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fMV -algebras and piecewise polynomial functions

Motivations

f -algebras are a very well know and studied subject, with several

analitics and functional results on them;

fMV -algebras as common extention of the concept of PMV -algebras

and Riesz MV -algebras;

By means of adjuction fMV -algebras give a di�erent point of view

on Birkho�-Pierce conjecture;

for both PMV -algebras and fMV -algebras we are able to get a

version of Hausdor� Moment Problem.

It is a very central and important problem in statistic and probability.
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Preliminary notions

MV-algebras.

In 1958, C.C. Chang introduced MV -algebras as algebraic counterpart of

�ukasiewicz logic, and proved Completeness Theorem in the algebraic

way.

Chang, C.C., Algebraic analysis of many valued logics, Transactions

American Mathematical Society, vol 88 (1958), pp. 467-490.

Chang, C.C., A new proof of the completeness of the �ukasiewicz

axioms, Transactions American Mathematical Society, vol 93 (1959),

pp.74-80.
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Preliminary notions

MV-algebras

De�nition

An MV-algebra is an algebraic stucture A with two operation ⊕ and ∗

and a distinguished element 0, that satis�ed the following axioms:

for any x , y , z ∈ A,

x ⊕ y = y ⊕ x;

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z;

x ⊕ 0 = x;

(x∗)∗ = x;

x ⊕ 0∗ = 0∗;

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.



fMV -algebras and piecewise polynomial functions

Preliminary notions

MV-algebras

A MV-algebra

x , y ∈ A

x � y = (x∗ ⊕ y∗)∗, x 	 y = x � y∗.

Order on A:

x ≤ y i� x∗ ⊕ y = 1.

A is a lattice, with

x ∨ y = (x � y∗)⊕ y , x ∧ y = (x∗ ∨ y∗)∗ = x � (x∗ ⊕ y).
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Preliminary notions

Connection with �ukasiewicz logic

Let L be the �ukasiewicz propositional calculus.

De�nition

Let ϕ,ψ ∈ FormL, we say ϕ ≡ ψ if and only if ` ϕ↔ ψ.

We de�ne

L = (FormL/ ≡,⊕,¬, 0),

where

[ϕ]⊕ [ψ] = [¬ϕ→ ψ]

[ϕ]∗ = [¬ϕ]

0 = [ϕ] where ` ¬ϕ.

L is a MV-algebra.
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Preliminary notions

Lattice-ordered structures

(G ,+, 0) group,

(G ,+, 0,≤) (G ,≤) lattice,
`-group x ≤ y implies x + z ≤ y + z

(V ,+, 0,≤) abelian `-group
(V ,+, {r|r ∈ R}, 0,≤) (V ,+, {r|r ∈ R}, 0) real vector space

Riesz space x ≤ y implies r · x ≤ r · y for r ≥ 0

(R,+, 0,≤) abelian `-group,
(R,+, ·, 0,≤) (R,+, ·, 0) ring

`-ring x ≤ y implies x · z ≤ y · z and

z · x ≤ z · y for z ≥ 0

(A,+, ·, 0,≤) `-ring
(A,+, ·, {r|r ∈ R}, 0,≤) (A,+, {r|r ∈ R}, 0,≤) Riesz space

`-algebra r(x · y) = (rx) · y = x · (ry)
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Lattice-ordered structures

f -ring (f -algebra) = subdirect product of chains

A f-ring (f-algebra).

for any x , y ∈ A, z ∈ A+, if x ∧ y = 0 then zx ∧ y = xz ∧ y = 0.

De�nition

A strong unit for an `-group G is an element u ≥ 0 such that, for each

x ∈ G there is an integer n ≥ 0 with |x | ≤ nu.
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Preliminary notions

Mundici's categorial equivalence

Theorem

The category of `-groups with strong unit and the category of

MV-algebras are equivalent.

Mundici D., Interpretation of ACF*-algebras in �ukasiewicz

sentential calculus, J. Funct. Anal. 65 (1986) 15-63.
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Preliminary notions

Product MV-algebras

De�nition

Let A be an MV-algebra, for any x , y ∈ A

x + y is de�ned i� x ≤ y∗, and x + y = x ⊕ y .

A admits product, if there is a binary operation · such that

(i) if x + y is de�ned in A, also z · x + z · y and x · z + y · z are

de�ned, and

z · (x + y) = z · x + z · y , (x + y) · z = x · z + y · z .

(ii) (x · y) · z = x · (y · z).

for any x , y , z ∈ A.

