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» We introduce a compact representation of non-cooperative
games based on finite-valued Lukasiewicz logics.
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OVERVIEW

» We introduce a compact representation of non-cooperative
games based on finite-valued Lukasiewicz logics.

» Lukasiewicz Games are inspired by, and greatly extend, Boolean
games [Herrenstein et al. 2001].
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satisfaction of a goal, represented as a classical Boolean formula
that encodes her payoff;
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OVERVIEW

» We introduce a compact representation of non-cooperative
games based on finite-valued Lukasiewicz logics.

» Lukasiewicz Games are inspired by, and greatly extend, Boolean
games [Herrenstein et al. 2001].

» In Boolean games each individual player strives for the
satisfaction of a goal, represented as a classical Boolean formula
that encodes her payoff;

» The actions available to players correspond to valuations that
can be made to variables under their control.
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OVERVIEW

» We introduce a compact representation of non-cooperative
games based on finite-valued Lukasiewicz logics.

» Lukasiewicz Games are inspired by, and greatly extend, Boolean
games [Herrenstein et al. 2001].

» In Boolean games each individual player strives for the
satisfaction of a goal, represented as a classical Boolean formula
that encodes her payoff;

» The actions available to players correspond to valuations that
can be made to variables under their control.

» The use of Lukasiewicz logics makes it possible to more
naturally represent much richer payoff functions for players.
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LUKASIEWICZ AND GAMES

» Classic Game Theory:

» Non-cooperative games:
» PLukasiewicz Games on L} [M. & Wooldridge]

» Constant Sum Lukasiewicz Games on L, [Kroupa & Majer]

» Cooperative games: MV-coalitions [Kroupa]

» Game-Theoretic Semantics:

» Dialogue games [Fermdiller, Giles, ...]
» Evaluation games [Cintula & Majer]

» Ulam games [Mundici]
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A Lukasiewicz game G on L is a tuple

where:

G= <P7V’ {Vi}7 {Si}a {¢z}>
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A Lukasiewicz game G on L is a tuple

where:

G= <P7V’ {Vi}’ {Si}v {¢z}>

1. P={Py,

., P,} is a set of players;
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A Lukasiewicz game G on L is a tuple

where:

G= <P7 Va {Vi}’ {Si}7 {¢l}>

1. P={Py,

., P,} is a set of players;

2. V= {p1,p2, ...} is a finite set of propositional variables;
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Examples

DEFINITION [

A Lukasiewicz game G on L is a tuple
g = <P7 Va {Vi}’ {Si}7 {¢l}>

where:
1. P={Py,...,P,} is a set of players;

2. V= {p1,p2, ...} is a finite set of propositional variables;

3. V; C Vs the set of propositional variables under control of
player P;, so that the sets V; form a partition of V.
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4. S;is the strategy set for player i that includes all valuations
si : Vi = Ly of the propositional variables in V;, i.e.

SiZ {Si|Sl’:V1‘—>Lk}.
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DEFINITION II

4. S;is the strategy set for player i that includes all valuations
si : Vi = Ly of the propositional variables in V;, i.e.

S,': {Si|Si:Vi—>Lk}.

5. ¢i(p1, ..., p:) is an L{-formula, built from variables in V, whose
associated function
for s (L)' — Ly

corresponds to the payoff function of P;, and whose value is
determined by the valuations in {Sy,...,S,}.
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combination.

..,Sy), with each s; € S, is called a strategy
» s_; the set of strategies {s1,

-5 8i—15Si4+1,
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EQUILIBRIA

» Atuple (s1,...,s,), with each s; € S;, is called a strategy
combination.

» s_; the set of strategies {s1,...,5i_1,5i41, .. ., 5} not including s;.

» The strategy s; for P; is called a best response whenever, fixing s_;,
there exists no strategy s; such that

fo:(si5-1) < fo,(87,5-)-
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EQUILIBRIA

A tuple (s1,...,s,), with each s; € S;, is called a strategy
combination.

s_; the set of strategies {s1,...,5i_1,Si+1,- - ., Sy} not including s;.

