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Łukasiewicz Games Examples Results

OVERVIEW

I We introduce a compact representation of non-cooperative
games based on finite-valued Łukasiewicz logics.

I Łukasiewicz Games are inspired by, and greatly extend, Boolean
games [Herrenstein et al. 2001].

I In Boolean games each individual player strives for the
satisfaction of a goal, represented as a classical Boolean formula
that encodes her payoff;

I The actions available to players correspond to valuations that
can be made to variables under their control.

I The use of Łukasiewicz logics makes it possible to more
naturally represent much richer payoff functions for players.
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ŁUKASIEWICZ AND GAMES

I Classic Game Theory:
I Non-cooperative games:

I Łukasiewicz Games on Łc
k [M. & Wooldridge]

I Constant Sum Łukasiewicz Games on Ł∞ [Kroupa & Majer]

I Cooperative games: MV-coalitions [Kroupa]

I Game-Theoretic Semantics:

I Dialogue games [Fermüller, Giles, . . . ]
I Evaluation games [Cintula & Majer]
I Ulam games [Mundici]
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DEFINITION I

A Łukasiewicz game G on Łc
k is a tuple

G = 〈P,V, {Vi}, {Si}, {φi}〉

where:

1. P = {P1, . . . ,Pn} is a set of players;

2. V = {p1, p2, . . . } is a finite set of propositional variables;

3. Vi ⊆ V is the set of propositional variables under control of
player Pi, so that the sets Vi form a partition of V.
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DEFINITION II

4. Si is the strategy set for player i that includes all valuations
si : Vi → Lk of the propositional variables in Vi, i.e.

Si = {si | si : Vi → Lk}.

5. φi(p1, . . . , pt) is an Łc
k-formula, built from variables in V, whose

associated function
fφi : (Lk)

t → Lk

corresponds to the payoff function of Pi, and whose value is
determined by the valuations in {S1, . . . ,Sn}.
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EQUILIBRIA

I A tuple (s1, . . . , sn), with each si ∈ Si, is called a strategy
combination.

I s−i the set of strategies {s1, . . . , si−1, si+1, . . . , sn} not including si.

I The strategy si for Pi is called a best response whenever, fixing s−i,
there exists no strategy s′i such that

fφi(si, s−i) ≤ fφi(s
′
i , s−i).

I A strategy combination (s?1 , . . . , s
?
n) is called a pure strategy Nash

Equilibrium whenever s?i is a best response to s?−i, for each
1 ≤ i ≤ n.
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TRAVELER’S DILEMMA I [BASU 1994]

I Two travelers fly back home from a trip to a remote island where
they bought exactly the same antiques.

I Their luggage gets damaged and all the items acquired are
broken.

I The airline promises a refund for the inconvenience

I Both travelers must write on a piece of paper a number between
0 and 100 corresponding to the cost of the antiques.
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TRAVELER’S DILEMMA II [BASU 1994]

I If they both write the same number x, they both receive x− 1.

I If they write different numbers, say x < y, the one playing x will
receive x + 2.

I The other player will receive x− 2.

I Travelers’ payoff is given by the functions:

f1(x, y) =

 max (x − 1, 0) x = y
min (min(x, y) + 2, 100) x < y
max (min(x, y) − 2, 0) y < x

; f2(x, y) =

 max (x − 1, 0) x = y
min (min(x, y) + 2, 100) y < x
max (min(x, y) − 2, 0) x < y

.
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TRAVELER’S DILEMMA: PAYOFF MATRIX

T1

T2
0 1 2 3 · · · 97 98 99 100

0 0, 0 2, 0 2, 0 2, 0 · · · 2, 0 2, 0 2, 0 2, 0
1 0, 2 0, 0 3, 0 3, 0 · · · 3, 0 3, 0 3, 0 3, 0
2 0, 2 0, 3 1, 1 4, 0 · · · 4, 0 4, 0 4, 0 4, 0
3 0, 2 0, 3 0, 4 2, 2 · · · 5, 0 4, 0 4, 0 4, 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
97 0, 2 0, 3 0, 4 0, 5 · · · 96, 96 99, 95 99, 95 99, 95
98 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 97, 97 100, 96 100, 96
99 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 96, 100 98, 98 100, 97

100 0, 2 0, 3 0, 4 0, 5 · · · 95, 99 96, 100 97, 100 99, 99
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TRAVELER’S DILEMMA AS A ŁUKASIEWICZ GAME

OVER Łc
100

Let
G = 〈{T1,T2}, {p, q}, {p}1, {q}2, {φ1(p, q), φ2(p, q)}〉,

where the payoff formulas are:

φ1(p, q) :=
(

∆ (p↔ q) ∧
(

p	 1
100

))
∨
(
¬∆ (q→ p) ∧

(
p	 2

100

))
∨(

¬∆ (p→ q) ∧
(

q⊕ 2
100

)) ,

φ2(p, q) :=
(

∆ (p↔ q) ∧
(

p	 1
100

))
∨
(
¬∆ (p→ q) ∧

(
q	 2

100

))
∨(

¬∆ (q→ p) ∧
(

p⊕ 2
100

)) ,
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OTHER EXAMPLES

I Auctions.

