Examples

ON ŁUKASIEWICZ GAMES

ENRICO MARCHIONI

Institut de Recherche en Informatique de Toulouse Université Paul Sabatier, France

MICHAEL WOOLDRIDGE

Department of Computer Science

University of Oxford, U.K.

ManyVal 2013

4-6 September 2013 Prague, Czech Republic

<ロト < 団 > < 三 > < 三 > < 三 > < 三 < つ < へ </p>

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

OUTLINE

Łukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results Theorem Best Response Sets Equilibrium Formula Satisfiable Games

00000	Łukasiewicz Games	Examples	Results
	●00000	00000	000000000000000000000000000000000000000

OUTLINE

Łukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results Theorem Best Response Sets Equilibrium Formula Satisfiable Games

Łukasiewicz Games	Examples	Results
0●0000	00000	000000000000000000000000000000000000
Overview		

► We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.

Łukasiewicz Games	Examples	Results
O●OOOO	00000	000000000000000000000000000000000000
Overview		

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].

< □ > < @ > < E > < E > E のQ@

Łukasiewicz Games	Examples	Results
0●0000	00000	000000000000000000000000000000000000

OVERVIEW

- ► We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Łukasiewicz Games 0●0000	Examples 00000	Results 000000000000000000000000000000000000

OVERVIEW

- ► We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
- The actions available to players correspond to valuations that can be made to variables under their control.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Łukasiewicz Games 0●0000	Examples 00000	Results 000000000000000000000000000000000000

OVERVIEW

- ► We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
- The actions available to players correspond to valuations that can be made to variables under their control.
- The use of Łukasiewicz logics makes it possible to more naturally represent much richer payoff functions for players.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ŁUKASIEWICZ AND GAMES

► Classic Game Theory:

- Non-cooperative games:
 - ► Łukasiewicz Games on Ł^c_k [M. & Wooldridge]
 - ▶ Constant Sum Łukasiewicz Games on L_∞ [Kroupa & Majer]
- Cooperative games: MV-coalitions [Kroupa]
- ► Game-Theoretic Semantics:
 - ► Dialogue games [Fermüller, Giles, ...]
 - ► Evaluation games [Cintula & Majer]
 - Ulam games [Mundici]

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

A Łukasiewicz game \mathcal{G} on \mathbb{L}_k^c is a tuple

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle$

where:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

A Łukasiewicz game \mathcal{G} on \mathcal{L}_k^c is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

where:

1. $P = \{P_1, ..., P_n\}$ is a set of *players*;

A Łukasiewicz game \mathcal{G} on \mathbb{L}_k^c is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle$$

where:

1.
$$P = \{P_1, ..., P_n\}$$
 is a set of *players*;

2. $V = \{p_1, p_2, ...\}$ is a finite set of propositional variables;

A Łukasiewicz game \mathcal{G} on \mathbb{L}_k^c is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle$$

where:

- 1. $P = \{P_1, ..., P_n\}$ is a set of *players*;
- 2. $V = \{p_1, p_2, ...\}$ is a finite set of propositional variables;
- 3. $V_i \subseteq V$ is the set of propositional variables under control of player P_i , so that the sets V_i form a partition of V.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Łukasiewicz Games	Examples	Results
0000●0	00000	000000000000000000000000000000000000
_		

4. S_i is the strategy set for player *i* that includes all valuations $s_i : V_i \rightarrow L_k$ of the propositional variables in V_i , i.e.

$$\mathbf{S}_i = \{ s_i \mid s_i : \mathbf{V}_i \to L_k \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Łukasiewicz Games 0000●0	Examples 00000	Results 000000000000000000000000000000000000

4. S_i is the strategy set for player *i* that includes all valuations $s_i : V_i \rightarrow L_k$ of the propositional variables in V_i, i.e.

$$\mathbf{S}_i = \{ s_i \mid s_i : \mathbf{V}_i \to L_k \}.$$

5. $\phi_i(p_1, \ldots, p_t)$ is an \mathcal{L}_k^c -formula, built from variables in V, whose associated function

$$f_{\phi_i}: (L_k)^t \to L_k$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

corresponds to the *payoff function* of P_i , and whose value is determined by the valuations in $\{S_1, ..., S_n\}$.

