fMV-algebras and piecewise polynomial functions

Serafina Lapenta

Universitá degli Studi della Basilicata
joint work with loana Leuștean

Motivations

- f-algebras are a very well know and studied subject, with several analitics and functional results on them;
- fMV-algebras as common extention of the concept of PMV-algebras and Riesz MV-algebras;
- By means of adjuction $f M 1 /$-algebras give a different point of view on Birkhoff-Pierce conjecture;
- for both $P M V$-algebras and $f M V$-algebras we are able to get a version of Hausdorff Moment Problem

It is a very central and important problem in statistic and probability.

Motivations

- f-algebras are a very well know and studied subject, with several analitics and functional results on them;
- $f M V$-algebras as common extention of the concept of $P M V$-algebras and Riesz $M V$-algebras;
- By means of adjuction $f M V$-algebras give a different point of view
on Birkhoff-Pierce conjecture;
- for both PMMV-algebras and $F A M V$-algebras we are able to get a version of Hausdorff Moment Problem

It is a very central and important problem in statistic and probability.

Motivations

- f-algebras are a very well know and studied subject, with several analitics and functional results on them;
- $f M V$-algebras as common extention of the concept of $P M V$-algebras and Riesz $M V$-algebras;
- By means of adjuction $f M V$-algebras give a different point of view on Birkhoff-Pierce conjecture;
- for both PMV-algebras and fMV-algebras we are able to get a version of Hausdorff Moment Problem.

It is a very central and important problem in statistic and probability.

Motivations

- f-algebras are a very well know and studied subject, with several analitics and functional results on them;
- fMV-algebras as common extention of the concept of $P M V$-algebras and Riesz $M V$-algebras;
- By means of adjuction $f M V$-algebras give a different point of view on Birkhoff-Pierce conjecture;
- for both $P M V$-algebras and $f M V$-algebras we are able to get a version of Hausdorff Moment Problem.
It is a very central and important problem in statistic and probability.

Section 1

Preliminary notions

MV-algebras.

In 1958, C.C. Chang introduced MV-algebras as algebraic counterpart of Łukasiewicz logic, and proved Completeness Theorem in the algebraic way.

Chang, C.C., Algebraic analysis of many valued logics, Transactions American Mathematical Society, vol 88 (1958), pp. 467-490.

固
Chang, C.C., A new proof of the completeness of the Łukasiewicz axioms, Transactions American Mathematical Society, vol 93 (1959), pp.74-80.

MV-algebras

Definition

An MV-algebra is an algebraic stucture A with two operation \oplus and * and a distinguished element 0 , that satisfied the following axioms:
for any $x, y, z \in A$,

- $x \oplus y=y \oplus x$;
- $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
- $x \oplus 0=x$;
- $\left(x^{*}\right)^{*}=x$;
- $x \oplus 0^{*}=0^{*}$;
- $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$.
fMV-algebras and piecewise polynomial functions Preliminary notions

MV-algebras

A MV-algebra

Order on A:

A is a lattice, with

MV-algebras

A MV-algebra

$x, y \in A$
$x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}, \quad x \ominus y=x \odot y^{*}$.

Order on A:
A is a lattice, with

MV-algebras

A MV-algebra
$x, y \in A$
$x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}, \quad x \ominus y=x \odot y^{*}$.

Order on A:

$$
x \leq y \text { iff } x^{*} \oplus y=1
$$

A is a lattice, with

$$
x \vee y=\left(x \odot y^{*}\right) \oplus y, \quad x \wedge y=\left(x^{*} \vee y^{*}\right)^{*}=x \odot\left(x^{*} \oplus y\right) .
$$

Connection with Łukasiewicz logic

Let \mathcal{L} be the Łukasiewicz propositional calculus.

Definition

Let $\varphi, \psi \in$ Form $_{L}$, we say $\varphi \equiv \psi$ if and only if $\vdash \varphi \leftrightarrow \psi$
We define

$$
\mathcal{L}=\left(\text { Form }_{\mathcal{L}} / \equiv, \oplus, \neg, 0\right),
$$

where

- $[\varphi] \oplus[\psi]=[\neg \varphi \rightarrow \psi]$
- $[\varphi]^{*}=[\neg \varphi]$
- $0=[\varphi]$ where $\vdash \neg \varphi$.
\mathcal{L} is a MV-algebra.

Connection with Łukasiewicz logic

Let \mathcal{L} be the Łukasiewicz propositional calculus.

Definition

Let $\varphi, \psi \in$ Form $_{L}$, we say $\varphi \equiv \psi$ if and only if $\vdash \varphi \leftrightarrow \psi$.
We define

$$
\mathcal{L}=\left(\text { Form }_{L} / \equiv, \oplus, \neg, 0\right),
$$

where
$-\operatorname{rn}][\psi]=[\neg \varphi \rightarrow \psi]$

- $[\varphi]^{*}=[\neg \varphi]$
$-0=[\varphi]$ where $\vdash \neg \varphi$.

$$
\mathcal{L} \text { is a MV-algebra. }
$$

Connection with Łukasiewicz logic

Let \mathcal{L} be the Łukasiewicz propositional calculus.

Definition

Let $\varphi, \psi \in$ Form $_{L}$, we say $\varphi \equiv \psi$ if and only if $\vdash \varphi \leftrightarrow \psi$.
We define

$$
\mathcal{L}=\left(\text { Form }_{L} / \equiv, \oplus, \neg, 0\right),
$$

where

- $[\varphi] \oplus[\psi]=[\neg \varphi \rightarrow \psi]$
- $[\varphi]^{*}=[\neg \varphi]$
- $0=[\varphi]$ where $\vdash \neg \varphi$.

Connection with Łukasiewicz logic

Let \mathcal{L} be the Łukasiewicz propositional calculus.

Definition

Let $\varphi, \psi \in$ Form $_{L}$, we say $\varphi \equiv \psi$ if and only if $\vdash \varphi \leftrightarrow \psi$.
We define

$$
\mathcal{L}=\left(\text { Form }_{L} / \equiv, \oplus, \neg, 0\right),
$$

where

- $[\varphi] \oplus[\psi]=[\neg \varphi \rightarrow \psi]$
- $[\varphi]^{*}=[\neg \varphi]$
- $0=[\varphi]$ where $\vdash \neg \varphi$.
\mathcal{L} is a $M V$-algebra.