A PMV-algebra that has unit for ·, it is called unital.
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Preliminary notions

De�nition

A PMVf -algebra is a PMV -algebra such that

if x ∧ y = 0, then x · z ∧ y = z · x ∧ y = 0, for any x , y , z in the algebra.

Theorem

PMV-algebras are categorical equivalent to lattice-ordered rings with

strong unit.

Di Nola A., Dvurecenskij A., Product MV-algebras, Multiple-Valued

Logics 6 (2001), 193-215.

Montagna F., An algebraic approach to Propositional Fuzzy Logic,

Journal of Logic, Language and Information 9 (2000) pp 91-124.
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Preliminary notions

Riesz MV-algebras

De�nition

(R, ?,⊕, ∗, 0) such that

(R,⊕, ∗, 0) is a MV -algebra and ? : [0, 1]× R → R satis�es

r ? (x � y∗) = (r ? x)� (r ? y)∗,

(r � q∗) ? x = (r ? x)� (q ? x)∗,

r ? (q ? x) = (rq) ? x ,

1 ? x = x .

for any r , q ∈ [0, 1] and any x , y ∈ R:
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Riesz MV-algebras, equivalent de�nition

De�nition

[0, 1] standard PMV -algebra, (R, ?,⊕, ∗, 0) such that

(i) x + y de�ned in R then r ? x + r ? y de�ned and

r ? (x + y) = r ? x + r ? y ,

(ii) r + q de�ned in [0, 1] then r ? x + q ? x is de�ned and

(r + q) ? x = r ? x + q ? x ,

(iii) (r · q) ? x = r ? (q ? x).

(iv) 1 ? x = x .

x , y ∈ R, r , q ∈ [0, 1].
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Preliminary notions

Theorem

Riesz MV-algebras with linear MV-algebra homomorphisms are

categorical equivalent to Riesz Spaces with strong unit and linear

ell -groups maps.

Di Nola A., Leustean I., �ukasiewicz logic and Riesz Spaces, Soft

Comp. , accepted
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fMV-algebras
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fMV-algebras

fMV-algebras: basic de�nitions

De�nition

A PMV -algebra and Riesz MV -algebras. A is an fMV -algebra if

(f1) if x ∧ y = 0 then x ∧ (z · y) = x ∧ (y · z) = 0;

(f2) α(x · y) = (αx) · y = x · (αy).

α ∈ [0, 1] and any x , y , z ∈ A

The PMV-algebra reduct of an fMV-algebra is a PMVf-algebra.
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fMV-algebras

Equational characterization

Theorem

A is a fMV-algebra if and only if it sati�es the following conditions:

(M1) α(x � y∗) = (αx)� (αy)∗

(M2) (α� β∗)x = (αx)� (β)x)∗

(M3) α(βx) = (α · β)x

(M4) 1x = x

(P1a) z · (x � (x ∧ y)∗) = (z · x)� (z · (x ∧ y))∗

(P1b) (x � (x ∧ y)∗) · z = (x · z)� ((x ∧ y) · z)∗

(P2) x · (y · z) = (x · y) · z

(F1a) (z · (x � y∗)) ∧ (y � x∗) = 0

(F1b) ((x � y∗) · z) ∧ (y � x∗) = 0

(F2) α(x · y) = (αx) · y = x · (αy).
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fMV-algebras

Categorical equivalence

fMValg, category whose objects are fMV-algebras and whose

morphisms are MV -algebras homomorphisms that preserve both

internal and external product.

falg, category whose objects are f-algebras with strong unit u such

that u · u ≤ u and whose morphisms are linear `u-ring

homomorphisms, that is `u-rings homomorphisms that preserve the

external product.

We will call Γf the functor from falg to fMValg that extend Mundici's

functor Γ.
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fMV-algebras

Categorical equivalence

Theorem

The functor Γf establish a categorical equivalence between the category

falg whose objects are f-algebras with strong unit and whose morphisms

are `u-rings homomorphisms preserving the external product, and the

category fMValg whose objects are fMV-algebra and whose morphisms

are MV-homomorphisms preserving both products.
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fMV-algebras

Ideals and Representation Theorem

De�nition

Let I be a subset of an fMV-algebra A. We will call I f -ideal if:

(I1) I is an MV -ideal;

(I2) for any x ∈ A, y ∈ I we have x · y ∈ I and y · x ∈ I ;

(I3) for any α ∈ [0, 1] and any x ∈ I , αx ∈ I .

