ON ŁUKASIEWICZ GAMES

ENRICO MARCHIONI
Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier, France

MICHAEL WOOLDRIDGE
Department of Computer Science
University of Oxford, U.K.

ManyVal 2013
4-6 September 2013
Prague, Czech Republic
OUTLINE

Łukasiewicz Games
 Basic Definitions

Examples
 Traveler’s Dilemma

Results
 Theorem
 Best Response Sets
 Equilibrium Formula
 Satisfiable Games
OUTLINE

Łukasiewicz Games
Basic Definitions

Examples
Traveler’s Dilemma

Results
Theorem
Best Response Sets
Equilibrium Formula
Satisfiable Games
OVERVIEW

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
OVERVIEW

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.

- Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].
OVERVIEW

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.

- Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].

- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
OVERVIEW

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.
- Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
- The actions available to players correspond to valuations that can be made to variables under their control.
OVERVIEW

- We introduce a compact representation of non-cooperative games based on finite-valued Łukasiewicz logics.

- Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Herrenstein et al. 2001].

- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;

- The actions available to players correspond to valuations that can be made to variables under their control.

- The use of Łukasiewicz logics makes it possible to more naturally represent much richer payoff functions for players.
Łukasiewicz and Games

- Classic Game Theory:
 - Non-cooperative games:
 - Łukasiewicz Games on \(\mathcal{L}_k^c \) [M. & Wooldridge]
 - Constant Sum Łukasiewicz Games on \(\mathcal{L}_\infty \) [Kroupa & Majer]
 - Cooperative games: MV-coalitions [Kroupa]

- Game-Theoretic Semantics:
 - Dialogue games [Fermüller, Giles, …]
 - Evaluation games [Cintula & Majer]
 - Ulam games [Mundici]
DEFINITION I

A Łukasiewicz game G on $Ł^c_k$ is a tuple

$$G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle$$

where:
DEFINITION I

A Łukasiewicz game G on $Ł^c_k$ is a tuple

$$G = \langle \mathcal{P}, \mathcal{V}, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle$$

where:

1. $\mathcal{P} = \{P_1, \ldots, P_n\}$ is a set of players;
A Łukasiewicz game \(\mathcal{G} \) on \(\mathcal{L}_k^c \) is a tuple

\[
\mathcal{G} = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle
\]

where:

1. \(P = \{P_1, \ldots, P_n\} \) is a set of players;

2. \(V = \{p_1, p_2, \ldots\} \) is a finite set of propositional variables;
DEFINITION I

A Łukasiewicz game G on $Ł_k^c$ is a tuple

$$G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle$$

where:
1. $P = \{P_1, \ldots, P_n\}$ is a set of players;
2. $V = \{p_1, p_2, \ldots \}$ is a finite set of propositional variables;
3. $V_i \subseteq V$ is the set of propositional variables under control of player P_i, so that the sets V_i form a partition of V.

Definition II

4. S_i is the strategy set for player i that includes all valuations $s_i : V_i \rightarrow L_k$ of the propositional variables in V_i, i.e.

$$S_i = \{ s_i \mid s_i : V_i \rightarrow L_k \}.$$

Definition II

4. \(S_i \) is the strategy set for player \(i \) that includes all valuations \(s_i : V_i \rightarrow L_k \) of the propositional variables in \(V_i \), i.e.

\[
S_i = \{ s_i \mid s_i : V_i \rightarrow L_k \}.
\]

5. \(\phi_i(p_1, \ldots, p_t) \) is an \(\mathbb{L}^c_k \)-formula, built from variables in \(V \), whose associated function

\[
f_{\phi_i} : (L_k)^t \rightarrow L_k
\]

corresponds to the payoff function of \(P_i \), and whose value is determined by the valuations in \(\{ S_1, \ldots, S_n \} \).
EQUILIBRIA

- A tuple \((s_1, \ldots, s_n)\), with each \(s_i \in S_i\), is called a strategy combination.
EQUILIBRIA

- A tuple \((s_1, \ldots, s_n)\), with each \(s_i \in S_i\), is called a strategy combination.

- \(s_{-i}\) the set of strategies \(\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}\) not including \(s_i\).
EQUILIBRIA

- A tuple \((s_1, \ldots, s_n)\), with each \(s_i \in S_i\), is called a *strategy combination*.

- \(s_i\) the set of strategies \(\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}\) not including \(s_i\).

- The strategy \(s_i\) for \(P_i\) is called a *best response* whenever, fixing \(s_{-i}\), there exists no strategy \(s'_i\) such that

\[
f_{\phi_i}(s_i, s_{-i}) \leq f_{\phi_i}(s'_i, s_{-i}).
\]
EQUILIBRIA

▶ A tuple \((s_1, \ldots, s_n)\), with each \(s_i \in S_i\), is called a strategy combination.

▶ \(s_{-i}\) the set of strategies \(\{s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n\}\) not including \(s_i\).