Lattice-ordered structures

Lattice-ordered structures

$(G,+, 0, \leq)$ ℓ-group	$\begin{aligned} & (G,+, 0) \text { group, } \\ & (G, \leq) \text { lattice, } \\ & x \leq y \text { implies } x+z \leq y+z \end{aligned}$
$(V,+,\{\mathbf{r} \mid r \in \mathbb{R}\}, 0, \leq)$ Riesz space	$(V,+, 0, \leq)$ abelian ℓ-group $(V,+,\{\mathbf{r} \mid r \in \mathbb{R}\}, 0)$ real vector space $x \leq y$ implies $r \cdot x \leq r \cdot y$ for $r \geq 0$
$\begin{gathered} (R,+, \cdot, 0, \leq) \\ \ell \text {-ring } \end{gathered}$	$(R,+, 0, \leq)$ abelian ℓ-group, ($R,+, \cdot, 0$) ring $x \leq y$ implies $x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$ for $z \geq 0$
$\begin{gathered} (A,+, \cdot,\{\mathbf{r} \mid r \in \mathbb{R}\}, 0, \leq) \\ \ell \text {-algebra } \end{gathered}$	$\begin{aligned} & (A,+, \cdot, 0, \leq) \ell \text {-ring } \\ & (A,+,\{\mathbf{r} \mid r \in \mathbb{R}\}, 0, \leq) \text { Riesz space } \\ & r(x \cdot y)=(r x) \cdot y=x \cdot(r y) \end{aligned}$

Lattice-ordered structures

f-ring $(f$-algebra $)=$ subdirect product of chains

A f-ring (f-algebra).
for any $x, y \in A, z \in A^{+}$, if $x \wedge y=0$ then $z x \wedge y=x z \wedge y=0$.

Definition

A strong unit for an l-group G is an element $u \geq 0$ such that, for each
$x \in G$ there is an integer $n \geq 0$ with $|x| \leq n u$.

Lattice-ordered structures

f-ring $(f$-algebra $)=$ subdirect product of chains

A f-ring (f-algebra). for any $x, y \in A, z \in A^{+}$, if $x \wedge y=0$ then $z x \wedge y=x z \wedge y=0$.

Definition

A strong unit for an ℓ-group G is an element $u \geq 0$ such that, for each $x \in G$ there is an integer $n \geq 0$ with $|x| \leq n u$.

Lattice-ordered structures

f-ring $(f$-algebra $)=$ subdirect product of chains

A f-ring (f-algebra). for any $x, y \in A, z \in A^{+}$, if $x \wedge y=0$ then $z x \wedge y=x z \wedge y=0$.

Definition

A strong unit for an ℓ-group G is an element $u \geq 0$ such that, for each $x \in G$ there is an integer $n \geq 0$ with $|x| \leq n u$.

Mundici's categorial equivalence

Theorem

The category of ℓ-groups with strong unit and the category of MV-algebras are equivalent.
\square Mundici D., Interpretation of ACF*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986) 15-63.

Mundici's categorial equivalence

Theorem

The category of ℓ-groups with strong unit and the category of MV-algebras are equivalent.
(1) Mundici D., Interpretation of ACF*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986) 15-63.

Product MV-algebras

Definition

- Let A be an MV-algebra, for any $x, y \in A$ $x+y$ is defined iff $x \leq y^{*}$, and $x+y=x \oplus y$.
- A admits product, if there is a binary operation such that (i) if $x+y$ is defined in A, also $z \cdot x+z \cdot y$ and $x \cdot z+y \cdot z$ are defined, and
(ii) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
for any $x, y, z \in A$.
- A PMV-algebra that has unit for -, it is called unital.

Product MV-algebras

Definition

- Let A be an MV-algebra, for any $x, y \in A$ $x+y$ is defined iff $x \leq y^{*}$, and $x+y=x \oplus y$.
- A admits product, if there is a binary operation \cdot such that (i) if $x+y$ is defined in A, also $z \cdot x+z \cdot y$ and $x \cdot z+y \cdot z$ are defined, and

$$
z \cdot(x+y)=z \cdot x+z \cdot y, \quad(x+y) \cdot z=x \cdot z+y \cdot z
$$

(ii) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
for any $x, y, z \in A$.

- A PMV-algebra that has unit for ., it is called unital.

Definition

A $P M V f$-algebra is a $P M V$-algebra such that
if $x \wedge y=0$, then $x \cdot z \wedge y=z \cdot x \wedge y=0$, for any x, y, z in the algebra.

Theorem

PMV-algebras are categorical equivalent to lattice-ordered rings with strong unit.

击 Di Nola A., Dvurecenskij A., Product MV-algebras, Multiple-Valued Logics 6 (2001), 193-215.
囲 Montagna F., An algebraic approach to Propositional Fuzzy Logic, Journal of Logic, Language and Information 9 (2000) pp 91-124.

Definition

A $P M V f$-algebra is a $P M V$-algebra such that
if $x \wedge y=0$, then $x \cdot z \wedge y=z \cdot x \wedge y=0$, for any x, y, z in the algebra.

Theorem

PMV-algebras are categorical equivalent to lattice-ordered rings with strong unit.

屢 Di Nola A., Dvurecenskij A., Product MV-algebras, Multiple-Valued Logics 6 (2001), 193-215
國 Montagna F., An algebraic approach to Propositional Fuzzy Logic, Journal of Logic, Language and Information 9 (2000) pp 91-124.

Definition

A $P M V f$-algebra is a $P M V$-algebra such that
if $x \wedge y=0$, then $x \cdot z \wedge y=z \cdot x \wedge y=0$, for any x, y, z in the algebra.

Theorem

PMV-algebras are categorical equivalent to lattice-ordered rings with strong unit.

Ri Di Nola A., Dvurecenskij A., Product MV-algebras, Multiple-Valued Logics 6 (2001), 193-215.
目 Montagna F., An algebraic approach to Propositional Fuzzy Logic, Journal of Logic, Language and Information 9 (2000) pp 91-124.