The strategy s; for P; is called a best response whenever, fixing s_;,
there exists no strategy s; such that

fo:(si5-1) < fo,(87,5-)-

A strategy combination (s}, .. .,s;) is called a pure strategy Nash
Equilibrium whenever s? is a best response to s* ;, for each
1<i<n.
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» Two travelers fly back home from a trip to a remote island where
they bought exactly the same antiques.
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TRAVELER’S DILEMMA I [BASU 1994]

» Two travelers fly back home from a trip to a remote island where
they bought exactly the same antiques.

» Their luggage gets damaged and all the items acquired are
broken.
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TRAVELER’S DILEMMA I [BASU 1994]

» Two travelers fly back home from a trip to a remote island where
they bought exactly the same antiques.

» Their luggage gets damaged and all the items acquired are
broken.

» The airline promises a refund for the inconvenience
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TRAVELER’S DILEMMA I [BASU 1994]

» Two travelers fly back home from a trip to a remote island where
they bought exactly the same antiques.

» Their luggage gets damaged and all the items acquired are
broken.

» The airline promises a refund for the inconvenience

» Both travelers must write on a piece of paper a number between
0 and 100 corresponding to the cost of the antiques.
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» If they both write the same number x, they both receive x — 1.
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receive x + 2.

» If they both write the same number x, they both receive x — 1.
» If they write different numbers, say x < y, the one playing x will
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TRAVELER’S DILEMMA II [BASU 1994]

» If they both write the same number x, they both receive x — 1.

» If they write different numbers, say x < y, the one playing x will
receive x + 2.

» The other player will receive x — 2.
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TRAVELER’S DILEMMA II [BASU 1994]

» If they both write the same number x, they both receive x — 1.

» If they write different numbers, say x < y, the one playing x will
receive x + 2.

» The other player will receive x — 2.

» Travelers’ payoff is given by the functions:

max (x — 1, 0) x=y max (x — 1, 0) x=y
AGry) ={ min(min(x,y) +2,100) ¥ <y ; fr(xy) =4 min(min(r,y) +2,100) y<x
max (min(x, y) — 2, 0) y<x max (min(x, y) — 2,0) x <y
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TRAVELER’S DILEMMA: PAYOFF MATRIX

T2

0 1 2 3 LR 97 98 99 100

0 0,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

1 0,2 0,0 3,0 3,0 3,0 3,0 3,0 3,0

2 0,2 0,3 1,1 4,0 4,0 4,0 4,0 4,0

3 0,2 0,3 0,4 2,2 50 4,0 4,0 4,0

T1 : : : : . : : : :

97 0, 0,3 0,4 0,5 6, 99,95 99,95 99,95
98 0, 0,3 0,4 0,5 5 97,97 100, 96 100, 96
99 0, 0,3 0,4 0,5 5 96, 100 98,98 100,97
100 0, 0,3 0,4 0,5 5 96,100 97,100 99,99
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TRAVELER’S DILEMMA AS A LUKASIEWICZ GAME
OVER L

Let
g= <{T1,T2}’ {p’q}’ {p}17 {q}27 {¢1(Pﬂ)v ¢2(PaQ)}>’

where the payoff formulas are:

¢’1(PJI)

)

EA(qu)/\(p@léo)g\/ (ﬁA(q—w)A (P@%))V
)

~Ap- (90

¢2(pq) E (P q) A (peloo)) (ﬁA(P—Hi)A(q@%))V

V
—A(g = p)A (P@100)> 7
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OTHER EXAMPLES

Auctions.

v

Coordination Games.

v

v

Matching Pennies.

Weak-Link Games.

v
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MAIN THEOREM

Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:
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Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
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Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
2. N, Bi #0.
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MAIN THEOREM

Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
2. N, Bi #0.

