • • • • • • • • • • •

For a non-empty set of worlds W, the ordered pair $\langle W, R \rangle$ is called

- a (crisp) Kripke frame if $R \subseteq W \times W$
- a fuzzy Kripke frame if $R: W \times W \rightarrow [0, 1]$.

For a non-empty set of worlds W, the ordered pair $\langle W, R \rangle$ is called

- a (crisp) Kripke frame if $R \subseteq W \times W$
- a fuzzy Kripke frame if $R: W \times W \rightarrow [0, 1]$.

For a non-empty set of worlds W, the ordered pair $\langle W, R \rangle$ is called

- a (crisp) Kripke frame if $R \subseteq W \times W$
- a fuzzy Kripke frame if $R: W \times W \rightarrow [0, 1]$.

A GK-model $\langle W, R, V \rangle$ consists of a fuzzy Kripke frame $\langle W, R \rangle$ and a function $V \colon \operatorname{Fm}_{\Box \Diamond} \times W \to [0, 1]$ satisfying

$$V(\perp, x) = 0$$

$$V(\top, x) = 1$$

$$V(\varphi \land \psi, x) = \min(V(\varphi, x), V(\psi, x))$$

$$V(\varphi \lor \psi, x) = \max(V(\varphi, x), V(\psi, x))$$

$$V(\varphi \rightarrow \psi, x) = \begin{cases} 1 & \text{if } V(\varphi, x) \le V(\psi, x) \\ V(\psi, x) & \text{otherwise} \end{cases}$$

イロト イ団ト イヨト イヨト

A GK-model $\langle W, R, V \rangle$ consists of a fuzzy Kripke frame $\langle W, R \rangle$ and a function $V \colon \operatorname{Fm}_{\Box \Diamond} \times W \to [0, 1]$ satisfying

$$V(\perp, x) = 0$$

$$V(\top, x) = 1$$

$$V(\varphi \land \psi, x) = \min(V(\varphi, x), V(\psi, x))$$

$$V(\varphi \lor \psi, x) = \max(V(\varphi, x), V(\psi, x))$$

$$V(\varphi \rightarrow \psi, x) = \begin{cases} 1 & \text{if } V(\varphi, x) \le V(\psi, x) \\ V(\psi, x) & \text{otherwise} \end{cases}$$

and for the modal connectives:

$$V(\Box \varphi, x) = \bigwedge_{y \in W} (Rxy \to_{G} V(\varphi, y))$$
$$V(\Diamond \varphi, x) = \bigvee_{y \in W} (\min(Rxy, V(\varphi, y))).$$

2

イロト イポト イヨト イヨ

If $\langle W, R \rangle$ is crisp, then $\langle W, R, V \rangle$ is called a GK^C-model and

$$V(\Box \varphi, x) = \bigwedge_{(x,y)\in R} V(\varphi, y)$$

 $V(\Diamond \varphi, x) = \bigvee_{(x,y)\in R} V(\varphi, y).$

э

- valid in a GK-model $\langle W, R, V \rangle$ if $V(\varphi, x) = 1$ for all $x \in W$
- GK-valid if φ is valid in all GK-models, written $\models_{\mathsf{GK}} \varphi$
- GK^C-valid if φ is valid in all GK^C-models, written $\models_{GK^C} \varphi$.
- In fact, we can consider just GK-tree-models of finite height.

< □ > < 同 > < 回 > < 回

- valid in a GK-model $\langle W, R, V \rangle$ if $V(\varphi, x) = 1$ for all $x \in W$
- GK-valid if φ is valid in all GK-models, written $\models_{\mathsf{GK}} \varphi$
- GK^C-valid if φ is valid in all GK^C-models, written $\models_{GK^C} \varphi$.

In fact, we can consider just GK-tree-models of finite height.