Riesz MV-algebras

Definition

$\left(R, \star, \oplus,{ }^{*}, 0\right)$ such that
$\left(R, \oplus,{ }^{*}, 0\right)$ is a $M V$-algebra and $\star:[0,1] \times R \rightarrow R$ satisfies

- $r \star\left(x \odot y^{*}\right)=(r \star x) \odot(r \star y)^{*}$,
- $\left(r \odot q^{*}\right) \star x=(r \star x) \odot(q \star x)^{*}$,
- $r \star(q \star x)=(r q) \star x$,
- $1 \star x=x$.
for any $r, q \in[0,1]$ and any $x, y \in R$:

Riesz MV-algebras, equivalent definition

Definition

$[0,1]$ standard $P M V$-algebra, $\left(R, \star, \oplus,{ }^{*}, 0\right)$ such that
(i) $x+y$ defined in R then $r \star x+r \star y$ defined and

$$
r \star(x+y)=r \star x+r \star y,
$$

(ii) $r+q$ defined in $[0,1]$ then $r \star x+q \star x$ is defined and
(iii) $(r \cdot q) \star x=r \star(q \star x)$.
$x, y \in R, r, q \in[0,1]$.

Riesz MV-algebras, equivalent definition

Definition

$[0,1]$ standard $P M V$-algebra, $\left(R, \star, \oplus,{ }^{*}, 0\right)$ such that
(i) $x+y$ defined in R then $r \star x+r \star y$ defined and

$$
r \star(x+y)=r \star x+r \star y,
$$

(ii) $r+q$ defined in $[0,1]$ then $r \star x+q \star x$ is defined and $(r+q) \star x=r \star x+q \star x$,
$x, y \in R, r, q \in[0,1]$.

Riesz MV-algebras, equivalent definition

Definition

$[0,1]$ standard $P M V$-algebra, $\left(R, \star, \oplus,{ }^{*}, 0\right)$ such that
(i) $x+y$ defined in R then $r \star x+r \star y$ defined and

$$
r \star(x+y)=r \star x+r \star y,
$$

(ii) $r+q$ defined in $[0,1]$ then $r \star x+q \star x$ is defined and $(r+q) \star x=r \star x+q \star x$,
(iii) $(r \cdot q) \star x=r \star(q \star x)$.
$x, y \in R, r, q \in[0,1]$.

Riesz MV-algebras, equivalent definition

Definition

$[0,1]$ standard $P M V$-algebra, $\left(R, \star, \oplus,{ }^{*}, 0\right)$ such that
(i) $x+y$ defined in R then $r \star x+r \star y$ defined and

$$
r \star(x+y)=r \star x+r \star y,
$$

(ii) $r+q$ defined in $[0,1]$ then $r \star x+q \star x$ is defined and $(r+q) \star x=r \star x+q \star x$,
(iii) $(r \cdot q) \star x=r \star(q \star x)$.
(iv) $1 \star x=x$.
$x, y \in R, r, q \in[0,1]$.

Theorem

Riesz MV-algebras with linear MV-algebra homomorphisms are categorical equivalent to Riesz Spaces with strong unit and linear ell-groups maps.
\square Di Nola A., Leustean I. Łukasiewicz logic and Riesz Spaces, Soft

Theorem

Riesz MV-algebras with linear MV-algebra homomorphisms are categorical equivalent to Riesz Spaces with strong unit and linear ell-groups maps.
(Di Nola A., Leustean I., Łukasiewicz logic and Riesz Spaces, Soft Comp., accepted

Section 2

fMV-algebras

fMV-algebras: basic definitions

Definition

A PMV-algebra and Riesz $M V$-algebras. A is an $f M V$-algebra if
(f1) if $x \wedge y=0$ then $x \wedge(z \cdot y)=x \wedge(y \cdot z)=0$;
(f2) $\quad \alpha(x \cdot y)=(\alpha x) \cdot y=x \cdot(\alpha y)$.
$\alpha \in[0,1]$ and any $x, y, z \in A$

The PMV-algebra reduct of an $f M V$-algebra is a $P M V f$-algebra.

fMV-algebras: basic definitions

Definition

$A P M V$-algebra and Riesz $M V$-algebras. A is an $f M V$-algebra if
(f1) if $x \wedge y=0$ then $x \wedge(z \cdot y)=x \wedge(y \cdot z)=0$;
(f2) $\quad \alpha(x \cdot y)=(\alpha x) \cdot y=x \cdot(\alpha y)$.
$\alpha \in[0,1]$ and any $x, y, z \in A$

The PMV-algebra reduct of an $f M V$-algebra is a PMVf-algebra.

Equational characterization

Theorem

A is a $f M V$-algebra if and only if it satifies the following conditions:
$\left(\right.$ M1) $\alpha\left(x \odot y^{*}\right)=(\alpha x) \odot(\alpha y)^{*}$
$\left(\text { M2) }\left(\alpha \odot \beta^{*}\right) x=(\alpha x) \odot(\beta) x\right)^{*}$
(M3) $\alpha(\beta x)=(\alpha \cdot \beta) x$
(M4) $1 x=x$
$(P 1 a) \quad z \cdot\left(x \odot(x \wedge y)^{*}\right)=(z \cdot x) \odot(z \cdot(x \wedge y))^{*}$
$(P 1 b) \quad\left(x \odot(x \wedge y)^{*}\right) \cdot z=(x \cdot z) \odot((x \wedge y) \cdot z)^{*}$ $(P 2) x \cdot(y \cdot z)=(x \cdot y) \cdot z$
$(F 1 a)\left(z \cdot\left(x \odot y^{*}\right)\right) \wedge\left(y \odot x^{*}\right)=0$
$(F 1 b)\left(\left(x \odot y^{*}\right) \cdot z\right) \wedge\left(y \odot x^{*}\right)=0$
$(F 2) \quad \alpha(x \cdot y)=(\alpha x) \cdot y=x \cdot(\alpha y)$.

Categorical equivalence

- fMValg, category whose objects are $f M V$-algebras and whose morphisms are $M V$-algebras homomorphisms that preserve both internal and external product.
- falg, category whose objects are f-algebras with strong unit u such that $u \cdot u \leq u$ and whose morphisms are linear ℓu-ring homomorphisms, that is ℓu-rings homomorphisms that preserve the external product.