3. &g is satisfiable.
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MAIN THEOREM

Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium
2. N, Bi #0.
3. &g is satisfiable.

4. There exists a satisfiable normalized game G’ equivalent to G.
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are equivalent whenever:
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and G’ = (P, V' {Vi},{Si}.{¢i})
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» Two games

g= <P7 v, {Vi}v {Si}7 {¢1}> and ¢ = <P/a V/a {V:}7 {81/}7 {¢:}>

are equivalent whenever:
1. P=F,
2.V=V,
3. Foreachi,V;=V/and S; = S/,
4. (s{,...,s;)isaNE for G if and only if (sf,...,s;) isa NE for G'.

u]

]
I

w
i
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NORMALIZED GAMES I

» Two games
g= <P7 Vv, {Vi}7 {Si}7 {¢1}> and ¢'= <P/a V/a {V:}7 {81/}7 {¢:}>

are equivalent whenever:
1. P=F,
2.V=V,
3. Foreachi,V;=V/and S; = S/,
4. (s{,...,s;)isaNE for G if and only if (sf,...,s;) isa NE for G'.

» A game G is normalized whenever each payoff formula
®i(p1, - - -, pm) contains all the variables from V.
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» AnLj-formula ¢(p1,
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{3,

, Pw) has an equivalent extension in
,qv} if there exists a formula

G (P1s- - Pus 1o - o)
such that, for every {ai,...,a,} € L
f¢(ﬂ1,..

'7aw) :f(g(ala '7aZU7b1a
for all {by,

.,by)
.,bv} € Ly.
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NORMALIZED GAMES II

» Anti-formula ¢(p1,. .., pw) has an equivalent extension in
{q1,...,9,} if there exists a formula

S p1,- - Pusdis - o)
such that, for every {ai,...,a,} € L
folar, ... ap) = fi(ar, ... aw.br,. .. ,by)
forall {by,...,b,} € L.
» Every Li-formula ¢(p1,. .., pw) has an equivalent extension in

{41, ..,q0} by taking

o(p1,-- - Pw) GBED (97 ©—aqj) -

=1
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NORMALIZED GAMES II

» Anti-formula ¢(p1,...,pw) has an equivalent extension in
{q1,...,9,} if there exists a formula

S p1,- - Pusdis - o)
such that, for every {ai,...,a,} € L
folar, ... ap) = fi(ar, ... aw.br,. .. ,by)
forall {by,...,b,} € L.
» Every Li-formula ¢(p1,. .., pw) has an equivalent extension in

{41, ..,q0} by taking

o(p1,-- - Pw) 69@ (97 ©—aqj) -

=1

» Every game is equivalent to a normalized game.
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» We assume that every game is normalized.
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BEST RESPONSE SETS

» We assume that every game is normalized.

» For each i, let x; be tuple of variables controlled by i.




Lukasiewicz Games
000000
!

Examples

00000

Results

BEST RESPONSE SETS

0000000000000 000000000000

!
» We assume that every game is normalized.

» For each i, let x; be tuple of variables controlled by i
» The slice of f4, at s_;, denoted as

Os_4 (f¢i )’
is the function

foi(Xiys-1).
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BEST RESPONSE SETS

» We assume that every game is normalized.
» For each i, let x; be tuple of variables controlled by i.
» The slice of f4, at s_;, denoted as

Os_,y (f¢i)’

is the function

foi(Xiys-1).

