INVESTOR ENVELON

Lattice BCK logics with modus ponens as the only rule

Joan Gispert and Antoni Torrens

Facultat de Matemàtiques. Universitat de Barcelona jgispertb@ub.edu, atorrens@ub.edu

ManyVal 2013, Prague, September 2013

(4月) (4日) (4日)

æ

- I. Preliminaries.
- II. MainResults
- III. Conclusions and Open Questions.

イロン イヨン イヨン イヨン

3

BCK logic [Meredith 1962]

Axioms:

$$\begin{split} & \mathsf{B} \ (\varphi \to \psi) \to ((\psi \to \xi) \to (\varphi \to \xi) \\ & \mathsf{C} \ (\varphi \to (\psi \to \xi)) \to (\psi \to (\varphi \to \xi)) \\ & \mathsf{K} \ \varphi \to (\psi \to \varphi) \end{split}$$

Rules:

 $\mathsf{MP} \ \{\varphi, \varphi \to \psi\} \vdash \psi$

・ロン ・回 と ・ ヨ と ・ ヨ と

in the states of the section

3

BCK Algebras

An algebra $\mathbf{B} = \langle B; \rightarrow, \top \rangle$ of type (2,0) is called **BCK-algebra** [Iseki 1966] provided that it satisfies:

$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z) \approx \top.$$

 $\top \rightarrow x \approx x.$
 $x \rightarrow \top \approx \top.$
If $x \rightarrow y \approx \top$ and $y \rightarrow x \approx \top$, then $x \approx y$

<ロ> (日) (日) (日) (日) (日)

Limit UNVERSITATE INACELONA

BCK Algebras

An algebra $\mathbf{B} = \langle B; \rightarrow, \top \rangle$ of type (2,0) is called **BCK-algebra** [Iseki 1966] provided that it satisfies:

$$(x \to y) \to ((y \to z) \to (x \to z) \approx \top.$$

$$\top \to x \approx x.$$

$$x \to \top \approx \top.$$

If $x \to y \approx \top$ and $y \to x \approx \top$, then $x \approx y$

The class of all BCK-algebras (\mathbb{BCK}) is a quasivariety.

イロン イヨン イヨン イヨン

BCK Algebras

An algebra $\mathbf{B} = \langle B; \rightarrow, \top \rangle$ of type (2,0) is called **BCK-algebra** [Iseki 1966] provided that it satisfies:

$$(x \to y) \to ((y \to z) \to (x \to z) \approx \top.$$

$$\top \to x \approx x.$$

$$x \to \top \approx \top.$$

If $x \to y \approx \top$ and $y \to x \approx \top$, then $x \approx y$

The class of all BCK-algebras (\mathbb{BCK}) is a quasivariety. In fact it is a strict quasivariety [Wronski 1983]

イロト イヨト イヨト イヨト

in the states of the section

BCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{BCK} is its equivalent algebraic quasivariety.

BCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{BCK} is its equivalent algebraic quasivariety.

BCK logic is the \top -assertional logic of \mathbb{BCK} . i.e. $\Gamma \vdash_{BCK} \varphi$ if and only if for every $\mathbf{A} \in \mathbb{BCK}$, $e[\Gamma] \subseteq \{\top\}$ implies $e(\varphi) = \top$ for every evaluation e on \mathbf{A}

イロト イポト イヨト イヨト

Limit UNVERSITATE INACELONA

BCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{BCK} is its equivalent algebraic quasivariety.

BCK logic is the \top -assertional logic of \mathbb{BCK} . i.e. $\Gamma \vdash_{BCK} \varphi$ if and only if for every $\mathbf{A} \in \mathbb{BCK}$, $e[\Gamma] \subseteq \{\top\}$ implies $e(\varphi) = \top$ for every evaluation e on \mathbf{A}

There is a one to one correspondence from the class of all finitary (axiomatic) extensions of BCK logic and the class of all subquasivarieties (relative subvarieties) of \mathbb{BCK}

Lattice BCK logic

Lattice BCK logic (LBCK to short).

Axioms:

$$\begin{array}{l} \mathsf{B} \ (\varphi \to \psi) \to ((\psi \to \xi) \to (\varphi \to \xi) \\ \mathsf{C} \ (\varphi \to (\psi \to \xi)) \to (\psi \to (\varphi \to \xi)) \\ \mathsf{K} \ \varphi \to (\psi \to \varphi) \\ \lor 1 \ \varphi \to \varphi \lor \psi \\ \lor 2 \ \psi \to \varphi \lor \psi \\ \land 1 \ \varphi \land \psi \to \varphi \\ \land 2 \ \varphi \land \psi \to \psi \end{array}$$

Rules:

$$\begin{array}{l} \mathsf{M}.\mathsf{P}. \ \{\varphi,\varphi \to \psi\} \vdash \psi \\ \forall \text{-rule} \ \{\varphi \to \xi, \psi \to \xi\} \vdash \varphi \lor \psi \to \xi \\ \land \text{-rule} \ \{\xi \to \varphi, \xi \to \psi\} \vdash \xi \to \varphi \land \psi. \end{array}$$

in the states of the section

э.