Łukasiewicz Games 00000●	Examples 00000	Results 000000000000000000000000000000000000

► A tuple (s₁,...,s_n), with each s_i ∈ S_i, is called a *strategy combination*.

Łukasiewicz Games 00000●	Examples 00000	Results 000000000000000000000000000000000000

- ► A tuple (s₁,...,s_n), with each s_i ∈ S_i, is called a *strategy* combination.
- ► s_{-i} the set of strategies $\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}$ not including s_i .

Łukasiewicz Games 000000	Examples 00000	Results 000000000000000000000000000000000000

- ► A tuple (s₁,...,s_n), with each s_i ∈ S_i, is called a *strategy* combination.
- ► s_{-i} the set of strategies $\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}$ not including s_i .
- ► The strategy s_i for P_i is called a *best response* whenever, fixing s_{-i}, there exists no strategy s'_i such that

$$f_{\phi_i}(s_i, s_{-i}) \leq f_{\phi_i}(s'_i, s_{-i}).$$

Łukasiewicz Games	Examples	Results
00000	00000	000000000000000000000000000000000000000

- ► A tuple (s₁,...,s_n), with each s_i ∈ S_i, is called a *strategy* combination.
- ► s_{-i} the set of strategies $\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}$ not including s_i .
- ► The strategy s_i for P_i is called a *best response* whenever, fixing s_{-i}, there exists no strategy s'_i such that

$$f_{\phi_i}(s_i,s_{-i}) \leq f_{\phi_i}(s'_i,s_{-i}).$$

A strategy combination (s^{*}₁,...,s^{*}_n) is called a *pure strategy Nash Equilibrium* whenever s^{*}_i is a best response to s^{*}_{-i}, for each 1 ≤ i ≤ n.

OUTLINE

Lukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results Theorem Best Response Sets Equilibrium Formula Satisfiable Games

Łukasiewicz Games	Examples	Results
000000	●0000	000000000000000000000000000000000000000

 Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.

Łukasiewicz Games	Examples	Results
000000	●0000	000000000000000000000000000000000000000

 Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.

 Their luggage gets damaged and all the items acquired are broken.

Łukasiewicz Games	Examples	Results
000000	●0000	000000000000000000000000000000000000000

 Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Their luggage gets damaged and all the items acquired are broken.
- The airline promises a refund for the inconvenience

Łukasiewicz Games	Examples	Results
000000	●0000	000000000000000000000000000000000000000

- Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.
- Their luggage gets damaged and all the items acquired are broken.
- The airline promises a refund for the inconvenience
- Both travelers must write on a piece of paper a number between 0 and 100 corresponding to the cost of the antiques.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

• If they both write the same number *x*, they both receive x - 1.

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- If they both write the same number *x*, they both receive x 1.
- ► If they write different numbers, say *x* < *y*, the one playing *x* will receive *x* + 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- If they both write the same number *x*, they both receive x 1.
- ► If they write different numbers, say *x* < *y*, the one playing *x* will receive *x* + 2.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• The other player will receive x - 2.

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- If they both write the same number *x*, they both receive x 1.
- ► If they write different numbers, say *x* < *y*, the one playing *x* will receive *x* + 2.
- The other player will receive x 2.
- Travelers' payoff is given by the functions:

$$f_1(x,y) = \begin{cases} \max(x-1,0) & x=y \\ \min(\min(x,y)+2,100) & x$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 - のへで

Łukasiewicz Games	Examples	Results
000000	0000	000000000000000000000000000000000000000