• • • • • • • • • • • •

- valid in a GK-model $\langle W, R, V \rangle$ if $V(\varphi, x) = 1$ for all $x \in W$
- GK-valid if φ is valid in all GK-models, written $\models_{\mathsf{GK}} \varphi$
- GK^C-valid if φ is valid in all GK^C-models, written $\models_{\mathsf{GK}^{\mathsf{C}}} \varphi$.

In fact, we can consider just GK-tree-models of finite height.

- valid in a GK-model $\langle W, R, V \rangle$ if $V(\varphi, x) = 1$ for all $x \in W$
- GK-valid if φ is valid in all GK-models, written $\models_{\mathsf{GK}} \varphi$
- GK^C-valid if φ is valid in all GK^C-models, written $\models_{GK^C} \varphi$.

In fact, we can consider just GK-tree-models of finite height.

• • • • • • • • • • • •

Fragments

 GK_{\Box} and GK_{\Diamond} , the **box** and **diamond** fragments of GK are axiomatized as extensions of Gödel logic with, respectively

 $\begin{array}{ll} \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) & \text{and} & \Diamond(\varphi \lor \psi) \to (\Diamond \varphi \lor \Diamond \psi) \\ \neg \neg \Box \varphi \to \Box \neg \neg \varphi & & \Diamond \neg \neg \varphi \to \neg \neg \Diamond \psi \\ \varphi / \Box \varphi & & \neg \downarrow \\ \varphi \to \psi / \Diamond \varphi \to \Diamond \psi. \end{array}$

 $\mathsf{GK}^{\mathsf{C}}_{\Box}$ and GK_{\Box} coincide; $\mathsf{GK}^{\mathsf{C}}_{\Diamond}$ is axiomatized by extending GK_{\Diamond} with

$$\chi \lor (\varphi \to \psi) / \land \chi \lor (\Diamond \varphi \to \Diamond \psi).$$

X. Caicedo and R. Rodríguez. Standard Gödel modal logics. *Studia Logica*, 94(2):189–214, 2010.

Fragments

 GK_{\Box} and GK_{\Diamond} , the **box** and **diamond** fragments of GK are axiomatized as extensions of Gödel logic with, respectively

$$\begin{array}{c} \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \quad \text{and} \quad & \Diamond(\varphi \lor \psi) \to (\Diamond \varphi \lor \Diamond \psi) \\ \neg \neg \Box \varphi \to \Box \neg \neg \varphi \quad & \Diamond \neg \neg \varphi \to \neg \neg \Diamond \psi \\ \varphi \ / \ \Box \varphi \quad & \neg \Diamond \bot \\ \varphi \to \psi \ / \ \Diamond \varphi \to \Diamond \psi. \end{array}$$

 $\mathsf{GK}^{\mathsf{C}}_{\Box}$ and GK_{\Box} coincide; $\mathsf{GK}^{\mathsf{C}}_{\Diamond}$ is axiomatized by extending GK_{\Diamond} with

$$\chi \lor (\varphi \to \psi) / \Diamond \chi \lor (\Diamond \varphi \to \Diamond \psi).$$

X. Caicedo and R. Rodríguez. Standard Gödel modal logics. *Studia Logica*, 94(2):189–214, 2010.

A (10) A (10)

Fragments

 GK_{\Box} and GK_{\Diamond} , the **box** and **diamond** fragments of GK are axiomatized as extensions of Gödel logic with, respectively

$$\begin{array}{c} \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \quad \text{and} \quad & \Diamond(\varphi \lor \psi) \to (\Diamond \varphi \lor \Diamond \psi) \\ \neg \neg \Box \varphi \to \Box \neg \neg \varphi \quad & \Diamond \neg \neg \varphi \to \neg \neg \Diamond \psi \\ \varphi / \Box \varphi \quad & \neg \Diamond \bot \\ \varphi \to \psi / \Diamond \varphi \to \Diamond \psi. \end{array}$$