▶ The strategy \(s_i\) for \(P_i\) is called a best response whenever, fixing \(s_{-i}\), there exists no strategy \(s'_i\) such that

\[
f_{\phi_i}(s_i, s_{-i}) \leq f_{\phi_i}(s'_i, s_{-i}).
\]

▶ A strategy combination \((s^*_1, \ldots, s^*_n)\) is called a pure strategy Nash Equilibrium whenever \(s^*_i\) is a best response to \(s^*_{-i}\), for each \(1 \leq i \leq n\).
OUTLINE

Łukasiewicz Games
 Basic Definitions

Examples
 Traveler’s Dilemma

Results
 Theorem
 Best Response Sets
 Equilibrium Formula
 Satisfiable Games
Traveler’s Dilemma I [Basu 1994]

- Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.
Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.

Their luggage gets damaged and all the items acquired are broken.
Traveler’s Dilemma I [Basu 1994]

- Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.
- Their luggage gets damaged and all the items acquired are broken.
- The airline promises a refund for the inconvenience.
Two travelers fly back home from a trip to a remote island where they bought exactly the same antiques.

Their luggage gets damaged and all the items acquired are broken.

The airline promises a refund for the inconvenience.

Both travelers must write on a piece of paper a number between 0 and 100 corresponding to the cost of the antiques.
Traveler’s Dilemma II [Basu 1994]

- If they both write the same number x, they both receive $x - 1$.
Traveler’s Dilemma II [Basu 1994]

- If they both write the same number x, they both receive $x - 1$.
- If they write different numbers, say $x < y$, the one playing x will receive $x + 2$.
Traveler's Dilemma II [Basu 1994]

- If they both write the same number x, they both receive $x - 1$.
- If they write different numbers, say $x < y$, the one playing x will receive $x + 2$.
- The other player will receive $x - 2$.

Travelers' payoff is given by the functions:

$$f_1(x, y) = \begin{cases}
\max(x - 1, 0) & \text{if } x = y \\
\min(\min(x, y) + 2, 100) & \text{if } y < x \\
\max(\min(x, y) - 2, 0) & \text{if } x < y
\end{cases}$$

$$f_2(x, y) = \begin{cases}
\max(x - 1, 0) & \text{if } x = y > 100 \\
\min(\min(x, y) + 2, 100) & \text{if } y < x \\
\max(\min(x, y) - 2, 0) & \text{if } x < y
\end{cases}$$
Traveler’s Dilemma II [Basu 1994]

- If they both write the same number x, they both receive $x - 1$.
- If they write different numbers, say $x < y$, the one playing x will receive $x + 2$.
- The other player will receive $x - 2$.
- Travelers’ payoff is given by the functions:

$$f_1(x, y) = \begin{cases}
\max(x - 1, 0) & x = y \\
\min(\min(x, y) + 2, 100) & x < y \\
\max(\min(x, y) - 2, 0) & y < x
\end{cases}$$

$$f_2(x, y) = \begin{cases}
\max(x - 1, 0) & x = y \\
\min(\min(x, y) + 2, 100) & y < x \\
\max(\min(x, y) - 2, 0) & x < y
\end{cases}$$
Traveler’s Dilemma: Payoff Matrix

<table>
<thead>
<tr>
<th>T1</th>
<th>0, 0</th>
<th>2, 0</th>
<th>2, 0</th>
<th>2, 0</th>
<th>...</th>
<th>2, 0</th>
<th>2, 0</th>
<th>2, 0</th>
<th>2, 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0, 0</td>
<td>2, 0</td>
<td>2, 0</td>
<td>2, 0</td>
<td>...</td>
<td>2, 0</td>
<td>2, 0</td>
<td>2, 0</td>
<td>2, 0</td>
</tr>
<tr>
<td>1</td>
<td>0, 2</td>
<td>0, 0</td>
<td>3, 0</td>
<td>3, 0</td>
<td>...</td>
<td>3, 0</td>
<td>3, 0</td>
<td>3, 0</td>
<td>3, 0</td>
</tr>
<tr>
<td>2</td>
<td>0, 2</td>
<td>0, 3</td>
<td>1, 1</td>
<td>4, 0</td>
<td>...</td>
<td>4, 0</td>
<td>4, 0</td>
<td>4, 0</td>
<td>4, 0</td>
</tr>
<tr>
<td>3</td>
<td>0, 2</td>
<td>0, 3</td>
<td>0, 4</td>
<td>2, 2</td>
<td>...</td>
<td>5, 0</td>
<td>4, 0</td>
<td>4, 0</td>
<td>4, 0</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>97</td>
<td>0, 2</td>
<td>0, 3</td>
<td>0, 4</td>
<td>0, 5</td>
<td>...</td>
<td>96, 96</td>
<td>99, 95</td>
<td>99, 95</td>
<td>99, 95</td>
</tr>
<tr>
<td>98</td>
<td>0, 2</td>
<td>0, 3</td>
<td>0, 4</td>
<td>0, 5</td>
<td>...</td>
<td>95, 99</td>
<td>97, 97</td>
<td>100, 96</td>
<td>100, 96</td>
</tr>
<tr>
<td>99</td>
<td>0, 2</td>
<td>0, 3</td>
<td>0, 4</td>
<td>0, 5</td>
<td>...</td>
<td>95, 99</td>
<td>96, 100</td>
<td>98, 98</td>
<td>100, 97</td>
</tr>
<tr>
<td>100</td>
<td>0, 2</td>
<td>0, 3</td>
<td>0, 4</td>
<td>0, 5</td>
<td>...</td>
<td>95, 99</td>
<td>96, 100</td>
<td>97, 100</td>
<td>99, 99</td>
</tr>
</tbody>
</table>
Traveler’s Dilemma as a Łukasiewicz Game over L_{100}^c