» The set

B; = {(si,S_i) | argmax(os_,(fy,)) = Sz} )

S;GS,'

is called the best response set for i.
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Take the game
g= <{A17A2}7 {P7 f/}a {p}b {El}za {¢1(P7 q)7 ¢2(Pa 5])}%
where
np.q) = (p—1q), wp.q) = (@—p),
and their associated functions are

f¢>1(x73/) :min(l —x‘i‘%l)

f¢2<x’y) = min(l _y+x>1>'
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EXAMPLE: PAYOFF MATRIX

T1

WN O

T2
0 1 2 3 8 9 10
10,10 10,9 10,8 10,7 10,2 10,1 10,0
9,10 10,10 10,9 10,8 10,3 10,2 10,1
8,10 9,10 10,10 10,9 10,4 10,3 10,2
7,10 8,10 9,10 10,10 10,5 10,4 10,3
2,10 3,10 4,10 5,10 10,10 10,9 10,8
1,10 2,10 3,10 4,10 9,10 10,10 10,9
0,10 1,10 2,10 3,10 8,10 9,10 10,10
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f¢z(x’y)
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EXAMPLE: DEFINING B;

f¢1(x,]/)

{(0,0),(0,0.1),(0.1,0.1)}

RN Ge
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EXAMPLE: DEFINING B;

f¢1(x,]/)

{(0,0), (0,0.1), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2)}

] = =

RN Ge
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A

A
=
e

- A
<

1

0.5 ] 0 y
X

£(0,0), (0,0.1), (0.1,0.1), (0,0.2), (0.1,0.2), (0.2,0.2), (0,0.3), (0.1,0.3), (0.2, 0.3), (0.3,0.3)}

RN Ge
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EXAMPLE: INTERSECTION OF BEST RESPONSE SETS

N
N
N
0.8% N
N
N
N
N N
N N
N
N N
0.6+ N N —
M N N N
N N
N N N
" N N
N N N
N N
N N N N
N N N N
0.4 < N N
N N N N
N N
8 N N N N
N N N
N N
N N
N N N N N
02« N N N N -
N N N N
N N
N N N N N
N N N N
N N N N N
\\ N N N N N
< . < <
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BEST RESPONSE SETS AND EQUILIBRIA

Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium.
2. L, Bi #0.
3. &g is satisfiable.

4. There exists a satisfiable normalized game G’ equivalent to G.
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» We want to define an E;-formula £ whose satisfiability encodes
the existence of equilibria.
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» We want to define an E;-formula £ whose satisfiability encodes
the existence of equilibria.

» &g should not require additional constants (apart from the payoff
formulas).
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THE FORMULA &g (I)

» We want to define an E;-formula £ whose satisfiability encodes
the existence of equilibria.

» &g should not require additional constants (apart from the payoff
formulas).

» For every variable p and every valuation v : {p} — L; there exists
a formula 9 (p) such that
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THE FORMULA &g (I)

» We want to define an E;-formula £ whose satisfiability encodes
the existence of equilibria.

» &g should not require additional constants (apart from the payoff
formulas).

» For every variable p and every valuation v : {p} — L; there exists
a formula 9 (p) such that

» This means that every strategy combination (s, ...,s,) can be
encoded by a formula ¢ (p1, .. ., Pu) so that

fo(sh,...ys) =1 IFF  s;=s5;

for all i.
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v {
se(o>i=t " L
n By
Nl A |s, (yl,. ) A N, (y
i=1Lsie ()™

E”I’
) A
(¢i(x117

>

(¢a1i (xli) ARERIVAN wami (xmz')) A

Bli ﬁmi
Xy X Xy Y e Yy
Xy gy s Xomyqs e Xy e v vy Xy ) =
Gi(X1y,y oo Xy ooy XLy e e ey Xy ey XLy ooy Xy e
x1[+1,...,xm.

i

+1,...x1n,...,xmn))H]
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THE FORMULA &g (11)

Eg =

0000000000000 000000000000

s (Lk)zlnzl m; |:i

AL

AN {wmi (yilf) Ao Npg, (y

ﬁ"l’
) A
(¢i(x117

>

(’l[)a]l (xlz) ARERNA 1/)@7!1,- (x”’1)>/\

Bli ﬁmi
Xy X1y X s Y1 Yy
Xy gy s Xomyqs e Xy e v vy Xy ) =
qﬁ,-(xll,.‘.,xm“.. S PEPRII ¢ PRI & PR TR
x1i+1,...,xm.