TRAVELER'S DILEMMA: PAYOFF MATRIX

	0	1	2	3		97	98	99	100
0	0,0	2,0	2,0	2,0		2,0	2,0	2,0	2,0
1	0,2	0,0	3,0	3,0		3,0	3,0	3,0	3,0
2	0,2	0,3	1,1	4,0		4,0	4,0	4,0	4,0
3	0,2	0,3	0,4	2,2		5,0	4,0	4,0	4,0
	:	:	:	:	· .	:	:	:	:
97	0,2	0,3	0,4	0,5		96, 96	99, 95	99,95	99, 95
98	0,2	0,3	0,4	0,5		95,99	97,97	100,96	100,96
99	0,2	0,3	0,4	0,5		95, 99	96, 100	98, 98	100,97
100	0,2	0,3	0,4	0,5		95, 99	96,100	97,100	99,99

T2

T1

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

TRAVELER'S DILEMMA AS A ŁUKASIEWICZ GAME OVER L_{100}^c

Let

$$\mathcal{G} = \langle \{\text{T1}, \text{T2}\}, \{p, q\}, \{p\}_1, \{q\}_2, \{\phi_1(p, q), \phi_2(p, q)\} \rangle,$$

where the payoff formulas are:

$$\begin{array}{ll} \phi_1(p,q) & := & \left(\Delta\left(p\leftrightarrow q\right)\wedge\left(p\ominus\overline{\frac{1}{100}}\right)\right)\vee\left(\neg\Delta\left(q\rightarrow p\right)\wedge\left(p\ominus\overline{\frac{2}{100}}\right)\right)\vee\\ & \left(\neg\Delta\left(p\rightarrow q\right)\wedge\left(q\oplus\overline{\frac{2}{100}}\right)\right) \end{array}, \end{array}$$

$$\begin{split} \phi_2(p,q) &:= & \left(\Delta \left(p \leftrightarrow q \right) \land \left(p \ominus \overline{\frac{1}{100}} \right) \right) \lor \left(\neg \Delta \left(p \to q \right) \land \left(q \ominus \overline{\frac{2}{100}} \right) \right) \lor \\ & \left(\neg \Delta \left(q \to p \right) \land \left(p \oplus \overline{\frac{2}{100}} \right) \right) \end{split} ,$$

< □ > < @ > < E > < E > E のQ@

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OTHER EXAMPLES

- ► Auctions.
- ► Coordination Games.

Examples

00000

- Matching Pennies.
- ► Weak-Link Games.

000000 0000000000000000000000000000000	Łukasiewicz Games	Examples	Results
	000000	00000	•••••••••••••••••••••••••••••••••

OUTLINE

Lukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results Theorem

Best Response Sets Equilibrium Formula Satisfiable Games

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

Let \mathcal{G} be any Łukasiewicz game on \mathbb{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathbb{L}_k^c so that the following statements are equivalent:

Let \mathcal{G} be any Łukasiewicz game on \mathbb{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathbb{L}_k^c so that the following statements are equivalent:

1. ${\mathcal G}$ admits a pure strategy Nash Equilibrium

Let \mathcal{G} be any Łukasiewicz game on \mathbb{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathbb{L}_k^c so that the following statements are equivalent:

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- 1. \mathcal{G} admits a pure strategy Nash Equilibrium
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.

Let \mathcal{G} be any Łukasiewicz game on \mathbb{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathbb{L}_k^c so that the following statements are equivalent:

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- 1. \mathcal{G} admits a pure strategy Nash Equilibrium
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.
- 3. $\mathcal{E}_{\mathcal{G}}$ is satisfiable.
MAIN THEOREM

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathcal{L}_k^c so that the following statements are equivalent:

- 1. \mathcal{G} admits a pure strategy Nash Equilibrium
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.
- 3. $\mathcal{E}_{\mathcal{G}}$ is satisfiable.
- 4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G} .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

000000 00000 000 00000	000000000000000000000000000000000000000

OUTLINE

Łukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results

Theorem Best Response Sets

Equilibrium Formula Satisfiable Games

NORMALIZED GAMES I

► Two games

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle \text{ and } \mathcal{G}' = \langle \mathsf{P}', \mathsf{V}', \{\mathsf{V}'_i\}, \{\mathsf{S}'_i\}, \{\phi'_i\}\rangle$

are equivalent whenever:

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

NORMALIZED GAMES I

► Two games

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle \text{ and } \mathcal{G}' = \langle \mathsf{P}', \mathsf{V}', \{\mathsf{V}'_i\}, \{\mathsf{S}'_i\}, \{\phi'_i\}\rangle$

are equivalent whenever:

1.
$$P = P'$$
,
2. $V = V'$,
3. For each *i*, $V_i = V'_i$ and $S_i = S'_i$,
4. (s_1^*, \dots, s_n^*) is a NE for \mathcal{G} if and only if (s_1^*, \dots, s_n^*) is a NE for \mathcal{G}' .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NORMALIZED GAMES I

► Two games

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle \quad \text{and} \quad \mathcal{G}' = \langle \mathsf{P}', \mathsf{V}', \{\mathsf{V}'_i\}, \{\mathsf{S}'_i\}, \{\phi'_i\}\rangle$

are equivalent whenever:

1.
$$P = P'$$
,
2. $V = V'$,
3. For each *i*, $V_i = V'_i$ and $S_i = S'_i$,
4. (s_1^*, \dots, s_n^*) is a NE for \mathcal{G} if and only if (s_1^*, \dots, s_n^*) is a NE for \mathcal{G}' .

► A game G is *normalized* whenever each payoff formula φ_i(p₁,..., p_m) contains all the variables from V.

NORMALIZED GAMES II

• An \mathbb{L}_k^c -formula $\phi(p_1, \dots, p_w)$ has an *equivalent extension* in $\{q_1, \dots, q_v\}$ if there exists a formula

 $\phi^{\sharp}(p_1,\ldots,p_w,q_1,\ldots,q_v)$

such that, for every $\{a_1, \ldots, a_w\} \in L_k$

$$f_{\phi}(a_1,\ldots,a_w)=f_{\phi}^{\sharp}(a_1,\ldots,a_w,b_1,\ldots,b_v)$$

for all $\{b_1,\ldots,b_v\} \in L_k$.

NORMALIZED GAMES II

• An L_k^c -formula $\phi(p_1, \ldots, p_w)$ has an *equivalent extension* in $\{q_1, \ldots, q_v\}$ if there exists a formula

 $\phi^{\sharp}(p_1,\ldots,p_w,q_1,\ldots,q_v)$

such that, for every $\{a_1, \ldots, a_w\} \in L_k$

$$f_{\phi}(a_1,\ldots,a_w) = f_{\phi}^{\sharp}(a_1,\ldots,a_w,b_1,\ldots,b_v)$$

for all $\{b_1,\ldots,b_v\} \in L_k$.

► Every \mathbf{L}_k^c -formula $\phi(p_1, \dots, p_w)$ has an equivalent extension in $\{q_1, \dots, q_v\}$ by taking

$$\phi(p_1,\ldots,p_w)\oplus \bigoplus_{j=1}^v (q_j\odot \neg q_j).$$

・ロト・西ト・ヨト・ヨー もくの

NORMALIZED GAMES II

• An L_k^c -formula $\phi(p_1, \ldots, p_w)$ has an *equivalent extension* in $\{q_1, \ldots, q_v\}$ if there exists a formula

 $\phi^{\sharp}(p_1,\ldots,p_w,q_1,\ldots,q_v)$

such that, for every $\{a_1, \ldots, a_w\} \in L_k$

$$f_{\phi}(a_1,\ldots,a_w) = f_{\phi}^{\sharp}(a_1,\ldots,a_w,b_1,\ldots,b_v)$$

for all $\{b_1,\ldots,b_v\} \in L_k$.

► Every \mathbf{L}_k^c -formula $\phi(p_1, \dots, p_w)$ has an equivalent extension in $\{q_1, \dots, q_v\}$ by taking

$$\phi(p_1,\ldots,p_w)\oplus \bigoplus_{j=1}^v (q_j\odot \neg q_j).$$

► Every game is equivalent to a normalized game.