I Coordination Games.

I Matching Pennies.

I Weak-Link Games.
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MAIN THEOREM

Let G be any Łukasiewicz game on Łc
k. Then there exists a formula EG

of Łc
k so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium

2.
⋂n

i=1 Bi 6= ∅.

3. EG is satisfiable.

4. There exists a satisfiable normalized game G′ equivalent to G.
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NORMALIZED GAMES I

I Two games

G = 〈P,V, {Vi}, {Si}, {φi}〉 and G′ = 〈P′,V′, {V′i}, {S′i}, {φ′i}〉

are equivalent whenever:

1. P = P′,
2. V = V′,
3. For each i, Vi = V′

i and Si = S′
i ,

4. (s?1 , . . . , s
?
n) is a NE for G if and only if (s?1 , . . . , s

?
n) is a NE for G′.

I A game G is normalized whenever each payoff formula
φi(p1, . . . , pm) contains all the variables from V.
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NORMALIZED GAMES II
I An Łc

k-formula φ(p1, . . . , pw) has an equivalent extension in
{q1, . . . , qv} if there exists a formula

φ](p1, . . . , pw, q1, . . . , qv)

such that, for every {a1, . . . , aw} ∈ Lk

fφ(a1, . . . , aw) = f ]φ(a1, . . . , aw, b1, . . . , bv)

for all {b1, . . . , bv} ∈ Lk.

I Every Łc
k-formula φ(p1, . . . , pw) has an equivalent extension in

{q1, . . . , qv} by taking

φ(p1, . . . , pw)⊕
v⊕

j=1

(
qj � ¬qj

)
.

I Every game is equivalent to a normalized game.
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BEST RESPONSE SETS

I We assume that every game is normalized.

I For each i, let ~xi be tuple of variables controlled by i.

I The slice of fφi at s−i, denoted as

σs−1(fφi),

is the function
fφi(~xi, s−1).

I The set

Bi =

{
(si, s−i) | argmax

s′i∈Si

(σs−i(fφi)) = si

}
,

is called the best response set for i.
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EXAMPLE

Take the game

G = 〈{A1,A2}, {p, q}, {p}1, {q}2, {φ1(p, q), φ2(p, q)}〉,

where

φ1(p, q) := (p→ q), φ2(p, q) := (q→ p),

and their associated functions are

fφ1(x, y) = min(1− x + y, 1) fφ2(x, y) = min(1− y + x, 1).
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EXAMPLE: PAYOFF MATRIX

T1

T2
0 1 2 3 · · · 8 9 10

0 10, 10 10, 9 10, 8 10, 7 · · · 10, 2 10, 1 10, 0
1 9, 10 10, 10 10, 9 10, 8 · · · 10, 3 10, 2 10, 1
2 8, 10 9, 10 10, 10 10, 9 · · · 10, 4 10, 3 10, 2
3 7, 10 8, 10 9, 10 10, 10 · · · 10, 5 10, 4 10, 3
...

...
...

...
...

. . .
...

...
...

8 2, 10 3, 10 4, 10 5, 10 · · · 10, 10 10, 9 10, 8
9 1, 10 2, 10 3, 10 4, 10 · · · 9, 10 10, 10 10, 9

10 0, 10 1, 10 2, 10 3, 10 · · · 8, 10 9, 10 10, 10
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EXAMPLE: fφ1

0
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EXAMPLE: THE SLICE OF fφ1 AT 0

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)



Łukasiewicz Games Examples Results

EXAMPLE: THE SLICE OF fφ1 AT 0.1

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)



Łukasiewicz Games Examples Results

EXAMPLE: THE SLICE OF fφ1 AT 0.2

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)



Łukasiewicz Games Examples Results

EXAMPLE: THE SLICE OF fφ1 AT 0.3

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)



Łukasiewicz Games Examples Results

EXAMPLE: DEFINING Bi

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)

{(0, 0)}



Łukasiewicz Games Examples Results

EXAMPLE: DEFINING Bi

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)

{(0, 0), (0, 0.1), (0.1, 0.1)}



Łukasiewicz Games Examples Results

EXAMPLE: DEFINING Bi

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)

{(0, 0), (0, 0.1), (0.1, 0.1), (0, 0.2), (0.1, 0.2), (0.2, 0.2)}



Łukasiewicz Games Examples Results

EXAMPLE: DEFINING Bi

0
0.5

1 0

0.5

1
0

0.5

1

x
y

f φ
1
(x
,y
)

{(0, 0), (0, 0.1), (0.1, 0.1), (0, 0.2), (0.1, 0.2), (0.2, 0.2), (0, 0.3), (0.1, 0.3), (0.2, 0.3), (0.3, 0.3)}



Łukasiewicz Games Examples Results

EXAMPLE: INTERSECTION OF BEST RESPONSE SETS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y



Łukasiewicz Games Examples Results

BEST RESPONSE SETS AND EQUILIBRIA

Let G be any Łukasiewicz game on Łc
k. Then there exists a formula EG

of Łc
k so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium.