 $\mathsf{GK}^{\mathsf{C}}_{\Box}$ and GK_{\Box} coincide; $\mathsf{GK}^{\mathsf{C}}_{\Diamond}$ is axiomatized by extending GK_{\Diamond} with

$$\chi \lor (\varphi \to \psi) / \Diamond \chi \lor (\Diamond \varphi \to \Diamond \psi).$$

X. Caicedo and R. Rodríguez. Standard Gödel modal logics. *Studia Logica*, 94(2):189–214, 2010.

A (10) × A (10) × A (10)

An axiomatization of the **full logic** GK is obtained by adding to the axiomatizations of the fragments, the Fischer Servi axioms

$$\begin{array}{l} \Diamond(\varphi \to \psi) \to (\Box \varphi \to \Diamond \psi) \\ (\Diamond \varphi \to \Box \psi) \to \Box(\varphi \to \psi), \end{array}$$

or by adding prelinearity to the intuitionistic modal logic IK.

X. Caicedo and R. Rodríguez. Bi-modal Gödel logic over [0,1]-valued Kripke frames. *Journal of Logic and Computation*, to appear.

No axiomatization has yet been found for the full logic GK^C.

An axiomatization of the **full logic** GK is obtained by adding to the axiomatizations of the fragments, the Fischer Servi axioms

$$(\varphi \to \psi) \to (\Box \varphi \to \Diamond \psi)$$

 $(\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi),$

or by adding prelinearity to the intuitionistic modal logic IK.

X. Caicedo and R. Rodríguez. Bi-modal Gödel logic over [0,1]-valued Kripke frames. *Journal of Logic and Computation*, to appear.

No axiomatization has yet been found for the full logic GK^C.

Decidability and PSPACE-completeness has been established for the fragments GK_{\Box} , GK_{\Diamond} , and GK_{\Diamond}^{C} using Gentzen-style proof systems in

G. Metcalfe and N. Olivetti. Towards a proof theory of Gödel modal logics. *Logical Methods in Computer Science* 7(2):1–27, 2011.

But developing suitable systems for the full logics GK and GK^C seems to be more difficult...

Decidability and PSPACE-completeness has been established for the fragments GK_{\Box} , GK_{\Diamond} , and GK_{\Diamond}^{C} using Gentzen-style proof systems in

G. Metcalfe and N. Olivetti. Towards a proof theory of Gödel modal logics. *Logical Methods in Computer Science* 7(2):1–27, 2011.

But developing suitable systems for the full logics GK and GK^C seems to be more difficult...

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C-model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x) = \frac{1}{x+1} \qquad (x \in \mathbb{N}).$$

Just note that:

$$V(\Box \neg \rho \rightarrow \neg \Box \rho, 0) = (\bigwedge_{x \in \mathbb{N}} V(\neg \neg \rho, x)) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} V(\rho, x))$$
$$= (\bigwedge_{x \in \mathbb{N}} 1) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1})$$
$$= 1 \rightarrow_{G} 0 = 0.$$

イロト イ団ト イヨト イヨト

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C-model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x)=rac{1}{x+1}$$
 $(x\in\mathbb{N}).$

Just note that:

$$V(\Box \neg p \rightarrow \neg \Box p, 0) = (\bigwedge_{x \in \mathbb{N}} V(\neg \neg p, x)) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} V(p, x))$$
$$= (\bigwedge_{x \in \mathbb{N}} 1) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1})$$
$$= 1 \rightarrow_{G} 0 = 0.$$

イロト イヨト イヨト イヨト

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C -model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x)=rac{1}{x+1}\qquad (x\in\mathbb{N}).$$

Just note that:

$$V(\Box \neg \neg p \rightarrow \neg \Box p, 0) = (\bigwedge_{x \in \mathbb{N}} V(\neg \neg p, x)) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} V(p, x))$$
$$= (\bigwedge_{x \in \mathbb{N}} 1) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1})$$
$$= 1 \rightarrow_{G} 0 = 0.$$

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C -model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x)=rac{1}{x+1}$$
 $(x\in\mathbb{N}).$