BEST RESPONSE SETS

• We assume that every game is normalized.

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

BEST RESPONSE SETS

- We assume that every game is normalized.
- For each *i*, let $\vec{x_i}$ be tuple of variables controlled by *i*.

Best Response Sets

- We assume that every game is normalized.
- For each *i*, let $\vec{x_i}$ be tuple of variables controlled by *i*.
- The slice of f_{ϕ_i} at s_{-i} , denoted as

 $\sigma_{s_{-1}}(f_{\phi_i}),$

is the function

 $f_{\phi_i}(\vec{x}_i, s_{-1}).$

BEST RESPONSE SETS

- We assume that every game is normalized.
- For each *i*, let $\vec{x_i}$ be tuple of variables controlled by *i*.
- The slice of f_{ϕ_i} at s_{-i} , denoted as

 $\sigma_{s_{-1}}(f_{\phi_i}),$

is the function

$$f_{\phi_i}(\vec{x}_i, s_{-1}).$$

► The set

$$\mathsf{B}_{i} = \left\{ (s_{i}, s_{-i}) \mid \operatorname*{argmax}_{s_{i}^{t} \in \mathsf{S}_{i}} (\sigma_{s_{-i}}(f_{\phi_{i}})) = s_{i} \right\},$$

is called the *best response set* for *i*.

Eukasiewicz Games Examples	Results
000000 00000	000000000000000000000000000000000000000

EXAMPLE

Take the game

 $\mathcal{G} = \langle \{A1, A2\}, \{p, q\}, \{p\}_1, \{q\}_2, \{\phi_1(p, q), \phi_2(p, q)\} \rangle,$

where

$$\phi_1(p,q) \quad := \quad (p \to q), \qquad \quad \phi_2(p,q) \quad := \quad (q \to p),$$

and their associated functions are

$$f_{\phi_1}(x,y) = \min(1-x+y,1)$$
 $f_{\phi_2}(x,y) = \min(1-y+x,1).$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EXAMPLE: PAYOFF MATRIX

				-	-			
	0	1	2	3		8	9	10
0	10, 10	10,9	10,8	10,7		10, 2	10, 1	10,0
1	9,10	10, 10	10,9	10,8		10, 3	10, 2	10, 1
2	8,10	9,10	10, 10	10,9		10,4	10,3	10, 2
3	7,10	8,10	9,10	10, 10		10,5	10,4	10, 3
÷	÷	÷	÷	÷	·	÷	÷	÷
8	2, 10	3,10	4,10	5,10		10, 10	10,9	10,8
9	1, 10	2,10	3, 10	4,10		9,10	10, 10	10,9
10	0,10	1,10	2,10	3,10		8,10	9,10	10, 10

T2

T1

EXAMPLE: f_{ϕ_1}

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Results

Example: The slice of f_{ϕ_1} at 0

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Łukasiewicz Games 000000

Example: The slice of f_{ϕ_1} at 0.1

< □ > < @ > < E > < E > E のQ@

Example: The slice of f_{ϕ_1} at 0.2

< □ > < @ > < E > < E > E のQ@

Results

Example: The slice of f_{ϕ_1} at 0.3

< □ > < @ > < E > < E > E のQ@

 $\{(0,0)\}$

 $\{(0,0),(0,0.1),(0.1,0.1)\}$

 $\{(0,0), (0,0.1), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2)\}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

 $\{(0,0), (0,0.1), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2), (0,0.3), (0.1,0.3), (0.2,0.3), (0.3,0.3)\}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

EXAMPLE: INTERSECTION OF BEST RESPONSE SETS

у

х

BEST RESPONSE SETS AND EQUILIBRIA

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathcal{L}_k^c so that the following statements are equivalent:

- 1. G admits a pure strategy Nash Equilibrium.
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.
- 3. $\mathcal{E}_{\mathcal{G}}$ is satisfiable.
- 4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OUTLINE

Łukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results

Theorem Best Response Sets Equilibrium Formula Satisfiable Games

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

► We want to define an Ł^c_k-formula E_G whose satisfiability encodes the existence of equilibria.

