Sándor Jenei

University of Pécs, Hungary

NEW
 INVOLUTIVE FLe-ALGEBRA CONSTRUCTIONS

Supportied lby the SROP-4:2.2.C-11/ / / /
KONV-2012-0005 gromit.

ABOUT THE TOPIC

- Connections between games and many-valued logic

ABOUT THE TOPIC

- My game is connectives for many-valued logic

DEFINITIONS

- $F L_{e}$-algebra $=$
- involutive $=$
- integral $=$
- Group-like =
comm. $\mathrm{RL}+f$,
f is an arbitrary constant
$x^{\prime \prime}=x$, where $x^{\prime}=x \rightarrow f$
(observe $f=t$)
t is its greatest element
involutive $+f=t$

CONIC REPRESENTATION

- Conic representation: For any conic, involutive FLe-algebra

$$
x \otimes y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow \otimes\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow \otimes\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

- [S. Jenei, H. Ono, On Involutive FLe-monoids, Archive for Mathematical Logic, 51 (7-8), 719-738 (2012)]

TWIN ROTATION

$$
x \oplus y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\otimes}\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow_{\otimes}\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

Call \otimes the twin-rotation of \otimes and \oplus.

- [S. Jenei, H. Ono, On Involutive FLe-monoids, Archive for Mathematical Logic, 51 (7-8), 719-738 (2012)]

$$
x \oplus y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\otimes}\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow_{\otimes}\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

Call \otimes the twin-rotation of \otimes and \oplus.

$$
x \oplus y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\otimes}\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow_{\otimes}\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

Call \otimes the twin-rotation of \otimes and \oplus.

$$
x \oplus y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\otimes}\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow_{\otimes}\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

Call \otimes the twin-rotation of \otimes and \oplus.

AOO
[-] rot Min

$$
x \oplus y= \begin{cases}x \otimes y & \text { if } x, y \in X_{1} \\ x \oplus y & \text { if } x, y \in X_{2} \\ \left(x \rightarrow_{\oplus} y^{\prime}\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\oplus} x^{\prime}\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \leq y^{\prime} \\ \left(y \rightarrow_{\otimes}\left(x^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{2}, y \in X_{1}, \text { and } x \not \leq y^{\prime} \\ \left(x \rightarrow_{\otimes}\left(y^{\prime} \wedge t\right)\right)^{\prime} & \text { if } x \in X_{1}, y \in X_{2}, \text { and } x \not \leq y^{\prime}\end{cases}
$$

Call \otimes the twin-rotation of \otimes and \oplus.
$\Theta O O$
E. Twin Prod Min

AN UNCHARTABLE WILDERNESS

GROUP-LIKE CASE

ABSORBENT-CONTINUOUS GROUP-LIKE FLe-ALGEBRAS ON SUBREAL CHAINS

- [S. Jenei, F. Montagna, A classification of certain group-like FLe-chains, submitted]

ABSORBENT-CONTINUOUS GROUP-LIKE FLe-ALGEBRAS ON SUBREAL CHAINS

- Call a chain $\langle X, \leq\rangle$ weakly real if X is order-dense and complete, there exists a dense V eX with $|Y|<|X|$, and for any $x, y \in Y$ there exist $u, v \in Y$ such that $u>x, v>y$, and there exists a strictly increasing function from $[x, 11]$ into $[y, v\}$
- An order dense chain is said to be subreal if its Dedekind-MacNeille completion is wreakly real
- Absorbent continuity $=$ for $x \in X^{\text {- }}$, $a(x) \otimes x=x$, where $a(x)=\inf \left\{u \in X^{-}: u \otimes x=x\right\}$

ABSORBENT-CONTINUOUS GROUP-LIKE FLe-ALGEBRAS ON SUBREAL CHAINS

- BL-algebras = divisibility (continuity) everywhere
- Absorbent continuity $=$ continuity only at a few point of the domain of \otimes
(viewed as a two-place function)

ABSORBENT-CONTINUOUS GROUP-LIKE FLe-ALGEBRAS ON SUBREAL CHAINS

- Absorbent continuity $=$ continuity only at a few point of the domain of \otimes
(viewed as a two-place function)

ABSORBENT-CONTINYOUS GRQUP-LIKE FLe-ALGEBRAS ON SURREAL CHAINS

ABSORBENT-CONTINUOUS GROUP-LIKE FLe-ALGEBRAS ON SUBREAL CHAINS

- Absorbent continuity $=$ continuity only at a few point of the domain of \otimes
(viewed as a two-place function)

1: INVOLUTIVE ORDINAL SUMS

- Theorem: The twin-rotation of the Cliffordstyle ordinal sum of any family of negative cones of group-like FL_{e}-chains and their skewduals is a group-like FLe-chain.