Just note that:

$$V(\Box \neg \neg p \rightarrow \neg \neg \Box p, 0) = \left(\bigwedge_{x \in \mathbb{N}} V(\neg \neg p, x) \right) \rightarrow_{G} \left(\neg \neg \bigwedge_{x \in \mathbb{N}} V(p, x) \right)$$
$$= \left(\bigwedge_{x \in \mathbb{N}} 1 \right) \rightarrow_{G} \left(\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1} \right)$$
$$= 1 \rightarrow_{G} 0 = 0.$$

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C-model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x)=rac{1}{x+1}\qquad (x\in\mathbb{N}).$$

Just note that:

$$V(\Box \neg \neg p \rightarrow \neg \neg \Box p, 0) = \left(\bigwedge_{x \in \mathbb{N}} V(\neg \neg p, x) \right) \rightarrow_{G} \left(\neg \neg \bigwedge_{x \in \mathbb{N}} V(p, x) \right)$$
$$= \left(\bigwedge_{x \in \mathbb{N}} 1 \right) \rightarrow_{G} \left(\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1} \right)$$
$$= 1 \rightarrow_{G} 0 = 0.$$

The following formula is valid in all finite GK-models

 $\Box \neg \neg p \rightarrow \neg \neg \Box p$

but not in the **infinite** GK^C-model $\langle \mathbb{N}, \mathbb{N}^2, V \rangle$ with

$$V(p,x)=rac{1}{x+1}\qquad (x\in\mathbb{N}).$$

Just note that:

$$V(\Box \neg \neg p \rightarrow \neg \neg \Box p, 0) = (\bigwedge_{x \in \mathbb{N}} V(\neg \neg p, x)) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} V(p, x))$$
$$= (\bigwedge_{x \in \mathbb{N}} 1) \rightarrow_{G} (\neg \neg \bigwedge_{x \in \mathbb{N}} \frac{1}{x+1})$$
$$= 1 \rightarrow_{G} 0 = 0.$$

Consider fuzzy frames $\langle W, R \rangle$ augmented with a function

$$T\colon W\to \mathcal{P}_{<\omega}([0,1])$$

mapping worlds to finite subsets of [0, 1] containing 0 and 1.

A GFK-model $\langle W, R, T, V \rangle$ adds a valuation function V defined as before except that

$$V(\Box \varphi, x) = \max\{r \in T(x) : r \le \bigwedge_{y \in W} (Rxy \to_{\mathsf{G}} V(\varphi, y))\}$$

$$V(\Diamond \varphi, x) = \min\{r \in T(x) : r \ge \bigvee_{y \in W} \min(Rxy, V(\varphi, y))\}.$$

 $\langle W, R, T, V \rangle$ is called a GFK^C-model if $\langle W, R \rangle$ is crisp.

A GFK-model $\langle W, R, T, V \rangle$ adds a valuation function V defined as before except that

$$V(\Box \varphi, x) = \max\{r \in T(x) : r \leq \bigwedge_{y \in W} (Rxy \to_{\mathsf{G}} V(\varphi, y))\}$$

$$V(\Diamond \varphi, x) = \min\{r \in T(x) : r \ge \bigvee_{y \in W} \min(Rxy, V(\varphi, y))\}.$$

 $\langle W, R, T, V \rangle$ is called a GFK^C-model if $\langle W, R \rangle$ is crisp.

A (10) A (10) A (10)

A GFK-model $\langle W, R, T, V \rangle$ adds a valuation function V defined as before except that

$$V(\Box \varphi, x) = \max\{r \in T(x) : r \le \bigwedge_{y \in W} (Rxy \to_{\mathsf{G}} V(\varphi, y))\}$$

$$V(\Diamond \varphi, x) = \min\{r \in T(x) : r \ge \bigvee_{y \in W} \min(Rxy, V(\varphi, y))\}.$$

 $\langle W, R, T, V \rangle$ is called a GFK^C-model if $\langle W, R \rangle$ is crisp.