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- ► We want to define an L^c_k-formula E_G whose satisfiability encodes the existence of equilibria.
- ► *E*_{*G*} should not require additional constants (apart from the payoff formulas).

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- ► We want to define an Ł^c_k-formula E_G whose satisfiability encodes the existence of equilibria.
- ► *E*_{*G*} should not require additional constants (apart from the payoff formulas).
- ► For every variable *p* and every valuation $v : \{p\} \rightarrow L_k$ there exists a formula $\psi(p)$ such that

$$v(p) = rac{i}{k}$$
 IFF $v(\psi(p)) = 1$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Łukasiewicz Games	Examples	Results
000000	00000	000000000000000000000000000000000000000

- ► We want to define an L^c_k-formula E_G whose satisfiability encodes the existence of equilibria.
- ► *E*_{*G*} should not require additional constants (apart from the payoff formulas).
- ► For every variable *p* and every valuation $v : \{p\} \rightarrow L_k$ there exists a formula $\psi(p)$ such that

$$v(p) = \frac{i}{k}$$
 IFF $v(\psi(p)) = 1.$

► This means that every strategy combination (s₁,..., s_n) can be encoded by a formula ψ(p₁,..., p_n) so that

$$f_{\psi}(s'_1,\ldots,s'_n) = 1$$
 IFF $s_i = s'_i$

for all *i*.

$$\mathcal{E}_{\mathcal{G}} := \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \right. \\ \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \\ \left. \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i-1}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots, x_{1_{i-1}}, \dots, x_{m_i-1}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \right] \right] \right]$$

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\mathcal{E}_{\mathcal{G}} := \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \right. \\ \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \\ \left. \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i-1}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots, x_{1_{i-1}}, \dots, x_{m_i-1}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \right] \right] \right]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathcal{E}_{\mathcal{G}} := \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \right. \\ \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \\ \left. \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i} \right) \rightarrow \right. \\ \left. \left. \phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_{i+1}}, \dots, x_{1_{i-1}}, \dots, x_{m_i}, \dots \right) \right] \right] \right]$$

$$\begin{split} \mathcal{E}_{\mathcal{G}} &:= \ \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \right. \\ & \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \right. \\ & \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ & \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i} \right) \rightarrow \\ & \left. \phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ & \left. x_{1_{i+1}}, \dots, x_{m_{i+1}}, \dots, x_{1_n}, \dots, x_{m_n} \right) \right) \right] \right] \end{split}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} \mathcal{E}_{\mathcal{G}} &:= \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \\ & \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \\ & \left(\phi_i (x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \\ & x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i}) \rightarrow \\ & \phi_i (x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \\ & x_{1_{i+1}}, \dots, x_{m_{i+1}}, \dots, x_{1_n}, \dots, x_{m_n})) \Big] \Big] \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} \mathcal{E}_{\mathcal{G}} &:= \ \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} \left(x_{1_i} \right) \wedge \dots \wedge \psi_{\alpha_{m_i}} \left(x_{m_i} \right) \right) \wedge \right. \\ & \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \right. \\ & \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ & \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i} \right) \rightarrow \\ & \left. \phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ & \left. x_{1_{i+1}}, \dots, x_{m_{i+1}}, \dots, x_{1_n}, \dots, x_{m_n} \right) \right) \right] \right] \end{split}$$