MOTIVATION

MOTIVATION

MOTIVATION

MOTIVATION

$$
x \odot y=\sup \{u \odot v \mid u<x, v<y\}
$$

skewed modification of \odot.

Motivation

skewed modification of \odot

MOTIVATION

MOTIVATION

MOTIVATION

2: CO-ROTATIONS

let $x{ }_{\vartheta} y=$

$$
\begin{cases}x \otimes y & \text { if } x, y \in M^{+} \\ \left(x \rightarrow \bullet y^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \\ \left(y \rightarrow \bullet x^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \text {and } y \in M^{+} \\ \perp & \text { if } x, y \in M^{-}\end{cases}
$$

let $x \otimes_{\eta} y=$

$$
\begin{cases}\perp & \text { if } x \text { or } y \text { is } \perp \\ x \otimes y & \text { if } x, y \in M^{-} \backslash\{\perp\} \\ \left(x \rightarrow y^{\prime} y^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \backslash\{\perp\} \text { and } y \in M^{+} \\ \left(y \rightarrow_{\bullet} x^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \backslash\{\perp\} \\ \top & \text { if } x, y \in M^{+}\end{cases}
$$

disconnected
commutative, residuated po-semigroup

- connected commutative, residuated po-semigroup either

1. without zero divisors or
2. with zero divisors. In this case suppose that there exist $c \in M$ such that for any zero divisor $x, x \rightarrow_{\bullet} \iota=c$ holds.

2: CO-ROTATIONS

let $x{ }_{\vartheta} y=$

$$
\begin{cases}x \otimes y & \text { if } x, y \in M^{+} \\ \left(x \rightarrow \diamond y^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \\ \left(y \rightarrow \diamond x^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \text {and } y \in M^{+} \\ \perp & \text { if } x, y \in M^{-}\end{cases}
$$

let $x \otimes_{\eta} y=$

$$
\begin{cases}\perp & \text { if } x \text { or } y \text { is } \perp \\ x \otimes y & \text { if } x, y \in M^{-} \backslash\{\perp\} \\ \left(x \rightarrow{ }_{\bullet} y^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \backslash\{\perp\} \text { and } y \in M^{+} \\ \left(y \rightarrow{ }_{\bullet} x^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \backslash\{\perp\} \\ \top & \text { if } x, y \in M^{+}\end{cases}
$$

disconnected

without zero divisors.

- connected

commutative, residuated po-semigroup without zero divisors and satisfying

$$
\begin{equation*}
\iota \otimes x=\iota \text { for } x>\perp \tag{8}
\end{equation*}
$$

APPLICATIONS OF THE ROTATION CONSTRUCTION

- in the structural description of
- Perfect and bipartite IMTL-algebras
[C. Noguera, F. Esteva, J. Gispert, Perfect and bipartite IMTLalgebras and disconnected rotations of basic semihoops, Archive for Mathematical Logic, 44 (2005), 869-886.]
- Free nilpotent minimum algebras
[M. Busaniche, Free nilpotent minimum algebras, Mathematical Logic Quartely 52 (3) (2006) 219-236.]
- Free Glivenko MTL-algebras
[R. Cignoli, A. Torrens, Free algebras in varieties of Glivenko MTL-algebras satisfying the equation $2(\mathrm{x} 2)=(2 \mathrm{x}) 2$, Studia Logica 83 (1-3) (2006) 157-181]

APPLICATIONS OF THE ROTATION CONSTRUCTION

- Nelson algebras
[M. Busaniche, R. Cignoli, Constructive Logic with Strong Negation as a Substructural Logic, Journal of Logic and Computation 20 (4) (2010) 761-793.]
- in establishing a spectral duality for finitely generated nilpotent minimum algebras [S. Aguzzoli, M. Busaniche, Spectral duality for finitely generated nilpotent minimum algebras, with applications, Journal of Logic and Computation 17 (4) (2007) 749-765.]
- in the previous talk (on one-variable axiomatizations)