Let

$$G = \langle \{T1, T2\}, \{p, q\}, \{p\}_1, \{q\}_2, \{\phi_1(p, q), \phi_2(p, q)\} \rangle,$$

where the payoff formulas are:

$$\phi_1(p, q) := \left(\Delta (p \leftrightarrow q) \land \left(p \ominus \frac{1}{100} \right) \right) \lor \left(\neg \Delta (q \rightarrow p) \land \left(p \ominus \frac{2}{100} \right) \right) \lor$$

$$\left(\neg \Delta (p \rightarrow q) \land \left(q \oplus \frac{2}{100} \right) \right),$$

$$\phi_2(p, q) := \left(\Delta (p \leftrightarrow q) \land \left(p \ominus \frac{1}{100} \right) \right) \lor \left(\neg \Delta (p \rightarrow q) \land \left(q \ominus \frac{2}{100} \right) \right) \lor$$

$$\left(\neg \Delta (q \rightarrow p) \land \left(p \oplus \frac{2}{100} \right) \right).$$
OTHER EXAMPLES

- Auctions.
- Coordination Games.
- Matching Pennies.
- Weak-Link Games.
OUTLINE

Łukasiewicz Games
 Basic Definitions

Examples
 Traveler’s Dilemma

Results
 Theorem
 Best Response Sets
 Equilibrium Formula
 Satisfiable Games
Main Theorem

Let G be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula E_G of \mathcal{L}_k^c so that the following statements are equivalent:
Main Theorem

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula $\mathcal{E}_\mathcal{G}$ of \mathcal{L}_k^c so that the following statements are equivalent:

1. \(\mathcal{G} \) admits a pure strategy Nash Equilibrium
Main Theorem

Let G be any Łukasiewicz game on $Ł_k^c$. Then there exists a formula E_G of $Ł_k^c$ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
2. $\bigcap_{i=1}^n B_i \neq \emptyset$.

Main Theorem

Let G be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula E_G of \mathcal{L}_k^c so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium

2. $\bigcap_{i=1}^n B_i \neq \emptyset$.

3. E_G is satisfiable.
Let G be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula \mathcal{E}_G of \mathcal{L}_k^c so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
2. $\bigcap_{i=1}^n B_i \neq \emptyset$.
3. \mathcal{E}_G is satisfiable.
4. There exists a satisfiable normalized game G' equivalent to G.
OUTLINE

Łukasiewicz Games
 Basic Definitions

Examples
 Traveler’s Dilemma

Results
 Theorem
 Best Response Sets
 Equilibrium Formula
 Satisfiable Games
Two games

\[\mathcal{G} = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \quad \text{and} \quad \mathcal{G}' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

are equivalent whenever:

1. \(P = P' \),
2. \(V = V' \),
3. For each \(i \), \(V_i = V'_i \) and \(S_i = S'_i \),
4. \((s^{\star}_1, \ldots, s^{\star}_n) \) is a NE for \(\mathcal{G} \) if and only if \((s^{\star}_1, \ldots, s^{\star}_n) \) is a NE for \(\mathcal{G}' \).

A game \(\mathcal{G} \) is normalized whenever each payoff formula \(\phi_i(p_1, \ldots, p_m) \) contains all the variables from \(V \).
NORMALIZED GAMES I

- Two games

\[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \quad \text{and} \quad G' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

are equivalent whenever:

1. \(P = P' \),
2. \(V = V' \),
3. For each \(i \), \(V_i = V'_i \) and \(S_i = S'_i \),
4. \((s_1^*, \ldots, s_n^*)\) is a NE for \(G \) if and only if \((s_1^*, \ldots, s_n^*)\) is a NE for \(G' \).
Normalized Games I

- Two games

\[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \quad \text{and} \quad G' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

are equivalent whenever:

1. \(P = P' \),
2. \(V = V' \),
3. For each \(i \), \(V_i = V'_i \) and \(S_i = S'_i \),
4. \((s^*_1, \ldots, s^*_n)\) is a NE for \(G \) if and only if \((s'_1, \ldots, s'_n)\) is a NE for \(G' \).

- A game \(G \) is normalized whenever each payoff formula \(\phi_i(p_1, \ldots, p_m) \) contains all the variables from \(V \).
NORMALIZED GAMES II

- An \(L^c_k \)-formula \(\phi(p_1, \ldots, p_w) \) has an equivalent extension in \(\{q_1, \ldots, q_v\} \) if there exists a formula

\[
\phi^\#(p_1, \ldots, p_w, q_1, \ldots, q_v)
\]

such that, for every \(\{a_1, \ldots, a_w\} \in L_k \)

\[
f_\phi(a_1, \ldots, a_w) = f^{\#}_\phi(a_1, \ldots, a_w, b_1, \ldots, b_v)
\]

for all \(\{b_1, \ldots, b_v\} \in L_k \).
NORMALIZED GAMES II

- An Ł\(_c\)-formula \(\phi(p_1, \ldots, p_w)\) has an equivalent extension in \(\{q_1, \ldots, q_v\}\) if there exists a formula

 \[\phi^\#(p_1, \ldots, p_w, q_1, \ldots, q_v)\]

 such that, for every \(\{a_1, \ldots, a_w\} \in L_k\)

 \[f_{\phi}(a_1, \ldots, a_w) = f_{\phi^\#}(a_1, \ldots, a_w, b_1, \ldots, b_v)\]

 for all \(\{b_1, \ldots, b_v\} \in L_k\).

- Every Ł\(_c\)-formula \(\phi(p_1, \ldots, p_w)\) has an equivalent extension in \(\{q_1, \ldots, q_v\}\) by taking

 \[\phi(p_1, \ldots, p_w) \oplus \bigoplus_{j=1}^{v} (q_j \circ \neg q_j)\].
NORMALIZED GAMES II

- An Ł\(^c\)_k-formula \(\phi(p_1, \ldots, p_w) \) has an equivalent extension in \(\{q_1, \ldots, q_v\} \) if there exists a formula

\[
\phi^\#(p_1, \ldots, p_w, q_1, \ldots, q_v)
\]

such that, for every \(\{a_1, \ldots, a_w\} \in L_k \)

\[
f_\phi(a_1, \ldots, a_w) = f_\phi^\#(a_1, \ldots, a_w, b_1, \ldots, b_v)
\]

for all \(\{b_1, \ldots, b_v\} \in L_k \).

- Every Ł\(^c\)_k-formula \(\phi(p_1, \ldots, p_w) \) has an equivalent extension in \(\{q_1, \ldots, q_v\} \) by taking

\[
\phi(p_1, \ldots, p_w) \oplus \bigoplus_{j=1}^{v} (q_j \odot \neg q_j).
\]

- Every game is equivalent to a normalized game.
Best Response Sets

- We assume that every game is normalized.
BEST RESPONSE SETS

- We assume that every game is normalized.

- For each i, let \vec{x}_i be tuple of variables controlled by i.
Best Response Sets

- We assume that every game is normalized.
- For each i, let \vec{x}_i be tuple of variables controlled by i.
- The slice of f_{ϕ_i} at s_{-i}, denoted as
 \[
 \sigma_{s-1}(f_{\phi_i}),
 \]
 is the function
 \[
 f_{\phi_i}(\vec{x}_i, s_{-1}).
 \]
Best Response Sets

- We assume that every game is normalized.
- For each i, let \vec{x}_i be tuple of variables controlled by i.
- The slice of f_{ϕ_i} at s_{-i}, denoted as
 \[\sigma_{s-1}(f_{\phi_i}), \]
 is the function
 \[f_{\phi_i}(\vec{x}_i, s_{-1}). \]
- The set
 \[B_i = \left\{ (s_i, s_{-i}) \mid \text{argmax} (\sigma_{s_{-i}}(f_{\phi_i})) = s_i \right\}, \]
 is called the *best response set* for i.

EXAMPLE

Take the game

\[G = \langle \{A1, A2\}, \{p, q\}, \{p\}_1, \{q\}_2, \{\phi_1(p, q), \phi_2(p, q)\} \rangle, \]

where

\[\phi_1(p, q) := (p \rightarrow q), \quad \phi_2(p, q) := (q \rightarrow p), \]

and their associated functions are

\[f_{\phi_1}(x, y) = \min(1 - x + y, 1) \quad f_{\phi_2}(x, y) = \min(1 - y + x, 1). \]
Example: Payoff Matrix

<table>
<thead>
<tr>
<th>T1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,10</td>
<td>10,9</td>
<td>10,8</td>
<td>10,7</td>
<td>...</td>
<td>10,2</td>
<td>10,1</td>
<td>10,0</td>
</tr>
<tr>
<td>1</td>
<td>9,10</td>
<td>10,10</td>
<td>10,9</td>
<td>10,8</td>
<td>...</td>
<td>10,3</td>
<td>10,2</td>
<td>10,1</td>
</tr>
<tr>
<td>2</td>
<td>8,10</td>
<td>9,10</td>
<td>10,10</td>
<td>10,9</td>
<td>...</td>
<td>10,4</td>
<td>10,3</td>
<td>10,2</td>
</tr>
<tr>
<td>3</td>
<td>7,10</td>
<td>8,10</td>
<td>9,10</td>
<td>10,10</td>
<td>...</td>
<td>10,5</td>
<td>10,4</td>
<td>10,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2,10</td>
<td>3,10</td>
<td>4,10</td>
<td>5,10</td>
<td>...</td>
<td>10,10</td>
<td>10,9</td>
<td>10,8</td>
</tr>
<tr>
<td>9</td>
<td>1,10</td>
<td>2,10</td>
<td>3,10</td>
<td>4,10</td>
<td>...</td>
<td>9,10</td>
<td>10,10</td>
<td>10,9</td>
</tr>
<tr>
<td>10</td>
<td>0,10</td>
<td>1,10</td>
<td>2,10</td>
<td>3,10</td>
<td>...</td>
<td>8,10</td>
<td>9,10</td>
<td>10,10</td>
</tr>
</tbody>
</table>
EXAMPLE: f_{ϕ_1}

The diagram shows the function $f_{\phi_2}(x, y)$ in a 3D space with x and y axes ranging from 0 to 1 and $f_{\phi_2}(x, y)$ ranging from 0 to 1. The data points are distributed across the space with a visible pattern.
Example: The slice of f_{ϕ_1} at 0
Example: The slice of f_{φ_1} at 0.1
Example: The slice of f_{ϕ_1} **at 0.2**
Example: The slice of f_{ϕ_1} at 0.3

![3D graph showing the slice of f_{ϕ_1} at 0.3]
EXAMPLE: DEFINING B_i

$$f_{\phi_1}(x, y) = \{(0,0)\}$$
EXAMPLE: DEFINING B_i

$$f_{\phi_1}(x, y) \{ (0, 0), (0, 0.1), (0.1, 0.1) \}$$
Example: Defining B_i

$\{(0,0), (0,0.1), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2)\}$
Example: Defining B_i

$$f_{\phi_1}(x,y) = \{(0, 0), (0, 0.1), (0.1, 0.1), (0, 0.2), (0.1, 0.2), (0.2, 0.2), (0, 0.3), (0.1, 0.3), (0.2, 0.3), (0.3, 0.3)\}$$
EXAMPLE: INTERSECTION OF BEST RESPONSE SETS
Best Response Sets and Equilibria

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula $\mathcal{E}_\mathcal{G}$ of \mathcal{L}_k^c so that the following statements are equivalent:

1. \mathcal{G} admits a pure strategy Nash Equilibrium.
2. $\bigcap_{i=1}^n B_i \neq \emptyset$.
3. $\mathcal{E}_\mathcal{G}$ is satisfiable.
4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G}.
Outline

Łukasiewicz Games
 Basic Definitions

Examples
 Traveler’s Dilemma

Results
 Theorem
 Best Response Sets
 Equilibrium Formula
 Satisfiable Games
The Formula \mathcal{E}_G (I)

- We want to define an L^c_k-formula \mathcal{E}_G whose satisfiability encodes the existence of equilibria.
The Formula \mathcal{E}_G (I)

- We want to define an \mathcal{L}^c_k-formula \mathcal{E}_G whose satisfiability encodes the existence of equilibria.

- \mathcal{E}_G should not require additional constants (apart from the payoff formulas).
THE FORMULA \mathcal{E}_G (I)

- We want to define an \mathcal{L}_k^c-formula \mathcal{E}_G whose satisfiability encodes the existence of equilibria.

- \mathcal{E}_G should not require additional constants (apart from the payoff formulas).

- For every variable p and every valuation $\nu : \{p\} \to L_k$ there exists a formula $\nu(p)$ such that

\[\nu(p) = \frac{i}{k} \quad \text{IFF} \quad \nu(\psi(p)) = 1. \]
THE FORMULA \mathcal{E}_G (I)

- We want to define an \mathcal{L}_k^c-formula \mathcal{E}_G whose satisfiability encodes the existence of equilibria.

- \mathcal{E}_G should not require additional constants (apart from the payoff formulas).

- For every variable p and every valuation $v : \{p\} \rightarrow L_k$ there exists a formula $\psi(p)$ such that

\[v(p) = \frac{i}{k} \quad \text{IFF} \quad v(\psi(p)) = 1. \]

- This means that every strategy combination (s_1, \ldots, s_n) can be encoded by a formula $\psi(\vec{p}_1, \ldots, \vec{p}_n)$ so that

\[f_\psi(s'_1, \ldots, s'_n) = 1 \quad \text{IFF} \quad s_i = s'_i \]

for all i.
THE FORMULA \mathcal{E}_G (II)

$$\mathcal{E}_G := \bigvee_{\tilde{s} \in (L_k)^n} \sum_{i=1}^{m_i} \left[\bigwedge_{i=1}^{n} \left(\psi_{\alpha_{1i}}(x_{1i}) \land \cdots \land \psi_{\alpha_{mi}}(x_{mi}) \right) \land \left(\phi_i(x_{11}, \ldots, x_{m1}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, y_{1i}^{\beta_{1i}}, \ldots, y_{mi}^{\beta_{mi}}, \ldots, x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn}) \rightarrow \right) \phi_i(x_{11}, \ldots, x_{m1}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, x_{1i}, \ldots, x_{mi}, \ldots, x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn}) \right] \right]\]$$
The Formula \mathcal{E}_G (II)

\[
\mathcal{E}_G := \bigvee_{\vec{s} \in (L_k)^*} \sum_{i=1}^{m_i} \left[\bigwedge_{i=1}^{n} \left(\psi_{\alpha_1} (x_1) \land \cdots \land \psi_{\alpha_{m_i}} (x_{m_i}) \right) \right] \land \\
\bigwedge_{i=1}^{n} \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left(\psi_{\beta_1} (y_1) \land \cdots \land \psi_{\beta_{m_i}} (y_{m_i}) \right) \right] \land \\
(\phi_i (x_1, \ldots, x_{m_1}, \ldots, x_{1_i-1}, \ldots, x_{m_i-1}, \ldots, y_{1_i}^\beta, \ldots, y_{m_i}^\beta, \ldots) \rightarrow \\
\phi_i (x_1, \ldots, x_{m_1}, \ldots, x_{1_i-1}, \ldots, x_{m_i-1}, \ldots, x_{1_i}^\phi, \ldots, x_{m_i}^\phi, \ldots) \\
x_{1_{i+1}}, \ldots, x_{m_{i+1}}, \ldots, x_{1_n}, \ldots, x_{m_n})
\]
The Formula \mathcal{E}_G (II)

$$\mathcal{E}_G := \bigvee_{\bar{s} \in (L_k) \sum_{i=1}^{m_i} s_i \in (L_k)} \left[\prod_{i=1}^{n} \left(\psi_{\alpha_1 i} (x_1) \land \cdots \land \psi_{\alpha_m i} (x_m) \right) \land \right.$$

$$\prod_{i=1}^{n} \left[\prod_{s_i \in (L_k)^{m_i}} \left(\psi_{\beta_1 i} (y_{1_i}) \land \cdots \land \psi_{\beta_{m_i}} (y_{m_i}) \right) \right] \land$$

$$(\phi_i (x_{11}, \ldots, x_{m1}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, y_{1i}, \ldots, y_{mi}, \ldots$$

$$x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn}) \rightarrow$$

$$\phi_i (x_{11}, \ldots, x_{m1}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, x_{1}, \ldots, x_{mi}, \ldots$$

$$x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn}))$$
The Formula \mathcal{E}_G (II)

\[
\mathcal{E}_G := \bigvee_{\vec{s} \in (L_k)_{\sum_{i=1}^n m_i}} \left[\bigwedge_{i=1}^n \left(\psi_{\alpha_1 i} (x_{1i}) \land \cdots \land \psi_{\alpha_{m_i} i} (x_{mi}) \right) \land \\
\bigwedge_{i=1}^n \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left(\psi_{\beta_{1i}} (y_{1i}^{\beta_1 i}) \land \cdots \land \psi_{\beta_{m_i} i} (y_{mi}^{\beta_{m_i} i}) \right) \land \\
(\phi_i (x_{11}, \ldots, x_{mi}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, x_{1n}, \ldots, x_{mn}) \rightarrow \\
\phi_i (x_{11}, \ldots, x_{mi}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, x_{1i}, \ldots, x_{mi}, \ldots \\
\quad x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn})) \right] \right]
\]
THE FORMULA \mathcal{E}_G (II)

$$
\mathcal{E}_G := \bigvee_{\vec{s} \in (L_k)^\sum_{i=1}^{m_i}} \left[\prod_{i=1}^{n} \left(\psi_{\alpha_1} (x_{1_i}) \land \cdots \land \psi_{\alpha_{m_i}} (x_{m_i}) \right) \land \\
\prod_{i=1}^{m_i} \left[\prod_{j=1}^{n} \left(\psi_{\beta_1} (y_{1_i}) \land \cdots \land \psi_{\beta_{m_i}} (y_{m_i}) \right) \land \\
(\phi_i(x_{1_1}, \ldots, x_{m_1}, \ldots, x_{1_{i-1}}, \ldots, x_{m_{i-1}}, \ldots, y_{1_i}, \ldots, y_{m_i}, \ldots) \rightarrow \\
x_{1_{i+1}}, \ldots, x_{m_{i+1}}, \ldots, x_{1_n}, \ldots, x_{m_n}) \right] \right] \right]
$$
THE FORMULA \(\mathcal{E}_G \) (II)

\[\mathcal{E}_G := \bigvee_{\bar{s} \in (L_k)^{\sum_{i=1}^{n} m_i}} \left[\bigwedge_{i=1}^{n} \left(\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\alpha_1} (x_{1i}) \wedge \cdots \wedge \psi_{\alpha_{mi}} (x_{mi}) \right] \wedge \right. \right. \]

\[\left. \left. \bigwedge_{i=1}^{n} \left[\bigwedge_{s_i \in (L_k)^{m_i}} \left[\psi_{\beta_1} (y_{1i}) \wedge \cdots \wedge \psi_{\beta_{mi}} (y_{mi}) \right] \wedge \right. \right. \]

\[\left. \left. (\phi_i(x_{1i}, \ldots, x_{mi}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, y_{1i}, \ldots, y_{mi}, \ldots, \right. \right. \]

\[\left. \left. x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn} \right) \rightarrow \phi_i(x_{1i}, \ldots, x_{mi}, \ldots, x_{1i-1}, \ldots, x_{mi-1}, \ldots, x_{1i}, \ldots, x_{mi}, \ldots \right. \right. \]

\[\left. \left. x_{1i+1}, \ldots, x_{mi+1}, \ldots, x_{1n}, \ldots, x_{mn} \right) \right) \right) \]]}
The Formula \mathcal{E}_G (II)

$$\mathcal{E}_G := \bigvee_{\mathbf{s} \in (L_k)^n} \left[\sum_{i=1}^{n} m_i \left(\bigwedge_{i=1}^{n} \left(\bigwedge_{i=1}^{n} \left(\psi_{\alpha_i} (x_1) \land \cdots \land \psi_{\alpha_{m_i}} (x_{m_i}) \right) \land \right) \right) \right] \land$$

$$\left(\bigwedge_{i=1}^{n} \left(\left(\bigwedge_{i=1}^{n} \left(\psi_{\beta_1} (y_1) \land \cdots \land \psi_{\beta_{m_i}} (y_{m_i}) \right) \land \right) \right) \land \right) \land$$

$$(\phi_i(x_1, \ldots, x_{m_1}, \ldots, x_{1_{i-1}}, \ldots, x_{m_{i-1}}, \ldots, x_1, \ldots, x_{1_n}, \ldots, x_{m_n}) \rightarrow \phi_i(x_1, \ldots, x_{m_1}, \ldots, x_{1_{i-1}}, \ldots, x_{m_{i-1}}, \ldots, x_1, \ldots, x_{1_n}, \ldots, x_{1_{i+1}}, \ldots, x_{m_{i+1}}, \ldots, x_{1_n}, \ldots, x_{m_n})) \right) \right) \right)$$
Satisfiability and Equilibria

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula $\mathcal{E}_\mathcal{G}$ of \mathcal{L}_k^c so that the following statements are equivalent:

1. \mathcal{G} admits a pure strategy Nash Equilibrium.
2. $\bigcap_{i=1}^{n} B_i \neq \emptyset$.
3. $\mathcal{E}_\mathcal{G}$ is satisfiable.
4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G}.
OUTLINE

Łukasiewicz Games
Basic Definitions

Examples
Traveler’s Dilemma

Results
Theorem
Best Response Sets
Equilibrium Formula
Satisfiable Games
Satisfiable Games (I)

- A game G is called *satisfiable* if there exists a strategy combination (s_1, \ldots, s_n) such that for every i, ϕ_i is satisfied under (s_1, \ldots, s_n).

 Every satisfiable game admits a NE. Every ϕ_i is satisfiable under (s_1, \ldots, s_n), so no player can unilaterally improve her payoff.
Satisfiable Games (I)

- A game G is called *satisfiable* if there exists a strategy combination (s_1, \ldots, s_n) such that for every i, ϕ_i is satisfied under (s_1, \ldots, s_n).

- Every satisfiable game admits a NE.
Satisfiable Games (I)

- A game G is called *satisfiable* if there exists a strategy combination

 $$(s_1, \ldots s_n)$$

 such that for every i, ϕ_i is satisfied under $(s_1, \ldots s_n)$.

- Every satisfiable game admits a NE.

- Every ϕ_i is satisfiable under $(s_1, \ldots s_n)$, so no player can unilaterally improve her payoff.
Satisfiable Games (II)

- Take the first-order theory $\text{Th}(L_k)$ of the finite MV-chain L_k in the language of MV-algebras.
Satisfiable Games (II)

- Take the first-order theory $\text{Th}(L_k)$ of the finite MV-chain L_k in the language of MV-algebras.

- We want to show that there exists a sentence E_G that encodes the existence of equilibria.
Satisfiable Games (II)

- Take the first-order theory $\text{Th}(L_k)$ of the finite MV-chain L_k in the language of MV-algebras.

- We want to show that there exists a sentence E_G that encodes the existence of equilibria.

- Define the formula E_G:

$$\exists \vec{x}_1, \ldots, \vec{x}_n \forall \vec{y}_1, \ldots, \vec{y}_n \prod_{i=1}^{n} \left(\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \right)$$

where each \vec{x}_i, \vec{y}_i refers to the tuple of variables assigned to player i.
Satisfiable Games (II)

- Take the first-order theory $\text{Th}(L_k)$ of the finite MV-chain L_k in the language of MV-algebras.

- We want to show that there exists a sentence E_G that encodes the existence of equilibria.

- Define the formula E_G:
\[
\exists \bar{x}_1, \ldots, \bar{x}_n \forall \bar{y}_1, \ldots, \bar{y}_n \prod_{i=1}^n \left(\phi_i(\bar{x}_1, \ldots, \bar{x}_{i-1}, \bar{y}_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \leq \phi_i(\bar{x}_1, \ldots, \bar{x}_{i-1}, \bar{x}_i, \bar{x}_{i+1}, \ldots, \bar{x}_n) \right)
\]

where each \bar{x}_i, \bar{y}_i refers to the tuple of variables assigned to player i.

- A game \mathcal{G} admits a NE iff E_G holds in $\text{Th}(L_k)$.
Satisfiable Games (III)

- E_G holds in $\text{Th}(L_k)$ iff the set defined by E'_G

\[
\forall \vec{y}_1, \ldots, \vec{y}_n \prod_{i=1}^{n} \left(\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \right)
\]

is not empty.
Satisfiable Games (III)

- E_G holds in $\text{Th}(L_k)$ iff the set defined by E'_G

$$\forall \vec{y}_1, \ldots, \vec{y}_n \prod_{i=1}^n (\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \\ \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n))$$

is not empty.

- $\text{Th}(L_k)$ has quantifier elimination in the language of MV algebras
SATISFIABLE GAMES (III)

- E_G holds in $\text{Th}(L_k)$ iff the set defined by E'_G

\[
\forall \vec{y}_1, \ldots, \vec{y}_n \prod_{i=1}^{n} \left(\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \right)
\]

is not empty.

- $\text{Th}(L_k)$ has quantifier elimination in the language of MV algebras

- There exists a quantifier-free E_{G}^{free} logically equivalent to E'_G that defines the same set as E'_G.
Satisifiable Games (III)

- E_G holds in $\text{Th}(L_k)$ iff the set defined by E'_G

 $\forall \vec{y}_1, \ldots, \vec{y}_n \bigwedge_{i=1}^{n} (\phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{y}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n) \leq \phi_i(\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_i, \vec{x}_{i+1}, \ldots, \vec{x}_n))$

 is not empty.

- $\text{Th}(L_k)$ has quantifier elimination in the language of MV algebras

- There exists a quantifier-free E_{G}^{free} logically equivalent to E'_G that defines the same set as E'_G.

- There exists an \mathcal{L}_k^c-formula ϵ_G that is satisfiable off so is E_{G}^{free}.
Satisfiable Games (IV)

- Given a game

\[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \]
SATISFIABLE GAMES (IV)

- Given a game

 \[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \]

- Define a new game

 \[G' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

 where:
Satisfiable Games (IV)

- Given a game
 \[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \]

- Define a new game
 \[G' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

where:
1. \(P = P' \),
2. \(V = V' \),
3. For each \(i \), \(V_i = V'_i \) and \(S_i = S'_i \),
4. \(\phi'_i := \epsilon_G \lor \phi_i \).
Satisfiable Games (IV)

- Given a game
 \[G = \langle P, V, \{V_i\}, \{S_i\}, \{\phi_i\} \rangle \]

- Define a new game
 \[G' = \langle P', V', \{V'_i\}, \{S'_i\}, \{\phi'_i\} \rangle \]

where:
1. \(P = P' \),
2. \(V = V' \),
3. For each \(i \), \(V_i = V'_i \) and \(S_i = S'_i \),
4. \(\phi'_i := \varepsilon_G \lor \phi_i \).

- \(G' \) is a normalized satisfiable game equivalent to \(G \).
Satisfiable Games and Equilibria

Let \mathcal{G} be any Łukasiewicz game on \mathcal{L}_k^c. Then there exists a formula $\mathcal{E}_\mathcal{G}$ of \mathcal{L}_k^c so that the following statements are equivalent:

1. \mathcal{G} admits a pure strategy Nash Equilibrium.
2. $\bigcap_{i=1}^n B_i \neq \emptyset$.
3. $\mathcal{E}_\mathcal{G}$ is satisfiable.
4. There exists a satisfiable normalized game \mathcal{G}' equivalent to \mathcal{G}.
Work in Progress

- Games with costs and efficiency.
- Classes of games.
- Complexity and tractable games.
- Games with external influence.
- Games with mixed strategies.
- And more...
THANKS!