4 A N

★ ∃ >

 $\langle \{a\}, \{(a, a)\}, T, V \rangle$ where $V(p, a) = \frac{1}{2}$ and $T(a) = \{0, 1\}.$

Just observe that:

 $V(\Box \neg \neg p, a) = \max\{r \in T(a) : r \le V(\neg \neg p, a)\} = 1$ $V(\neg \neg \Box p, a) = \neg \neg \max\{r \in T(a) : r \le V(p, a)\} = 0$ $(\Box \neg \neg p \rightarrow \neg \neg \Box p, a) = 1 \rightarrow_{G} 0 = 0.$

 $\langle \{a\}, \{(a, a)\}, T, V \rangle$ where $V(p, a) = \frac{1}{2}$ and $T(a) = \{0, 1\}.$

Just observe that:

$$V(\Box \neg \neg p, a) = \max\{r \in T(a) : r \leq V(\neg \neg p, a)\} = 1$$
$$V(\neg \neg \Box p, a) = \neg \neg \max\{r \in T(a) : r \leq V(p, a)\} = 0$$
$$\Box \neg \neg p \rightarrow \neg \neg \Box p, a) = 1 \rightarrow_{G} 0 = 0.$$

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\langle \{a\}, \{(a, a)\}, T, V \rangle$ where $V(p, a) = \frac{1}{2}$ and $T(a) = \{0, 1\}.$

Just observe that:

$$V(\Box \neg \neg p, a) = \max\{r \in T(a) : r \le V(\neg \neg p, a)\} = 1$$
$$V(\neg \neg \Box p, a) = \neg \neg \max\{r \in T(a) : r \le V(p, a)\} = 0$$
$$\Box \neg \neg p \rightarrow \neg \neg \Box p, a) = 1 \rightarrow_{G} 0 = 0.$$

3

< 口 > < 同 > < 回 > < 回 > < 回 > <

 $\langle \{a\}, \{(a, a)\}, T, V \rangle$ where $V(p, a) = \frac{1}{2}$ and $T(a) = \{0, 1\}.$

Just observe that:

3

Lemma

Let $\langle W, R, T, V \rangle$ be a GFK-tree-model with root x_0 . Then there exists a GK-tree-model $\langle \widehat{W}, \widehat{R}, \widehat{V} \rangle$ with root \widehat{x}_0 satisfying for each $\varphi \in \operatorname{Fm}_{\Box \Diamond}$:

$$\widehat{V}(\varphi, \widehat{x}_0) = V(\varphi, x_0).$$

Moreover, if $\langle W, R \rangle$ is crisp, then so is $\langle \widehat{W}, \widehat{R} \rangle$.

Lemma

Let $\langle W, R, V \rangle$ be a GK-tree-model with root x_0 and let $\varphi \in \operatorname{Fm}_{\Box \Diamond}$. Then there exists a GFK-tree-model $\langle \widehat{W}, \widehat{R}, \widehat{T}, \widehat{V} \rangle$ satisfying

•
$$\langle \widehat{W}, \widehat{R} \rangle \subseteq \langle W, R \rangle$$
 and $x_0 \in \widehat{W}$

•
$$\widehat{V}(\varphi, x_0) = V(\varphi, x_0)$$

•
$$|\widehat{W}| \leq \ell(\varphi)^{\ell(\varphi)}.$$

Theorem

The following are equivalent:

(1) ⊨_{GK} φ

(2) φ is valid in all GFK-models $\langle W, R, T, V \rangle$ with $|W| \leq \ell(\varphi)^{\ell(\varphi)}$.

The same holds also for GK^C-validity and GFK^C-models.

Theorem

GK-validity and GK^C-validity are decidable.

Theorem

The following are equivalent:

(1) ⊨_{GK} φ

(2) φ is valid in all GFK-models $\langle W, R, T, V \rangle$ with $|W| \leq \ell(\varphi)^{\ell(\varphi)}$.

The same holds also for GK^C-validity and GFK^C-models.