We will call Γ_{f} the functor from falg to fM Valg that extend Mundici's
functor 「

Categorical equivalence

- fMValg, category whose objects are $f M V$-algebras and whose morphisms are $M V$-algebras homomorphisms that preserve both internal and external product.
- falg, category whose objects are f-algebras with strong unit u such that $u \cdot u \leq u$ and whose morphisms are linear ℓu-ring homomorphisms, that is ℓu-rings homomorphisms that preserve the external product.

We will call Γ_{f} the functor from falg to $\mathbf{f M V a l g}$ that extend Mundici's functor Γ.

Categorical equivalence

Theorem

The functor Γ_{f} establish a categorical equivalence between the category falg whose objects are f-algebras with strong unit and whose morphisms are lu-rings homomorphisms preserving the external product, and the category $\mathbf{f M V a l g}$ whose objects are fMV-algebra and whose morphisms are MV-homomorphisms preserving both products.

Ideals and Representation Theorem

Definition

Let I be a subset of an $f M V$-algebra A. We will call $I f$-ideal if:
(I1) I is an $M V$-ideal;
(I2) for any $x \in A, y \in I$ we have $x \cdot y \in I$ and $y \cdot x \in I$;
(I3) for any $\alpha \in[0,1]$ and any $x \in I, \alpha x \in I$.

Theorem

Any fMV-algebra A is subdirect product of totally ordered fMV-algebras.

Ideals and Representation Theorem

Definition

Let I be a subset of an $f M V$-algebra A. We will call $I f$-ideal if:
(I1) I is an $M V$-ideal;
(I2) for any $x \in A, y \in I$ we have $x \cdot y \in I$ and $y \cdot x \in I$;
(I3) for any $\alpha \in[0,1]$ and any $x \in I, \alpha x \in I$.

Theorem

Any fMV-algebra A is subdirect product of totally ordered $f M V$-algebras.

Special classes of fMV-algebras: Semiprime

Definition

(i) An f-algebra \mathbf{V} is called semiprime if the only nilpotent element is

0 . That is, if $x \cdot x=0$, then $x=0$ for any $x \in V$.
(ii) An $f M V$-algebra \mathbf{A} is called semiprime if the only nilpotent element is 0 .

They are related to Montagna's PMV+
圊 Montagna F
Subreducts of MV-algebras with product and product
residuation, Algebra Universalis 53 (2005) pp 109-137.

Special classes of $f M V$-algebras: Semiprime

Definition

(i) An f-algebra \mathbf{V} is called semiprime if the only nilpotent element is

0 . That is, if $x \cdot x=0$, then $x=0$ for any $x \in V$.
(ii) An $f M V$-algebra \mathbf{A} is called semiprime if the only nilpotent element is 0 .

They are related to Montagna's $P M V^{+}$.
圊 Montagna F., Subreducts of MV-algebras with product and product residuation, Algebra Universalis 53 (2005) pp 109-137.
fMV-algebras and piecewise polynomial functions

Special classes of fMV-algebras: Semiprime

Definition

By $f M V^{+}$we will denote the class of unital, commutative and semiprime $f M V$-algebras.

Proposition

A fMV-algebra A is semiprime if and only if the corresponding f-algebra V arising from the categorical equivalence is semiprime.

Special classes of $f M V$-algebras: Semiprime

Definition

By $f M V^{+}$we will denote the class of unital, commutative and semiprime $f M V$-algebras.

Proposition

A $f M V$-algebra A is semiprime if and only if the corresponding f-algebra V arising from the categorical equivalence is semiprime.
fMV-algebras and piecewise polynomial functions fMV-algebras

Special classes of fMV-algebras: Semiprime

Proposition

Any $f \mathrm{FV}^{+}$-algebra is subdirect product of totally ordered $f M V^{+}$-algebras.

Theorem

The class of fMV ${ }^{+}$-algebras is the quasi-variety generated by $[0,1]$

Special classes of fMV-algebras: Semiprime

Proposition

Any $f \mathrm{FV}^{+}$-algebra is subdirect product of totally ordered $f \mathrm{MV}{ }^{+}$-algebras.

Theorem

The class of $f \mathrm{MV}^{+}$-algebras is the quasi-variety generated by $[0,1]$.
fMV-algebras and piecewise polynomial functions

Special classes of fMV-algebras: Formally real

Definition

A $f M V$-algebra ($P M V$-algebra) is formally real if it belongs to $\operatorname{HSP}([0,1])$. We denote by $\mathbb{F} \mathbb{R}$ the class of formally real $f M V$-algebras.

Theorem

For any formally real fMV-algebra A there exists an ultrapower of * $[0,1]$ of $[0,1]$ such that A embedds in $(*[0,1])^{\prime}$, for some set I

Outline of the proof.
It is just an application of Theorem 4.2 of the paper
\square Bianchi M., A note for saturated models for many valued logic, Mathematica Slovaca, submitted

Special classes of fMV-algebras: Formally real

Definition

A $f M V$-algebra ($P M V$-algebra) is formally real if it belongs to $\operatorname{HSP}([0,1])$. We denote by $\mathbb{F} \mathbb{R}$ the class of formally real $f M V$-algebras.

Theorem

For any formally real fMV-algebra A there exists an ultrapower of ${ }^{*}[0,1]$ of $[0,1]$ such that A embedds in $\left({ }^{*}[0,1]\right)^{\prime}$, for some set I.

Outline of the proof.

It is just an application of Theorem 4.2 of the paper
Flaminio T., Bianchi M., A note for saturated models for many valued logic, Mathematica Slovaca, submitted.
fMV-algebras and piecewise polynomial functions fMV-algebras

Special classes of fMV-algebras: Formally Real

Not any unital and commutative fMV-algebras is formally real

Example

It follows from Example 3.14 inHorcík R., Cintula P

Special classes of fMV-algebras: Formally Real

Not any unital and commutative fMV-algebras is formally real

Example

It follows from Example 3.14 in
圊 Horcík R., Cintula P., Product Eukasiewicz logic, Archive for Mathematical Logic, 43(4) 477-503 (2004).