3: CO-ROTATION-ANNIHILATIONS

$\begin{cases}x \otimes y & \text { if } x, y \in M^{+} \\ \left(x \rightarrow_{\circledast} y^{\prime}\right)^{\prime} & \text { if } x \in M^{+}, y \in M^{-} \\ \left(y \rightarrow_{\circledast} x^{\prime}\right)^{\prime} & \text { if } x \in M^{-}, y \in M^{+} \\ 0 & \text { if } x, y \in M^{-} \\ x \odot y & \text { if } x, y \in M^{0} \text { and } x>y^{\prime} \\ \top & \text { if } x, y \in M^{0} \text { and } x \leq y^{\prime} \\ y & \text { if } x \in M^{+}, y \in M^{0} \\ x & \text { if } x \in M^{0}, y \in M^{+} \\ 0 & \text { if } x \in M^{-}, y \in M^{0} \\ 0 & \text { if } x \in M^{0}, y \in M^{-}\end{cases}$
$\begin{cases}\perp & \text { if } x \text { or } y \text { is } \perp \\ x \otimes y & \text { if } x, y \in M^{-} \backslash\{\perp\} \\ \left(x \rightarrow{ }_{\bullet} y^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \backslash\{\perp\} \text { and } y \in M^{+} \\ \left(y \rightarrow_{\bullet} x^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \backslash\{\perp\} \\ \top & \text { if } x, y \in M^{+} \\ x \odot y & \text { if } x, y \in M^{0} \text { and } x \leq y^{\prime} \\ \top & \text { if } x, y \in M^{0} \text { and } x>y^{\prime} \\ \top & \text { if } x \in M^{+}, y \in M^{0} \\ \top & \text { if } x \in M^{0}, y \in M^{+} \\ y & \text { if } x \in M^{-} \backslash\{\perp\}, y \in M^{0} \\ x & \text { if } x \in M^{0}, y \in M^{-} \backslash\{\perp\}\end{cases}$

3: CO-ROTATION-ANNIHILATIONS

disconnected
commutative, residuated, po-semigroup, commutative, conjunctive, rotation-invariant po-semigroup,

connected

commutative, residuated, po-semigroup, commutative, rotation-invariant, integral po-monoid,
commutative, residuated, po-semigroup without zero divisors, commutative, conjunctive, rotation-invariant po-semigroup,

3: CO-ROTATION-ANNIHILATIONS

$\begin{cases}x \circledast y & \text { if } x, y \in M^{+} \\ \left(x \rightarrow_{\odot} y^{\prime}\right)^{\prime} & \text { if } x \in M^{+}, y \in M^{-} \\ \left(y \rightarrow_{\odot} x^{\prime}\right)^{\prime} & \text { if } x \in M^{-}, y \in M^{+} \\ 0 & \text { if } x, y \in M^{-} \\ x \odot y & \text { if } x, y \in M^{0} \text { and } x>y^{\prime} \\ \top & \text { if } x, y \in M^{0} \text { and } x \leq y^{\prime} \\ y & \text { if } x \in M^{+}, y \in M^{0} \\ x & \text { if } x \in M^{0}, y \in M^{+} \\ 0 & \text { if } x \in M^{-}, y \in M^{0} \\ 0 & \text { if } x \in M^{0}, y \in M^{-}\end{cases}$

$\begin{cases}\perp & \text { if } x \text { or } y \text { is } \perp \\ x \otimes y & \text { if } x, y \in M^{-} \backslash\{\perp\} \\ \left(x \rightarrow_{\otimes} y^{\prime}\right)^{\prime} & \text { if } x \in M^{-} \backslash\{\perp\} \text { and } y \in M^{+} \\ \left(y \rightarrow_{\bullet} x^{\prime}\right)^{\prime} & \text { if } x \in M^{+} \text {and } y \in M^{-} \backslash\{\perp\} \\ \top & \text { if } x, y \in M^{+} \\ x \odot y & \text { if } x, y \in M^{0} \text { and } x \leq y^{\prime} \\ \top & \text { if } x, y \in M^{0} \text { and } x>y^{\prime} \\ \top & \text { if } x \in M^{+}, y \in M^{0} \\ \top & \text { if } x \in M^{0}, y \in M^{+} \\ y & \text { if } x \in M^{-} \backslash\{\perp\}, y \in M^{0} \\ x & \text { if } x \in M^{0}, y \in M^{-} \backslash\{\perp\}\end{cases}$

- disconnected

commutative, residuated po-semigroup without zero divisors. commutative, weakly disjunctive, rotation-invariant po-semigroup,

- connected

commutative, residuated, po-semigroup satisfying

$$
\iota \otimes x=\iota \text { for } x>\perp .
$$

commutative, rotation-invariant, weakly disjunctive monoid

THANK YOU FOR YOUR ATTENTION!