Theorem

GK-validity and GK^C-validity are decidable.

3

A GS5^C-model is a GK^C-model where R is an equivalence relation.

In fact we can restrict to **universal** GS5^C-models $\langle W,V
angle$ with

$$V(\Box \varphi, x) = \bigwedge_{y \in W} V(\varphi, y)$$
 and $V(\Diamond \varphi, x) = \bigvee_{y \in W} V(\varphi, y).$

Moreover, GS5^C can be interpreted as the **one-variable fragment of first-order Gödel logic**.

A GS5^C-model is a GK^C-model where R is an equivalence relation.

In fact we can restrict to **universal** GS5^C-models $\langle W, V \rangle$ with

$$V(\Box \varphi, x) = \bigwedge_{y \in W} V(\varphi, y)$$
 and $V(\Diamond \varphi, x) = \bigvee_{y \in W} V(\varphi, y).$

Moreover, GS5^C can be interpreted as the **one-variable fragment of first-order Gödel logic**.

A GS5^C-model is a GK^C-model where R is an equivalence relation.

In fact we can restrict to **universal** GS5^C-models $\langle W, V \rangle$ with

$$V(\Box \varphi, x) = \bigwedge_{y \in W} V(\varphi, y)$$
 and $V(\Diamond \varphi, x) = \bigvee_{y \in W} V(\varphi, y).$

Moreover, GS5^C can be interpreted as the **one-variable fragment of first-order Gödel logic**.

A **universal** GFS5^C-model $\langle W, T, V \rangle$ is a universal GS5^C-model $\langle W, V \rangle$ with a finite set *T* satisfying $\{0, 1\} \subseteq T \subseteq [0, 1]$, and

$$V(\Box \varphi, x) = \max\{r \in T : r \leq \bigwedge_{y \in W} V(\varphi, y)\}$$

$$V(\Diamond \varphi, x) = \min\{r \in T : r \ge \bigvee_{y \in W} V(\varphi, y)\}.$$

イロト イ団ト イヨト イヨト

Theorem

The following are equivalent:

(1) $\models_{\mathsf{GS5}^{\mathsf{C}}} \varphi$

(2) φ is valid in all universal GFS5^C-models $\langle W, T, V \rangle$ with $|W| \leq \ell(\varphi)$.

Theorem

GS5^C-validity and validity in the one-variable fragment of first-order Gödel logic are decidable and indeed co-NP-complete.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem

The following are equivalent:

(1) $\models_{\text{GS5}^{\text{C}}} \varphi$

(2) φ is valid in all universal GFS5^C-models $\langle W, T, V \rangle$ with $|W| \leq \ell(\varphi)$.

Theorem

GS5^C-validity and validity in the one-variable fragment of first-order Gödel logic are decidable and indeed co-NP-complete.

- What is the complexity of GK and GK^C? Proof systems?
- Do these techniques extend to other modal Gödel logics?
- Which first-order logics have a decidable one-variable fragment?
- Is the two-variable fragment of first-order Gödel logic decidable?

- What is the complexity of GK and GK^C? Proof systems?
- Do these techniques extend to other modal Gödel logics?
- Which first-order logics have a decidable one-variable fragment?
- Is the two-variable fragment of first-order Gödel logic decidable?

- What is the complexity of GK and GK^C? Proof systems?
- Do these techniques extend to other modal Gödel logics?
- Which first-order logics have a decidable one-variable fragment?
- Is the two-variable fragment of first-order Gödel logic decidable?

- What is the complexity of GK and GK^C? Proof systems?
- Do these techniques extend to other modal Gödel logics?
- Which first-order logics have a decidable one-variable fragment?
- Is the two-variable fragment of first-order Gödel logic decidable?

- What is the complexity of GK and GK^C? Proof systems?
- Do these techniques extend to other modal Gödel logics?
- Which first-order logics have a decidable one-variable fragment?
- Is the two-variable fragment of first-order Gödel logic decidable?