References

Birkhoff G., Pierce R.S., Lattice-ordered rings An. Acad. Brasil. Cienc. 28 (1956) pp. 41-69.
R M. Henriksen, J. Isbell, Lattice-ordered rings and function rings Pacific J. Math. 12 (1962), 533-565.

R J.Madden, Henriksen and Isbell on f-rings Topology and Its Applications 158 (2011), 1768-1773.
R Zaneen A.C., Riesz Space II, North Holland, Amsterdam 1983.
國 Lapenta S. Leustean I., Unit intervals in f-algebras, draft.

Section 3

Piecewise polynomial functions and moment problem

Terms and term functions

$-\kappa$ cardinal number;
$-\alpha<\kappa$, define $\pi_{\alpha}^{\kappa}: A^{\kappa} \mapsto A, \pi_{\alpha}^{\kappa}\left(a_{1}, \ldots, a_{\alpha}, \ldots\right)=a_{\alpha}$.
$-S$ be a subring of \mathbb{R}
\mathcal{L}_{S} is the alphabet $\{\Theta, *, \cdot, 0,\} \cup\left\{\delta_{r} \mid r \in[0,1] \cap S\right\}, \delta_{r}$ is a unary
operation that is interpreted by $x \mapsto r x$ for any $r \in[0,1] \cap S$.
-a term over the set of variables $\left\{X_{\alpha}\right\}_{\alpha<\kappa}$ is a finite string of element
over the alphabet \mathcal{C}_{S}
$\operatorname{Term}_{n}^{A}(S)=\left\{\right.$ terms in the language $\left.\mathcal{L}_{S}\right\}$

Terms and term functions

$-\kappa$ cardinal number;
$-\alpha<\kappa$, define $\pi_{\alpha}^{\kappa}: A^{\kappa} \mapsto A, \pi_{\alpha}^{\kappa}\left(a_{1}, \ldots, a_{\alpha}, \ldots\right)=a_{\alpha}$.
-S be a subring of \mathbb{R}
\mathcal{L}_{S} is the alphabet $\left\{\oplus,{ }^{*}, \cdot, 0,\right\} \cup\left\{\delta_{r} \mid r \in[0,1] \cap S\right\}, \delta_{r}$ is a unary
oneration that is interpreted by $x \mapsto r x$ for any $r \in[0,1] \cap S$.
-a term over the set of variables $\left\{X_{\alpha}\right\}_{\alpha<\kappa}$ is a finite string of element
over the alphabet \mathcal{L}_{S}.
$\operatorname{Term}_{n}^{A}(S)=\left\{\right.$ terms in the language $\left.\mathcal{L}_{S}\right\}$

Terms and term functions

$-\kappa$ cardinal number;
$-\alpha<\kappa$, define $\pi_{\alpha}^{\kappa}: A^{\kappa} \mapsto A, \pi_{\alpha}^{\kappa}\left(a_{1}, \ldots, a_{\alpha}, \ldots\right)=a_{\alpha}$.
$-S$ be a subring of \mathbb{R}
\mathcal{L}_{S} is the alphabet $\left\{\oplus,{ }^{*}, \cdot, 0,\right\} \cup\left\{\delta_{r} \mid r \in[0,1] \cap S\right\}, \delta_{r}$ is a unary operation that is interpreted by $x \mapsto r x$ for any $r \in[0,1] \cap S$.
-a term over the set of variables $\left\{X_{\alpha}\right\}_{\alpha<\kappa}$ is a finite string of element over the alphabet \mathcal{L}_{S}.

$$
\operatorname{Term}_{n}^{A}(S)=\left\{\text { terms in the language } \mathcal{L}_{S}\right\}
$$

Terms and term functions

$-\kappa$ cardinal number;
$-\alpha<\kappa$, define $\pi_{\alpha}^{\kappa}: A^{\kappa} \mapsto A, \pi_{\alpha}^{\kappa}\left(a_{1}, \ldots, a_{\alpha}, \ldots\right)=a_{\alpha}$.

- S be a subring of \mathbb{R}
\mathcal{L}_{S} is the alphabet $\left\{\oplus,{ }^{*}, \cdot, 0,\right\} \cup\left\{\delta_{r} \mid r \in[0,1] \cap S\right\}, \delta_{r}$ is a unary operation that is interpreted by $x \mapsto r x$ for any $r \in[0,1] \cap S$.
-a term over the set of variables $\left\{X_{\alpha}\right\}_{\alpha<\kappa}$ is a finite string of element over the alphabet \mathcal{L}_{S}.

Terms and term functions

$-\kappa$ cardinal number;
$-\alpha<\kappa$, define $\pi_{\alpha}^{\kappa}: A^{\kappa} \mapsto A, \pi_{\alpha}^{\kappa}\left(a_{1}, \ldots, a_{\alpha}, \ldots\right)=a_{\alpha}$.
$-S$ be a subring of \mathbb{R}
\mathcal{L}_{S} is the alphabet $\left\{\oplus,{ }^{*}, \cdot, 0,\right\} \cup\left\{\delta_{r} \mid r \in[0,1] \cap S\right\}, \delta_{r}$ is a unary operation that is interpreted by $x \mapsto r x$ for any $r \in[0,1] \cap S$.
-a term over the set of variables $\left\{X_{\alpha}\right\}_{\alpha<\kappa}$ is a finite string of element over the alphabet \mathcal{L}_{S}.

$$
\operatorname{Term}_{n}^{A}(S)=\left\{\text { terms in the language } \mathcal{L}_{S}\right\}
$$

Terms and term functions

Definition

$t \in \operatorname{Term}_{n}^{A}(S)$, and A a $f M V$-algebra. The term function $\tilde{t}: A^{n} \mapsto A$ of t is defined by

Terms and term functions

Definition

$t \in \operatorname{Term}_{n}^{A}(S)$, and A a $f M V$-algebra. The term function $\tilde{t}: A^{n} \mapsto A$ of t is defined by
(i) For any $m \leq n, \widetilde{X_{m}}=\pi_{m}^{n}$;
(ii) $\tilde{0}$ is the constant function equal to 0 on A^{n};
(iii) $\tilde{t^{*}}=(\widetilde{t})^{*}$;
(iv) $\widetilde{t_{1} \oplus t_{2}}=\tilde{t_{1}} \oplus \widetilde{t_{2}}$;
(v) $\widetilde{\delta_{r} t}=r \tilde{t}$;
(vi) $\widetilde{t_{1} \cdot t_{2}}=\tilde{t_{1}} \cdot \tilde{t_{2}}$.