< ロ ト < 団 ト < 三 ト < 三 ト 、 三 の へ ()</p>
The Formula $\mathcal{E}_{\mathcal{G}}$ (II)

$$\mathcal{E}_{\mathcal{G}} := \bigvee_{\vec{s} \in (L_k)^{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_{1_i}} (x_{1_i}) \wedge \dots \wedge \psi_{\alpha_{m_i}} (x_{m_i}) \right) \wedge \right. \\ \left. \bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_{1_i}} \left(y_{1_i}^{\beta_{1_i}} \right) \wedge \dots \wedge \psi_{\beta_{m_i}} \left(y_{m_i}^{\beta_{m_i}} \right) \wedge \right. \\ \left. \left. \left(\phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, y_{1_i}^{\beta_{1_i}}, \dots, y_{m_i}^{\beta_{m_i}}, \dots \right. \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_i+1}, \dots x_{1_n}, \dots, x_{m_i} \right) \rightarrow \right. \\ \left. \phi_i(x_{1_1}, \dots, x_{m_1}, \dots, x_{1_{i-1}}, \dots, x_{m_{i-1}}, \dots, x_{1_i}, \dots, x_{m_i}, \dots \right. \\ \left. x_{1_{i+1}}, \dots, x_{m_{i+1}}, \dots, x_{1_{i-1}}, \dots, x_{m_i}, \dots \right] \right] \right]$$

SATISFIABILITY AND EQUILIBRIA

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathcal{L}_k^c so that the following statements are equivalent:

- 1. G admits a pure strategy Nash Equilibrium.
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.
- 3. $\mathcal{E}_{\mathcal{G}}$ is satisfiable.
- 4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G} .

OUTLINE

Lukasiewicz Games Basic Definitions

Examples Traveler's Dilemma

Results

Theorem Best Response Sets Equilibrium Formula Satisfiable Games

SATISFIABLE GAMES (I)

► A game *G* is called *satisfiable* if there exists a strategy combination

 (s_1,\ldots,s_n)

such that for every *i*, ϕ_i is satisfied under (s_1, \ldots, s_n) .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SATISFIABLE GAMES (I)

► A game *G* is called *satisfiable* if there exists a strategy combination

 (s_1,\ldots,s_n)

such that for every *i*, ϕ_i is satisfied under (s_1, \ldots, s_n) .

• Every satisfiable game admits a NE.

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

SATISFIABLE GAMES (I)

► A game *G* is called *satisfiable* if there exists a strategy combination

 (s_1,\ldots,s_n)

such that for every *i*, ϕ_i is satisfied under (s_1, \ldots, s_n) .

- Every satisfiable game admits a NE.
- ► Every φ_i is satisfiable under (s₁,...,s_n), so no player can unilaterally improve her payoff.

SATISFIABLE GAMES (II)

► Take the first-order theory Th(*L*_k) of the finite MV-chain *L*_k in the language of MV-algebras.

SATISFIABLE GAMES (II)

- ► Take the first-order theory Th(*L*_k) of the finite MV-chain *L*_k in the language of MV-algebras.
- ► We want to show that there exists a sentence *E*_{*G*} that encodes the existence of equilibria.

SATISFIABLE GAMES (II)

- ► Take the first-order theory Th(*L*_k) of the finite MV-chain *L*_k in the language of MV-algebras.
- ► We want to show that there exists a sentence *E*_{*G*} that encodes the existence of equilibria.
- Define the formula $E_{\mathcal{G}}$:

$$\exists \vec{x}_1, \ldots, \vec{x}_n \forall \vec{y}_1, \ldots, \vec{y}_n \quad \bigcap_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \right)$$

where each \vec{x}_i , \vec{y}_i refers to the tuple of variables assigned to player *i*.

SATISFIABLE GAMES (II)

- ► Take the first-order theory Th(*L*_k) of the finite MV-chain *L*_k in the language of MV-algebras.
- ► We want to show that there exists a sentence *E*_{*G*} that encodes the existence of equilibria.
- Define the formula $E_{\mathcal{G}}$:

$$\exists \vec{x}_1, \dots, \vec{x}_n \forall \vec{y}_1, \dots, \vec{y}_n \quad \bigcap_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \right)$$

where each \vec{x}_i , \vec{y}_i refers to the tuple of variables assigned to player *i*.

• A game \mathcal{G} admits a NE iff $E_{\mathcal{G}}$ holds in Th(L_k).