2.
⋂n

i=1 Bi 6= ∅.

3. EG is satisfiable.

4. There exists a satisfiable normalized game G′ equivalent to G.
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THE FORMULA EG (I)
I We want to define an Łc

k-formula EG whose satisfiability encodes
the existence of equilibria.

I EG should not require additional constants (apart from the payoff
formulas).

I For every variable p and every valuation v : {p} → Lk there exists
a formula ψ(p) such that

v(p) =
i
k

IFF v(ψ(p)) = 1.

I This means that every strategy combination (s1, . . . , sn) can be
encoded by a formula ψ(~p1, . . . ,~pn) so that

fψ(s′1, . . . , s
′
n) = 1 IFF si = s′i

for all i.
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THE FORMULA EG (II)

EG :=
∨

~s∈(Lk)
∑n

i=1 mi

[
n∧

i=1

(
ψα1i

(x1i ) ∧ · · · ∧ ψαmi
(xmi )

)
∧

n∧
i=1

[ ∧
si∈(Lk)

mi

[
ψβ1i

(
y
β1i
1i

)
∧ · · · ∧ ψβmi

(
y
βmi
mi

)
∧

(φi(x11 , . . . , xm1 , . . . , x1i−1 , . . . , xmi−1 , . . . , y
β1i
1i
, . . . , y

βmi
mi , . . .

x1i+1 , . . . , xmi+1 , . . . x1n , . . . , xmn )→

φi(x11 , . . . , xm1 , . . . , x1i−1 , . . . , xmi−1 , . . . , x1i , . . . , xmi , . . .

x1i+1 , . . . , xmi+1 , . . . x1n , . . . , xmn ))

]]]
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SATISFIABILITY AND EQUILIBRIA

Let G be any Łukasiewicz game on Łc
k. Then there exists a formula EG

of Łc
k so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium.

2.
⋂n

i=1 Bi 6= ∅.

3. EG is satisfiable.

4. There exists a satisfiable normalized game G′ equivalent to G.
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SATISFIABLE GAMES (I)

I A game G is called satisfiable if there exists a strategy combination

(s1, . . . .sn)

such that for every i, φi is satisfied under (s1, . . . .sn).

I Every satisfiable game admits a NE.

I Every φi is satisfiable under (s1, . . . .sn), so no player can
unilaterally improve her payoff.
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SATISFIABLE GAMES (II)

I Take the first-order theory Th(Lk) of the finite MV-chain Lk in the
language of MV-algebras.

I We want to show that there exists a sentence EG that encodes the
existence of equilibria.

I Define the formula EG :

∃~x1, . . . ,~xn∀~y1, . . . ,~yn
dn

i=1

(
φi(~x1, . . . ,~xi−1,~yi,~xi+1, . . . ,~xn) ≤
φi(~x1, . . . ,~xi−1,~xi,~xi+1, . . . ,~xn)

)
where each ~xi, ~yi refers to the tuple of variables assigned to
player i.

I A game G admits a NE iff EG holds in Th(Lk).
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SATISFIABLE GAMES (III)

I EG holds in Th(Lk) iff the set defined by E′G

∀~y1, . . . ,~yn
dn

i=1

(
φi(~x1, . . . ,~xi−1,~yi,~xi+1, . . . ,~xn) ≤
φi(~x1, . . . ,~xi−1,~xi,~xi+1, . . . ,~xn)

)
is not empty.

I Th(Lk) has quantifier elimination in the language of MV algebras

I There exists a quantifier-free Efree
G logically equivalent to E′G that

defines the same set as E′G .

I There exists an Łc
k-formula εG that is satisfiable off so is Efree

G .
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SATISFIABLE GAMES (IV)

I Given a game
G = 〈P,V, {Vi}, {Si}, {φi}〉

I Define a new game

G′ = 〈P′,V′, {V′i}, {S′i}, {φ′i}〉

where:
1. P = P′,
2. V = V′,
3. For each i, Vi = V′

i and Si = S′
i ,

4. φ′
i := εG ∨ φi.

I G′ is a normalized satisfiable game equivalent to G.
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WORK IN PROGRESS

I Games with costs and efficiency.

I Classes of games.

I Complexity and tractable games.

I Games with external influence.

I Games with mixed strategies.

I And more...
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THANKS!
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