Terms and term functions

Definition

$t \in \operatorname{Term}_{n}^{A}(S)$, and A a $f M V$-algebra. The term function $\tilde{t}: A^{n} \mapsto A$ of t is defined by
(i) For any $m \leq n, \widetilde{X_{m}}=\pi_{m}^{n}$;
(ii) $\tilde{0}$ is the constant function equal to 0 on A^{n};
(iii) $\tilde{t}^{*}=(\widetilde{t})^{*}$;
(iv) $\widetilde{t_{1} \oplus t_{2}}=\widetilde{t_{1}} \oplus \widetilde{t_{2}}$;
(v) $\widetilde{\delta_{r} t}=r \widetilde{t}$;
(vi) $\widetilde{t_{1} \cdot t_{2}}=\tilde{t_{1}} \cdot \tilde{t_{2}}$.
$F T_{n}^{A}(S)=\left\{\tilde{t}: A^{n} \mapsto A \mid t \in \operatorname{Term}_{n}^{A}(S)\right.$ and \widetilde{t} is the term function of $\left.t\right\}$

Terms and term functions

$$
\text { -if } A=[0,1] \text {, then } F T_{n}^{[0,1]}(S) \text { will be denoted by } F T_{n}(S) \text {; }
$$

free $f M V$-algebra in $\mathbb{F} \mathbb{R}$ exist and it is given by

Terms and term functions

$$
\text { -if } A=[0,1] \text {, then } F T_{n}^{[0,1]}(S) \text { will be denoted by } F T_{n}(S) \text {; }
$$

-free $f M V$-algebra in $\mathbb{F} \mathbb{R}$ exist and it is given by
$F R_{n}=\left\{\tilde{t} \mid t \in \operatorname{Term}_{n}, \tilde{t}:[0,1]^{n} \rightarrow[0,1]\right.$ is the term function of $\left.t\right\}$;

Terms and term functions

$$
\text { -if } A=[0,1] \text {, then } F T_{n}^{[0,1]}(S) \text { will be denoted by } F T_{n}(S) \text {; }
$$

-free $f M V$-algebra in $\mathbb{F} \mathbb{R}$ exist and it is given by
$F R_{n}=\left\{\widetilde{t} \mid t \in \operatorname{Term}_{n}, \tilde{t}:[0,1]^{n} \rightarrow[0,1]\right.$ is the term function of $\left.t\right\}$;
$-F T_{n}(\mathbb{R})=F R_{n}$.

Piecewise polynomial functions

Definition

A piecewise polynomial function in n variables with coefficients in S $\left(\mathrm{PWP}_{n}(S)\right.$-function, shortly) is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:
there exists a finite number of polynomials $f_{1}, \ldots, f_{k} \in S\left[x_{1}, \ldots, x_{n}\right]$ such that for any $\left(a_{1}, \ldots, a_{n}\right) \in[0,1]^{n}$ there is $i \in\{1, \ldots, k\}$ with $f\left(a_{1}, \ldots, a_{n}\right)=f_{i}\left(a_{1}, \ldots, a_{n}\right)$.

We say that f_{1}, \ldots, f_{k} are the components of f.

Piecewise polynomial functions

Definition

A piecewise polynomial function in n variables with coefficients in S $\left(\mathrm{PWP}_{n}(S)\right.$-function, shortly) is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:
there exists a finite number of polynomials $f_{1}, \ldots, f_{k} \in S\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\begin{gathered}
\text { for any }\left(a_{1}, \ldots, a_{n}\right) \in[0,1]^{n} \text { there is } i \in\{1, \ldots, k\} \text { with } \\
f\left(a_{1}, \ldots, a_{n}\right)=f_{i}\left(a_{1}, \ldots, a_{n}\right) .
\end{gathered}
$$

We say that f_{1}, \ldots, f_{k} are the components of f.

Piecewise polynomial functions

Definition

A piecewise polynomial function in n variables with coefficients in S $\left(\mathrm{PWP}_{n}(S)\right.$-function, shortly) is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:
there exists a finite number of polynomials $f_{1}, \ldots, f_{k} \in S\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\begin{gathered}
\text { for any }\left(a_{1}, \ldots, a_{n}\right) \in[0,1]^{n} \text { there is } i \in\{1, \ldots, k\} \text { with } \\
f\left(a_{1}, \ldots, a_{n}\right)=f_{i}\left(a_{1}, \ldots, a_{n}\right) .
\end{gathered}
$$

We say that f_{1}, \ldots, f_{k} are the components of f.

Notations

$$
\begin{aligned}
& P F_{n}(S)= \\
& \left\{f:[0,1]^{n} \rightarrow[0,1] \mid f \text { is a cont. } P W P_{n}(S) \text {-function def. on the } n \text {-cube }\right\}
\end{aligned}
$$$S_{S I D}(S)=\left\{g:[0,1]^{n} \rightarrow[0,1] \mid g \in P F_{n}(S), g=\bigvee_{i \in I} \bigwedge_{j \in J} g_{i j}\right\}$ where

\square

Notations

$P F_{n}(S)=$
$\left\{f:[0,1]^{n} \rightarrow[0,1] \mid f\right.$ is a cont. $P_{W} P_{n}(S)$-function def. on the n-cube $\}$
$P F_{n}(S)_{r}=\left\{\left.f\right|_{[0,1]^{n}} \mid f: \mathbb{R}^{n} \rightarrow[0,1]\right.$ is a continuous $P W P_{n}(S)$-function $\}$
$S_{S I D_{n}}(S)=\left\{g:[0,1]^{n} \rightarrow[0,1] \mid g \in P F_{n}(S), g=\bigvee_{i \in I} \bigwedge_{j \in J} g_{i j}\right\}$ where
$g_{i j}$ are polynomials in $S\left[x_{1}\right.$

Notations

$P F_{n}(S)=$
$\left\{f:[0,1]^{n} \rightarrow[0,1] \mid f\right.$ is a cont. $P_{W} P_{n}(S)$-function def. on the n-cube $\}$
$P F_{n}(S)_{r}=\left\{\left.f\right|_{[0,1]^{n}} \mid f: \mathbb{R}^{n} \rightarrow[0,1]\right.$ is a continuous $P W P_{n}(S)$-function $\}$
$S_{S I D}(S)=\left\{g:[0,1]^{n} \rightarrow[0,1] \mid g \in P F_{n}(S), g=\bigvee_{i \in I} \bigwedge_{j \in J} g_{i j}\right\}$ where $g_{i j}$ are polynomials in $S\left[x_{1}, \ldots, x_{n}\right]$.