SATISFIABLE GAMES (III)

• $E_{\mathcal{G}}$ holds in Th(L_k) iff the set defined by $E'_{\mathcal{G}}$

$$\forall \vec{y}_1, \dots, \vec{y}_n \quad \prod_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \le \phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \right)$$

is not empty.

SATISFIABLE GAMES (III)

• $E_{\mathcal{G}}$ holds in Th(L_k) iff the set defined by $E'_{\mathcal{G}}$

$$\forall \vec{y}_1, \dots, \vec{y}_n \quad \prod_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \le \phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \right)$$

is not empty.

• $Th(L_k)$ has quantifier elimination in the language of MV algebras

SATISFIABLE GAMES (III)

• $E_{\mathcal{G}}$ holds in Th(L_k) iff the set defined by $E'_{\mathcal{G}}$

$$\forall \vec{y}_1, \dots, \vec{y}_n \quad \prod_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \le \phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \right)$$

is not empty.

- $Th(L_k)$ has quantifier elimination in the language of MV algebras
- ► There exists a quantifier-free E^{free}_G logically equivalent to E'_G that defines the same set as E'_G.

SATISFIABLE GAMES (III)

• $E_{\mathcal{G}}$ holds in $\mathsf{Th}(L_k)$ iff the set defined by $E'_{\mathcal{G}}$

$$\forall \vec{y}_1, \dots, \vec{y}_n \quad \prod_{i=1}^n \quad \left(\phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \le \phi_i(\vec{x}_1, \dots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \dots, \vec{x}_n) \right)$$

is not empty.

- $\mathsf{Th}(L_k)$ has quantifier elimination in the language of MV algebras
- ► There exists a quantifier-free E^{free}_G logically equivalent to E'_G that defines the same set as E'_G.
- There exists an L_k^c -formula ϵ_G that is satisfiable off so is E_G^{free} .

SATISFIABLE GAMES (IV)

► Given a game

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\}\rangle$

SATISFIABLE GAMES (IV)

► Given a game

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

$$\mathcal{G}' = \langle \mathsf{P}', \mathsf{V}', \{\mathsf{V}'_i\}, \{\mathsf{S}'_i\}, \{\phi'_i\}\rangle$$

where:

SATISFIABLE GAMES (IV)

► Given a game

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

$$\mathcal{G}' = \langle \mathsf{P}', \mathsf{V}', \{\mathsf{V}'_i\}, \{\mathsf{S}'_i\}, \{\phi'_i\}\rangle$$

where:

1.
$$P = P'$$
,
2. $V = V'$,
3. For each *i*, $V_i = V'_i$ and $S_i = S'_i$,
4. $\phi'_i := \epsilon_{\mathcal{G}} \lor \phi_i$.

SATISFIABLE GAMES (IV)

► Given a game

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

$$\mathcal{G}' = \langle \mathsf{P}',\mathsf{V}',\{\mathsf{V}'_i\},\{\mathsf{S}'_i\},\{\phi'_i\}\rangle$$

where:

1.
$$P = P'$$
,
2. $V = V'$,
3. For each *i*, $V_i = V'_i$ and $S_i = S'_i$,
4. $\phi'_i := \epsilon_g \lor \phi_i$.

► *G*′ is a normalized satisfiable game equivalent to *G*.

SATISFIABLE GAMES AND EQUILIBRIA

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c . Then there exists a formula $\mathcal{E}_{\mathcal{G}}$ of \mathcal{L}_k^c so that the following statements are equivalent:

- 1. G admits a pure strategy Nash Equilibrium.
- 2. $\bigcap_{i=1}^{n} \mathsf{B}_{i} \neq \emptyset$.
- 3. $\mathcal{E}_{\mathcal{G}}$ is satisfiable.
- 4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G} .

WORK IN PROGRESS

- Games with costs and efficiency.
- ► Classes of games.
- Complexity and tractable games.
- Games with external influence.
- Games with mixed strategies.
- ► And more...

THANKS!

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで