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About the topic ...

Connections between games and many-valued 
logic
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About the topic ...

My game is connectives for many-valued logic
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Definitions

FLe-algebra =        comm. RL + f ,
                              f is an arbitrary constant

involutive =          x’’= x, where   x’ = x → f                   
                              (observe   f’=t)

integral =              t is its greatest element

Group-like =         involutive    +     f = t
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Conic representation: For any conic, involutive 
FLe-algebra 

[S. Jenei, H. Ono, On Involutive FLe-monoids, Archive for Mathematical Logic, 51 
(7-8), 719-738 (2012)]

Conic representation
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Twin Rotation

[S. Jenei, H. Ono, On Involutive FLe-monoids, Archive for Mathematical Logic, 51 
(7-8), 719-738 (2012)]
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Fig. 3. TP0:5 and TL0:4 (left). A t-subnorm and a t-norm, which are ordinal sums of t-subnorms (right). See Examples 1
and 3.

the only thing we need to verify that the summand which is just below it (that is, TP) is a t-norm.
Fig. 3 (right) visualizes the latest two ordinal sums.

5. Rotation

The rotation method is introduced in [17] and a characterization theorem is given in [11]. As in
the ordinal sum theorem for t-subnorms, we remark, that it is not possible to provide any further
generalization of the method (which still produces t-norms or t-subnorms). The method produces
left-continuous (but not continuous) t-norms which have strong associated negations from any left-
continuous t-norm T1 which either has no zero divisors or all the zero values of its graph are in a
sub-square of the unit square (see Fig. 4). The construction of t-subnorms is as well possible, see
Remark 1.

Theorem 5. Let N be a strong negation, t its unique !xed point and T be a left-continuous t-norm.
Let T1 be the linear transformation of T into [t; 1], I+ = ]t; 1] and I− = [0; t]. De!ne TRot and ITRot
(of types [0; 1]× [0; 1]→ [0; 1]) by

TRot(x; y) =















T1(x; y) if x; y ∈ I+;
N (IT1(x; N (y))) if (x; y) ∈ I+ × I−;
N (IT1(y; N (x))) if (x; y) ∈ I− × I+;
0 if x; y ∈ I−;

(6)

ITRot(x; y) =















IT1(x; y) if x; y ∈ I+;
N (T1(x; N (y))) if (x; y) ∈ I+ × I−;
1 if (x; y) ∈ I− × I+;
IT1(N (y); N (x)) if x; y ∈ I−:

(7)

TRot is a left-continuous t-norm if and only if either

C1. T has no zero divisors or
C2. there exists c∈ ]0; 1] such that for any zero divisor x of T we have IT (x; 0) = c.
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Fig. 6. Rotations of ordinal sums.

6. Rotation–annihilation

The rotation–annihilation method was introduced in [18]. It produces left-continuous (but not
continuous) t-norms which have strong associated negations from a pair of connectives, as it is
given in the following de!nition. Again, we remark, that it is not possible to provide any further
generalization of the method (which still produces t-norms or t-subnorms).

De!nition 2 (Jenei [15]). Let N be a strong negation and t be its unique !xed point. Let d∈]t; 1].
Then Nd : [0; 1]→ [0; 1] de!ned by

Nd(x) =
N (x · (d− N (d)) + N (d)) − N (d)

d− N (d)

is a strong negation. Call Nd the zoomed d-negation of N .

De!nition 3. Let N be a strong negation, t its unique !xed point, ∈]t; 1[ and Nd be the zoomed
d-negation of N . Let T1 be a left-continuous t-subnorm.

i. If T1 has no zero divisors then let T2 be a left-continuous t-subnorm which admits the rotation
invariance property w.r.t. Nd. Further, let I− = [0; N (d)[; I 0 = [N (d); d] and I+ =]d; 1].

ii. If T1 has zero divisors then let T2 be a left-continuous t-norm which admits the rotation
invariance property w.r.t. Nd (it is equivalent to saying that T2 is a left-continuous t-norm with
strong associated negation equal with Nd, see [19]). Further, let I− = [0; N (d)]; I 0 =]N (d); d[ and
I+ = [d; 1].

Let T3 be the linear transformation of T1 into [d; 1], T4 be the linear transformation of T2 into
[N (d); d] and T5 : [N (d); d]2 → [N (d); d] be the annihilation of T4 given by

T5(x; y) =
{

0 if x; y ∈ [N (d); d] and x 6 N (y);
T4(x; y) if x; y ∈ [N (d); d] and x ¿ N (y):
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Fig. 7. Geometrical explanation of the rotation–annihilation construction.
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Fig. 8. T-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 9. Other t-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 8. T-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 9. Other t-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 12. 3D plots of (TM)〈+〉 (left) and (Tos)〈+〉 (right).
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Fig. 13. (TP)〈⊕x〉 and (TP)〈⊕x ;⊕x〉.

Example 6. Let TM stands for the minimum operation on [0; 1]. De!ne an ordinal sum with one
 Lukasiewicz summand as follows:

Tos(x; y) =















2
9 + 5

9 max
(

0;
x− 2

9
5
9

+
y− 2

9
5
9

− 1
)

;

if x; y ∈
[ 2

9 ;
5
9

]

;
min(x; y) otherwise:

For the 3D plots of (TM)〈+〉 and (Tos)〈+〉 see Fig. 12.

Example 7. Let the operation ⊕x on N be given by x ⊕x y= (x − 1) · (y − 1) + 1. The graphs of
(TP)〈⊕x〉 and (TP)〈⊕x ;⊕x〉 are presented in Figs. 13 and 14.

Example 8. For the sake of completeness we remark that the left-continuous t-norm which is
introduced by Smutn"a [28] (motivated by the original idea of Budin#cevi#c and Kurili#c [1]) can
be constructed by Theorem 10, see [21].
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Fig. 2. The triple rotation of TM based on N . (a) TM; (b) R3(TM, N ) = T nM; (c) contour plot of R3(TM, N )]; (d) R3(TM, N ); (e) R32(TM, N );
(f) contour plot of R32(TM, N ); (g) R32(TM, N ); (h) R33(TM, N ); (i) contour plot of R33(TM, N ).

Similarly to Fig. 2, we performed in Fig. 3 the triple rotation method on the algebraic product TP. As can be
seen from Figs. 3(b), (e) and (h), the t-norm R3(TP, N ) has a single discontinuity point (( 1

2 , 1
2 )), the t-norm R32(TP, N )

has exactly three discontinuity points (( 1
4 , 3

4 ), ( 3
4 , 3

4 ) and ( 3
4 , 1

4 )) and the t-norm R33(TP, N ) has 10 discontinuity
points (( n

8 , m
8 ), with (n, m) ∈ {1, 3, 5, 7}2 such that 8!n + m). Figs. 2(b) and 3(b) can also be constructed by

means of the rotation construction of Jenei [8,11]. Otherwise, Figs. 2(e), (h), 3(e) and (h) visualize t-norms that
cannot be described by the rotation construction nor by the rotation-annihilation construction of Jenei [9,12].
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Let T : [0; 1]2 → [0; 1] be a function satisfying (T3), and let N be a strong negation. We say that
T admits the rotation invariance property [19] with respect to N or rotation invariant w.r.t. N if
for all x; y; z ∈ [0; 1] we have T (x; y)6z ⇔ T (y; N (z))6N (x).

3. Annihilation

The nilpotent minimum t-norm TM0 is introduced in [4] in such a way that the values of the
minimum t-norm are replaced by 0 under the negation 1 − x. More formally, for x; y∈ [0; 1] let

TM0(x; y) =
{

0 if y 6 1 − x;
min(x; y) otherwise: (1)

For a visualization, see Fig. 2, and compare with the picture of TM. It is observed that the same
construction works for any strong negation instead of the standard one 1−x, and that the construction
does not result in a t-norm (in fact, the associativity property is violated) if the minimum t-norm is
replaced by the product t-norm.

Motivated by this observation the concept of N -annihilation (N being any strong negation) is
investigated in [15] and a characterization of those continuous t-norms where the annihilated operator
is a t-norm is given as follows:

Let T be a t-norm and N be a strong negation. De!ne the binary operation T(N ) (called the
N -annihilation of T ) as follows:
T(N ) : [0; 1]× [0; 1]→ [0; 1];

T(N )(x; y) =
{

0 if x 6 N (y);
T (x; y) otherwise: (2)
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Fig. 2. The nilpotent minimum TM0 (left), a continuous t-norm (center) and its annihilation TJ which is de!ned in (3)
(right).
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Fig. 12. 3D plots of (TM)〈+〉 (left) and (Tos)〈+〉 (right).
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Fig. 13. (TP)〈⊕x〉 and (TP)〈⊕x ;⊕x〉.

Example 6. Let TM stands for the minimum operation on [0; 1]. De!ne an ordinal sum with one
 Lukasiewicz summand as follows:

Tos(x; y) =















2
9 + 5

9 max
(

0;
x− 2

9
5
9

+
y− 2

9
5
9

− 1
)

;

if x; y ∈
[ 2

9 ;
5
9

]

;
min(x; y) otherwise:

For the 3D plots of (TM)〈+〉 and (Tos)〈+〉 see Fig. 12.

Example 7. Let the operation ⊕x on N be given by x ⊕x y= (x − 1) · (y − 1) + 1. The graphs of
(TP)〈⊕x〉 and (TP)〈⊕x ;⊕x〉 are presented in Figs. 13 and 14.

Example 8. For the sake of completeness we remark that the left-continuous t-norm which is
introduced by Smutn"a [28] (motivated by the original idea of Budin#cevi#c and Kurili#c [1]) can
be constructed by Theorem 10, see [21].

An Unchartable Wilderness
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Group-like case
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Fig. 1. (⊕P)r (left), its dual ("P)r (right), and (⊕P)s (bottom).

Definition 2. We say that ⊕ ∈ B is border-continuous, if for any y ∈ [t, 1] the function fy : [t, 1] → [t, 1],
fy(x) = x⊕y is continuous at t.

Lemma 1. For any ⊕ ∈ B which is border-continuous the following two statements hold true:

1. x ⊕s y






> t if x, y ∈]t, 1]
≤ t if x ∈ [t, 1] and y ∈ [0, t] and x ≤ y′

> t if x ∈ [t, 1] and y ∈ [0, t] and x > y′

≤ t if x ∈ [0, t] and y ∈ [t, 1] and x ≤ y′

> t if x ∈ [0, t] and y ∈ [t, 1] and x > y′

≤ t if x, y ∈ [0, t]

(11)

2. For any x ∈ [0, 1] the residual x→⊕s t exists and equals x ′.

If, in addition, ⊕s is associative then

3. we have that ⊕s is rotation-invariant with respect to ′, that is, for x, y, z ∈ [0, 1] we have

x ⊕s y ≤ z′ iff y ⊕s z ≤ x ′

and consequently,
4. ⊕s is residuated, that is, for all x, y ∈ [0, 1] the maximum of the set {z ∈ [0, 1] | x ⊕s z ≤ y} exists.
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Fig. 2. Illustration for items 2 and 3 of Theorem 5, see Example 1.
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Fig. 2. Illustration for items 2 and 3 of Theorem 5, see Example 1.

absorbent-continuous group-like 
FLe-algebras on subreal chains

[S. Jenei, F. Montagna, A classification of certain group-like FLe-chains, submitted]
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Call a chain ⟨X, ≤⟩ weakly real if X is order-dense 
and complete,   there exists a dense Y ⊂X with 
|Y|<|X|, and for any x,y∈Y there exist u,v∈Y 
such that u>x,v>y, and there exists a strictly 
increasing function from [x,u] into [y,v].

An order dense chain is said to be subreal if its 
Dedekind-MacNeille completion is weakly real.

Absorbent continuity = for x ∈ X-,
a(x)⨂x = x, where a(x) = inf { u∈X- :  u⨂x = x}

absorbent-continuous group-like 
FLe-algebras on subreal chains
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BL-algebras = divisibility (continuity) 
everywhere

Absorbent continuity = continuity only at a 
few point of the domain of ⨂
(viewed as a two-place function)

absorbent-continuous group-like 
FLe-algebras on subreal chains
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Absorbent continuity = continuity only at a 
few point of the domain of ⨂
(viewed as a two-place function)

absorbent-continuous group-like 
FLe-algebras on subreal chains
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1: Involutive ordinal sums

Theorem: The twin-rotation of the Clifford-
style ordinal sum of any family of negative 
cones of group-like FLe-chains and their skew-
duals is a group-like FLe-chain.
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Motivation
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2: Co-rotations

disconnected

connected
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Applications of the 
Rotation construction

Perfect and bipartite IMTL-algebras
[C. Noguera, F. Esteva, J. Gispert, Perfect and bipartite IMTL-
algebras and disconnected rotations of basic semihoops, 
Archive for Mathematical Logic, 44 (2005), 869–886. ]

Free nilpotent minimum algebras
[M. Busaniche, Free nilpotent minimum algebras, 
Mathematical Logic Quartely 52 (3) (2006) 219–236. ]

Free Glivenko MTL-algebras
[R. Cignoli, A. Torrens, Free algebras in varieties of Glivenko 
MTL-algebras satisfying the equation 2(x2) = (2x)2, Studia 
Logica 83 (1-3) (2006) 157-181]

in the structural description of 
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Applications of the 
Rotation construction

Nelson algebras
[M. Busaniche, R. Cignoli, Constructive Logic with Strong 
Negation as a Substructural Logic, Journal of Logic and 
Computation 20 (4) (2010) 761–793.]

in establishing a spectral duality for finitely 
generated nilpotent minimum algebras
[S. Aguzzoli, M. Busaniche, Spectral duality for finitely 
generated nilpotent minimum algebras, with applications, 
Journal of Logic and Computation 17 (4) (2007) 749–765.]

in the previous talk (on one-variable axiomatizations)
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3: Co-rotation-annihilations
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Thank you for 
Your attention!
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