i

+1,...x1n,...,xmn))H
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THE FORMULA &g (11)

Eg =

0000000000000 000000000000

\/ |:/\ (¢a1i (xli) AREERA %m,. (xmz‘)) A
§€<Lk)2‘n:1 m; | i=1
" B,
AL A s, () A
=1 Ls;ie (L™

Bm
A wﬂm, <ymx I>/\
(i(x1y, .-

Bli ﬁmi
Xy X1y X s Y1 Yy
Xy gy s Xomyqs e Xy e v vy Xy ) =
qﬁ,-(xll,.‘.,xm“.. S PEPRII ¢ PRI & PR TR
x1i+1,...,xm.

i

+1,...x1n,...,xmn))H
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THE FORMULA &g (11)
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< N ay, (xmi)) A
/=\1 SiE(/L\k)’"i {wﬂli (y?’) A-

Bm
A, <yml ’>/\
(i(x1y, -

/Bli Bmi
ey Xmyy ey X1_qy ooy Xm_qy ..,yli yee s Ymy
Xy gy e s Xmyqs e Xy e v vy Xy ) =
()bi(-xllv "7'xm17 "7x1,‘_17"‘3xm,‘,13 "7X1,7 '7xm,-7
x1[+1,...,xmi

+1,...x1n,...,xmn))H

N
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(1) A A, (o)) A
m; | i=1
n 8 3
1 Pm
Al A [wm, (yl,.’> A Npg,, (m')A
i=1 Ly (1)
/Bli Bmi
(i (X1ys - v s Xy e e s X0y e e ey Xy coY e Y
Xy gy e s Xmyqs e Xy e v vy Xy ) =
Gi(X1y, oo Xy oo XDy e ey Xy e ey X1y e oo X,y
x1[+1,...,xmi

+1,...x1n,...,xmn))H
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(1) A A, (o)) A
m; | i=1
n 8 3
1 Pm
Al A [wm, (yl,.’> A Npg,, (m')A
i=1 s (1)
/Bli Bmi
(i (X1ys - v s Xy e e s X0y e e ey Xy coY e Y
Xy gy e s Xmyqs e Xy e v vy Xy ) =
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SATISFIABILITY AND EQUILIBRIA

Let G be any Lukasiewicz game on ;. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium.
2. ML, Bi #0.
3. &g is satisfiable.

4. There exists a satisfiable normalized game G’ equivalent to G.
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» A game G is called satisfiable if there exists a strategy combination

(S1y----5n)

such that for every i, ¢; is satisfied under (s, .

. Sn)-
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» A game G is called satisfiable if there exists a strategy combination

(Sl, e ~Sn)

such that for every i, ¢; is satisfied under (s, .

» Every satisfiable game admits a NE.

. Sn)-
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SATISFIABLE GAMES (I)

» A game G is called satisfiable if there exists a strategy combination
(s1,..-.5n)
such that for every i, ¢; is satisfied under (s1, . .. .5,).
» Every satisfiable game admits a NE.

» Every ¢; is satisfiable under (s1, . .. .s,), so no player can
unilaterally improve her payoff.
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» Take the first-order theory Th(Ly) of the finite MV-chain Ly in the
language of MV-algebras.
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SATISFIABLE GAMES (II)

» Take the first-order theory Th(Ly) of the finite MV-chain Ly in the
language of MV-algebras.

» We want to show that there exists a sentence Eg that encodes the
existence of equilibria.
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SATISFIABLE GAMES (II)

» Take the first-order theory Th(Ly) of the finite MV-chain Ly in the
language of MV-algebras.

» We want to show that there exists a sentence Eg that encodes the
existence of equilibria.