Theorem

Any fMV-algebra A is subdirect product of totally ordered fMV-algebras.
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fMV-algebras

Special classes of fMV -algebras: Semiprime

De�nition

(i) An f -algebra V is called semiprime if the only nilpotent element is

0. That is, if x · x = 0, then x = 0 for any x ∈ V .

(ii) An fMV -algebra A is called semiprime if the only nilpotent

element is 0.

They are related to Montagna's PMV+.

Montagna F., Subreducts of MV-algebras with product and product

residuation, Algebra Universalis 53 (2005) pp 109-137.
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fMV-algebras

Special classes of fMV -algebras: Semiprime

De�nition

By fMV+ we will denote the class of unital, commutative and

semiprime fMV -algebras.

Proposition

A fMV-algebra A is semiprime if and only if the corresponding f-algebra V

arising from the categorical equivalence is semiprime.
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fMV-algebras

Special classes of fMV -algebras: Semiprime

Proposition

Any fMV+-algebra is subdirect product of totally ordered fMV+-algebras.

Theorem

The class of fMV+-algebras is the quasi-variety generated by [0, 1].
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fMV-algebras

Special classes of fMV -algebras: Formally real

De�nition

A fMV -algebra (PMV -algebra) is formally real if it belongs to

HSP([0, 1]). We denote by FR the class of formally real fMV -algebras.

Theorem

For any formally real fMV-algebra A there exists an ultrapower of ∗[0, 1]

of [0, 1] such that A embedds in ( ∗[0, 1])I , for some set I .

Outline of the proof.

It is just an application of Theorem 4.2 of the paper

Flaminio T., Bianchi M., A note for saturated models for many

valued logic, Mathematica Slovaca, submitted.
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fMV-algebras

Special classes of fMV -algebras: Formally Real

Not any unital and commutative fMV-algebras is formally real

Example

It follows from Example 3.14 in

Horcík R., Cintula P., Product �ukasiewicz logic, Archive for

Mathematical Logic, 43(4) 477-503 (2004).
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Terms and term functions

-κ cardinal number;

-α < κ, de�ne πκα : Aκ 7→ A, πκα(a1, . . . , aα, . . .) = aα.

-S be a subring of R

LS is the alphabet {⊕,∗ , ·, 0, } ∪ {δr | r ∈ [0, 1] ∩ S}, δr is a unary

operation that is interpreted by x 7→ rx for any r ∈ [0, 1] ∩ S.

-a term over the set of variables {Xα}α<κ is a �nite string of element

over the alphabet LS .

TermA
n (S) = {terms in the language LS}
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Terms and term functions

De�nition

t ∈ TermA
n (S), and A a fMV-algebra. The term function t̃ : An 7→ A of

t is de�ned by

(i) For any m ≤ n, X̃m = πn
m;

(ii) 0̃ is the constant function equal to 0 on An;

(iii) t̃∗ = (̃t)∗;

(iv) t̃1 ⊕ t2 = t̃1 ⊕ t̃2;

(v) δ̃r t = r t̃;

(vi) t̃1 · t2 = t̃1 · t̃2.

FTA
n (S) = {t̃ : An 7→ A | t ∈ TermA

n (S) and t̃ is the term function of t}
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Terms and term functions

-if A = [0, 1], then FT
[0,1]
n (S) will be denoted by FTn(S);

-free fMV-algebra in FR exist and it is given by

FRn = {t̃ | t ∈ Termn, t̃ : [0, 1]n → [0, 1] is the term function of t};

-FTn(R) = FRn.
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Piecewise polynomial functions

De�nition

A piecewise polynomial function in n variables with coe�cients in S

(PWPn(S)-function, shortly) is f : Rn → R such that:

there exists a �nite number of polynomials f1, . . ., fk ∈ S [x1, . . . , xn]

such that

for any (a1, . . . , an) ∈ [0, 1]n there is i ∈ {1, . . . , k} with
f (a1, . . . , an) = fi (a1, . . . , an).

We say that f1, . . ., fk are the components of f .
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Notations

PFn(S) =

{f : [0, 1]n → [0, 1] | f is a cont. PWPn(S)-function def. on the n-cube}

PFn(S)r = {f |[0,1]n |f : Rn → [0, 1] is a continuous PWPn(S)-function}

SIDn(S) = {g : [0, 1]n → [0, 1] | g ∈ PFn(S), g =
∨

i∈I
∧

j∈J gij} where
gij are polynomials in S [x1, . . . , xn].
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A di�erent description for FRn

Proposition

The elements of FTn(S) are continuous piecewise polynomial functions

de�ned on the n-cube, i.e. FTn(S) ⊆ PFn(S).