A different description for $F R_{n}$

Proposition

The elements of $F T_{n}(S)$ are continuous piecewise polynomial functions defined on the n-cube, i.e. $F T_{n}(S) \subseteq P F_{n}(S)$.

Definition

A different description for $F R_{n}$

Proposition

The elements of $F T_{n}(S)$ are continuous piecewise polynomial functions defined on the n-cube, i.e. $F T_{n}(S) \subseteq P F_{n}(S)$.

Definition

$\varrho: \mathbb{R} \mapsto[0,1], \varrho(x)=x \wedge 1 \vee 0$, for any $x \in \mathbb{R}$.

A different description for $F R_{n}$

Proposition

Let S be a subring of \mathbb{R}.
(a)For any polynomial function $p:[0,1]^{n} \rightarrow \mathbb{R}$ with coefficients in S, there exists a term $t \in \operatorname{Term}_{n}(S)$ such that $\varrho \circ p=\tilde{t}$ and $\tilde{t} \in F T_{n}(S)$.
(b)For any continuous function $g \in S I D_{n}(S)$ there exists a term
$t \in \operatorname{Term}_{n}(S)$ such that $g=\tilde{t}$.

A different description for $F R_{n}$

Corollary
(1) $S I D_{n}(S) \subseteq F T_{n}(S) \subseteq P F_{n}(S)$
(2) $S I D_{n}(S) \subseteq P F_{n}(S)_{r} \subseteq P F_{n}(S)$.

A different description for $F R_{n}$

Theorem

For $n \leq 2, P F_{n}(\mathbb{R})_{r}=P F_{n}(\mathbb{R})=F R_{n}=S I D_{n}(\mathbb{R})$.
In consequence, the $f M V$-algebra $F R_{n}$ is the set of all continuous piecewise polynomial functions defined on the n-cube, i.e any continuous piecewise polynomial functions defined on the n-cube is a term function from $F R_{n}$.

- Birkhoff-Pierce conjecture is proved for $n<3$ in

國 Mahé L., On the Birkhoff-Pierce conjecture, Rocky M. J. 14(4) (1984) 983-985

- a PWP function on $[0,1]^{2}$ can be extended to \mathbb{R}^{2} by國 A. Fischer, M. Marshall, Extending piecewise polynomial functions in two variables, Annales de la Faculte des Sciences Toulouse, 22 (2013)

A different description for $F R_{n}$

Theorem

For $n \leq 2, P F_{n}(\mathbb{R})_{r}=P F_{n}(\mathbb{R})=F R_{n}=S I D_{n}(\mathbb{R})$.
In consequence, the $f M V$-algebra $F R_{n}$ is the set of all continuous
piecewise polynomial functions defined on the n-cube, i.e any continuous piecewise polynomial functions defined on the n-cube is a term function from $F R_{n}$.

- Birkhoff-Pierce conjecture is proved for $n<3$ in

眚 Mahé L., On the Birkhoff-Pierce conjecture, Rocky M. J. 14(4) (1984) 983-985

- a PWP function on $[0,1]^{2}$ can be extended to \mathbb{R}^{2} by

國 A. Fischer, M. Marshall, Extending piecewise polynomial functions in two variables, Annales de la Faculte des Sciences Toulouse, 22 (2013) 253-268.

Moment Problem

Given a interval $I \subseteq \mathbb{R}$, the $n^{t h}$-moment of a probability measure μ on I is defined as $\int_{1}, x^{n} d \mu$. Let $\left\{m_{k}\right\}_{k>0}$ be a sequence of real numbers, the Moment Problems on / consistes on finding out the condition on $\left\{m_{k}\right\}_{k \geq 0}$ for which there exists a probability measure μ on I such that m_{k} is the $k^{t h}$ moment of μ.

When $I=[0,1]$ we get the Hausdorff moment problem
國 Hausdorff F., Summationmethoden und Momentfolgen I, Math. Z. 9 (1921), $74-109$.

國 Hausdorff F., Summationmethoden und Momentfolgen II, Math. Z. 9 (1921), 280-299.

Moment Problem

Given a interval $I \subseteq \mathbb{R}$, the $n^{\text {th }}$-moment of a probability measure μ on I is defined as $\int_{1} x^{n} d \mu$. Let $\left\{m_{k}\right\}_{k \geq 0}$ be a sequence of real numbers, the Moment Problems on I consistes on finding out the condition on $\left\{m_{k}\right\}_{k \geq 0}$ for which there exists a probability measure μ on I such that m_{k} is the $k^{t h}$ moment of μ.
When $I=[0,1]$ we get the Hausdorff moment problem
Hausdorff F., Summationmethoden und Momentfolgen I, Math. Z. 9 (1921), 74 -109.

围 Hausdorff F., Summationmethoden und Momentfolgen II, Math. Z. 9 (1921), 280-299.

Moment Problem

Definition

A state for a $M V$-algebra A is a map $s: A \rightarrow[0,1]$ such that for any $x, y \in A$ with $x \odot y=0, s(x \oplus y)=s(x)+s(y)$ and $s(1)=1$.

囯 Mundici D., Averaging the Truth-Value in Łukasiewicz Logic, Studia Logica 55 (1995), 113-127.

Definition

A state for a $f M V$-algebra is a state for its $M V$-algebra reduct.

Moment Problem

Definition

A state for a $M V$-algebra A is a map $s: A \rightarrow[0,1]$ such that for any $x, y \in A$ with $x \odot y=0, s(x \oplus y)=s(x)+s(y)$ and $s(1)=1$.