» Define the formula Eg:
I, XY [Ty (iR, X, T Xiga, - %) <
Gi(X1, ... Xim1, X, X, ., X))

where each ¥, ij; refers to the tuple of variables assigned to
player i.
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SATISFIABLE GAMES (II)

» Take the first-order theory Th(Ly) of the finite MV-chain Ly in the
language of MV-algebras.

» We want to show that there exists a sentence Eg that encodes the
existence of equilibria.

» Define the formula Eg:
I, XY [Ty (iR, X, T Xiga, - %) <
Gi(X1, ... Xim1, X, X, ., X))

where each ¥, ij; refers to the tuple of variables assigned to
player i.

» A game G admits a NE iff Eg holds in Th(L).
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Vi1,

» Eg holds in Th(Ly) iff the set defined by Ej
S T

(¢i(X1 .o %o, Wiy Xy, -
Gi(X1, . Xio1, X, Xig, -
is not empty.
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Vi1,

» Eg holds in Th(Ly) iff the set defined by Ej
Y [T

(Qsi(.')—("l, cee afiflvgi,fi+17 e afn) S
Gi(X1, ..., Xim1, Xi, Xig1,
is not empty.

» Th(Ly) has quantifier elimination in the language of MV algebras
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SATISFIABLE GAMES (III)

» Eg holds in Th(Ly) iff the set defined by Ej

V]71,..-,]7n r]:l:l (Qsi(fl»"'afiflvgi7fi+1v'”afn) <
¢i(x1, ey X1, Xy X 1y - - . ,xn))

is not empty.

» Th(Ly) has quantifier elimination in the language of MV algebras

» There exists a quantifier-free Efge logically equivalent to Ej; that
defines the same set as E.
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SATISFIABLE GAMES (III)

v

Eg holds in Th(Ly) iff the set defined by Ej

V]71,..-,]7n r]:l:l (gbi(fl»"'afiflvgi7fi+1v'”afn) <
¢i(x1, ey X1, Xy X 1y - - . ,xn))

is not empty.

v

Th(Ly) has quantifier elimination in the language of MV algebras

v

There exists a quantifier-free Efge logically equivalent to Ej; that
defines the same set as E.

v

There exists an Ei-formula eg that is satisfiable off so is Efgme.
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» Given a game

g= <P’ Vv {Vi}’ {Si}a {¢z}>
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» Given a game

g= <P’ Vv {Vi}’ {Si}a {¢z}>

» Define a new game

where:

g/ = <P/’ Vlv {V:}v {S:}7 {¢:}>
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SATISFIABLE GAMES (IV)

» Given a game

Results
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g= <P’ Vv {Vi}’ {Si}a {¢z}>

» Define a new game

where:

g/ = <P/’ Vlv {V:}v {S;}7 {¢:}>

1L.P=F,
2. V=V,

3. Foreachi,V;=V/and S; = S/,
4. ¢/ :=e€g V ¢i.




Lukasiewicz Games
000000 00000

Examples Results
0000000000000 00000000e000

SATISFIABLE GAMES (IV)

» Given a game

g= <P’ Vv {Vi}v {Si}a {¢z}>

» Define a new game

g/ = <P/’ Vlv {V:}v {S;}7 {¢:}>

where:
1. P=PF,
2.V=V,
3. Foreachi,V;=V/and S; = S/,
4. ¢/ :=e€g V ¢i.

» G’ is anormalized satisfiable game equivalent to G.
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SATISFIABLE GAMES AND EQUILIBRIA

Let G be any Lukasiewicz game on L. Then there exists a formula &
of £ so that the following statements are equivalent:

1. G admits a pure strategy Nash Equilibrium.
2. ML, Bi #0.

3. &g is satisfiable.

4. There exists a satisfiable normalized game G’ equivalent to G.
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WORK IN PROGRESS

» Games with costs and efficiency.

v

Classes of games.
» Complexity and tractable games.

Games with external influence.

v

v

Games with mixed strategies.

» And more...
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THANKS!
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