De�nition

% : R 7→ [0, 1], %(x) = x ∧ 1 ∨ 0, for any x ∈ R.
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A di�erent description for FRn

Proposition

Let S be a subring of R.
(a)For any polynomial function p : [0, 1]n → R with coe�cients in S,

there exists a term t ∈ Termn(S) such that % ◦ p = t̃ and t̃ ∈ FTn(S).

(b)For any continuous function g ∈ SIDn(S) there exists a term

t ∈ Termn(S) such that g = t̃ .
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A di�erent description for FRn

Corollary

(1) SIDn(S) ⊆ FTn(S) ⊆ PFn(S)

(2) SIDn(S) ⊆ PFn(S)r ⊆ PFn(S).
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A di�erent description for FRn

Theorem

For n ≤ 2, PFn(R)r = PFn(R) = FRn = SIDn(R).

In consequence, the fMV -algebra FRn is the set of all continuous

piecewise polynomial functions de�ned on the n-cube, i.e any continuous

piecewise polynomial functions de�ned on the n-cube is a term function

from FRn.

Birkho�-Pierce conjecture is proved for n < 3 in

Mahé L., On the Birkho�-Pierce conjecture, Rocky M. J. 14(4)

(1984) 983-985

a PWP function on [0, 1]2 can be extended to R2 by

A. Fischer, M. Marshall, Extending piecewise polynomial functions in

two variables, Annales de la Faculte des Sciences Toulouse, 22 (2013)

253-268.
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Moment Problem

Given a interval I ⊆ R, the nth-moment of a probability measure µ on I

is de�ned as
∫
I
xndµ. Let {mk}k≥0 be a sequence of real numbers, the

Moment Problems on I consistes on �nding out the condition on

{mk}k≥0 for which there exists a probability measure µ on I such that

mk is the kth moment of µ.

When I = [0, 1] we get the Hausdor� moment problem

Hausdor� F., Summationmethoden und Momentfolgen I, Math. Z. 9

(1921), 74 -109.

Hausdor� F., Summationmethoden und Momentfolgen II, Math. Z. 9

(1921), 280-299.
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Moment Problem

De�nition

A state for a MV -algebra A is a map s : A→ [0, 1] such that for any

x , y ∈ A with x � y = 0, s(x ⊕ y) = s(x) + s(y) and s(1) = 1.

Mundici D., Averaging the Truth-Value in �ukasiewicz Logic, Studia

Logica 55 (1995), 113-127.

De�nition

A state for a fMV -algebra is a state for its MV -algebra reduct.
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Moment Problem

For any k ≥ 1, pk : [0, 1]→ [0, 1] is pk(x) = xk for any x ∈ [0, 1].

p0(x) = 1 for any x ∈ [0, 1]. Note that pk ∈ FR1 for any k ≥ 0.

{mk |k ≥ 0} ⊆ [0, 1].

∆0mk = mk , ∆rmk = ∆r−1mk+1 −∆r−1mk for any r , k ≥ 0.

The sequence {mk}k satis�es the Hausdor� moment condition if m0 = 1

and (−1)r∆rmk ≥ 0 for any r , k ≥ 0.

C ([0, 1]) = Γ(C ([0, 1],R), 1), C be any semisimple PMV -subalgebra

(unital and commutative) of C ([0, 1]) such that p1 ∈ C.
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Moment Problem

Theorem

There exists a state s : C → [0, 1] such that s(pk) = mk if and only if the

sequence {mk} satis�es the Hausdor� moment condition.

Outline of the proof.

By Kroupa-Panti rapresentation for states we get s(f ) =
∫
1

0
fdµ. Then it

follows by calculations.

On the other direction is an application of

Miranda E., de Cooman G., Quaeghebeur E., The Hausdor� moment

problem under �nite additivity, Journal of Theoretical Probability 20(3)

2007 pp 663-693.
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Moment Problem

Corollary

There exists a state s : FR → [0, 1] such that s(pk) = mk if and only if

the sequence {mk} satis�es the Hausdor� moment condition.
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Conclusions

de�nition and categorical equivalence for fMV -algebras;

description of special classes of fMV -algebras;

for n ≤ 2 a di�erent description of the free formally real fMV -algebra

with two generators, relying on Birkho�-Pierce conjecture;

Hausdor� Moment problem in the MV -algebraic setting.

Future developments: relation with �nitely presented MV -algebras,

study of orthomorphisms for fMV -algebras, study of the space of

minimal prime ideals...
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