圊 Mundici D., Averaging the Truth-Value in Łukasiewicz Logic, Studia Logica 55 (1995), 113-127.

Definition

A state for a $f M V$-algebra is a state for its $M V$-algebra reduct.

Moment Problem

For any $k \geq 1, p_{k}:[0,1] \rightarrow[0,1]$ is $p_{k}(x)=x^{k}$ for any $x \in[0,1]$. $p_{0}(x)=1$ for any $x \in[0,1]$. Note that $p_{k} \in F R_{1}$ for any $k \geq 0$.
$C([0,1])=\Gamma(C([0,1], \mathbb{R}), 1), C$ be any semisimple PMV-subalgebra (unital and commutative) of $C([0,1])$ such that $p_{1} \in C$.

Moment Problem

For any $k \geq 1, p_{k}:[0,1] \rightarrow[0,1]$ is $p_{k}(x)=x^{k}$ for any $x \in[0,1]$. $p_{0}(x)=1$ for any $x \in[0,1]$. Note that $p_{k} \in F R_{1}$ for any $k \geq 0$.
$\left\{m_{k} \mid k \geq 0\right\} \subseteq[0,1]$.
$\Delta^{0} m_{k}=m_{k}, \quad \Delta^{r} m_{k}=\Delta^{r-1} m_{k+1}-\Delta^{r-1} m_{k}$ for any $r, k \geq 0$.
The sequence $\left\{m_{k}\right\}_{k}$ satisfies the Hausdorff moment condition if $m_{0}=1$ and $(-1)^{r} \Delta^{r} m_{k} \geq 0$ for any $r, k \geq 0$.
$C([0,1])=\Gamma(C([0,1], \mathbb{R}), 1), C$ be any semisimple PMV-subalgebra (unital and commutative) of $C([0,1\rceil)$ such that $p_{1} \in C$.

Moment Problem

For any $k \geq 1, p_{k}:[0,1] \rightarrow[0,1]$ is $p_{k}(x)=x^{k}$ for any $x \in[0,1]$. $p_{0}(x)=1$ for any $x \in[0,1]$. Note that $p_{k} \in F R_{1}$ for any $k \geq 0$.
$\left\{m_{k} \mid k \geq 0\right\} \subseteq[0,1]$.
$\Delta^{0} m_{k}=m_{k}, \quad \Delta^{r} m_{k}=\Delta^{r-1} m_{k+1}-\Delta^{r-1} m_{k}$ for any $r, k \geq 0$.
The sequence $\left\{m_{k}\right\}_{k}$ satisfies the Hausdorff moment condition if $m_{0}=1$ and $(-1)^{r} \Delta^{r} m_{k} \geq 0$ for any $r, k \geq 0$.
$C([0,1])=\Gamma(C([0,1], \mathbb{R}), 1), C$ be any semisimple PMV-subalgebra (unital and commutative) of $C([0,1])$ such that $p_{1} \in C$.

Moment Problem

Theorem

There exists a state $s: C \rightarrow[0,1]$ such that $s\left(p_{k}\right)=m_{k}$ if and only if the sequence $\left\{m_{k}\right\}$ satisfies the Hausdorff moment condition.

Outline of the proof.

By Kroupa-Panti rapresentation for states we get $s(f)=\int_{0}^{1} f d \mu$. Then it follows by calculations.
On the other direction is an application of
\square Miranda E., de Cooman G., Quaeghebeur E., The Hausdorff moment problem under finite additivity, Journal of Theoretical Probability 20(3) 2007 pp 663-693.

Moment Problem

Theorem

There exists a state $s: C \rightarrow[0,1]$ such that $s\left(p_{k}\right)=m_{k}$ if and only if the sequence $\left\{m_{k}\right\}$ satisfies the Hausdorff moment condition.

Outline of the proof.

By Kroupa-Panti rapresentation for states we get $s(f)=\int_{0}^{1} f d \mu$. Then it follows by calculations.
On the other direction is an application of
R- Miranda E., de Cooman G., Quaeghebeur E., The Hausdorff moment problem under finite additivity, Journal of Theoretical Probability 20(3) 2007 pp 663-693.

Moment Problem

Corollary

There exists a state $s: F R \rightarrow[0,1]$ such that $s\left(p_{k}\right)=m_{k}$ if and only if the sequence $\left\{m_{k}\right\}$ satisfies the Hausdorff moment condition.

Conclusions

- definition and categorical equivalence for $f M V$-algebras;
- description of special classes of fMV-algebras;
- for $n \leq 2$ a different description of the free formally real $f M V$-algebra with two generators, relying on Birkhoff-Pierce conjecture;
- Hausdorff Moment problem in the MV-algebraic setting.
- Future developments: relation with finitely presented MV-algebras, study of orthomorphisms for $f M V$-algebras, study of the space of minimal prime ideals..

Conclusions

- definition and categorical equivalence for $f M V$-algebras;
- description of special classes of $f M V$-algebras;
- for $n \leq 2$ a different description of the free formally real $f M V$-algebra with two generators, relying on Birkhoff-Pierce conjecture;
- Hausdorff Moment problem in the MV-algebraic setting.
- Future developments: relation with finitely presented MV-algebras, study of orthomorphisms for $f M V$-algebras, study of the space of minimal prime ideals..

Conclusions

- definition and categorical equivalence for $f M V$-algebras;
- description of special classes of $f M V$-algebras;
- for $n \leq 2$ a different description of the free formally real $f M V$-algebra with two generators, relying on Birkhoff-Pierce conjecture;
- Hausdorff Moment problem in the MV-algebraic setting.
- Future developments: relation with finitely presented $M V$-algebras, study of orthomorphisms for $f M V$-algebras, study of the space of minimal prime ideals..

Conclusions

- definition and categorical equivalence for $f M V$-algebras;
- description of special classes of $f M V$-algebras;
- for $n \leq 2$ a different description of the free formally real $f M V$-algebra with two generators, relying on Birkhoff-Pierce conjecture;
- Hausdorff Moment problem in the MV-algebraic setting.
- Future developments: relation with finitely presented $M V$-algebras, study of orthomorphisms for $f M V$-algebras, study of the space of minimal prime ideals...

THANK YOU FOR YOUR ATTENTION