BCK Lattices

An algebra $\mathbf{A} = \langle A; \rightarrow, \wedge, \vee, \top \rangle$ of type (2,2,2,0) is a **BCK-lattice** [Idziak 1984] provided that

 $\mathbf{A}^- = \langle A;
ightarrow op
angle$ is a BCK-algebra

 $\mathbf{L}(\mathbf{A}) = \langle A; \wedge, \vee \rangle \text{ is a lattice.}$

Natural order given by \mathbf{A}^- coincides with lattice order. i.e. For every $a, b \in A$, $a \to b = \top$ iff $a \land b = a$

æ

The class of all BCK lattices (\mathbb{LBCK}) is a variety. [Idziak 1984]

- - 4 回 ト - 4 回 ト

æ

The class of all BCK lattices (\mathbb{LBCK}) is a variety. [Idziak 1984]

$$\begin{array}{ll} x \to \top \approx \top \\ \top \to x \approx x \\ (x \to y) \to ((y \to z) \to (x \to z)) \approx \top \\ x \wedge y \to y \approx \top & x \to x \lor y \approx \top \\ x \wedge ((x \to y) \to y) \approx x & x \lor ((x \to y) \to y) \approx (x \to y) \to y \\ x \wedge x \approx x & x \lor x \leftrightarrow x \\ x \wedge y \approx y \wedge x & x \lor y \approx y \lor x \\ x \wedge (y \wedge z) \approx (x \wedge y) \wedge z & x \lor (y \lor z) \approx (x \lor y) \lor z \end{array}$$

- - 4 回 ト - 4 回 ト

LBCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{LBCK} is its equivalent algebraic quasivariety.

- 4 回 2 - 4 □ 2 - 4 □

LBCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{LBCK} is its equivalent algebraic quasivariety.

LBCK logic is the \top -assertional logic of \mathbb{LBCK} . i.e. $\Gamma \vdash_{LBCK} \varphi$ if and only if for every $\mathbf{A} \in \mathbb{LBCK}$, $e[\Gamma] \subseteq \{\top\}$ implies $e(\varphi) = \top$ for every evaluation e on \mathbf{A}

イロト イポト イヨト イヨト

Limit UNVERSITATE INACELONA

LBCK logic is algebraizable with $\varphi \approx \top$ as defining equation and $\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$ as set of equivalence formuli. Moreover \mathbb{LBCK} is its equivalent algebraic quasivariety.

LBCK logic is the \top -assertional logic of \mathbb{LBCK} . i.e. $\Gamma \vdash_{LBCK} \varphi$ if and only if for every $\mathbf{A} \in \mathbb{LBCK}$, $e[\Gamma] \subseteq \{\top\}$ implies $e(\varphi) = \top$ for every evaluation e on \mathbf{A}

There is a one to one correspondence from the class of all finitary (axiomatic) extensions of LBCK logic and the class of all subquasivarieties (subvarieties) of \mathbb{LBCK}

・ロン ・回と ・ヨン ・ヨン

æ

New presentation of LBCK

Axioms:

$$B (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \xi) \rightarrow (\varphi \rightarrow \xi))$$

$$C (\varphi \rightarrow (\psi \rightarrow \xi)) \rightarrow (\psi \rightarrow (\varphi \rightarrow \xi))$$

$$K \varphi \rightarrow (\psi \rightarrow \varphi)$$

$$\vee 1 \varphi \rightarrow \varphi \lor \psi$$

$$\vee 2 \psi \rightarrow \varphi \lor \psi$$

$$\wedge 1 \varphi \land \psi \rightarrow \varphi$$

$$\wedge 2 \varphi \land \psi \rightarrow \psi$$

Rules:

$$\begin{array}{l} \mathsf{M}.\mathsf{P}. \ \{\varphi, \varphi \to \psi\} \vdash \psi \\ \lor \mathsf{-rule} \ \{\varphi \to \xi, \psi \to \xi\} \vdash \varphi \lor \psi \to \xi \\ \land \mathsf{-rule} \ \{\xi \to \varphi, \xi \to \psi\} \vdash \xi \to \varphi \land \psi. \end{array}$$

New presentation of LBCK

Axioms:

$$B (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \xi) \rightarrow (\varphi \rightarrow \xi))$$

$$C (\varphi \rightarrow (\psi \rightarrow \xi)) \rightarrow (\psi \rightarrow (\varphi \rightarrow \xi)))$$

$$K \varphi \rightarrow (\psi \rightarrow \varphi)$$

$$\vee 1 \varphi \rightarrow \varphi \lor \psi$$

$$\vee 2 \psi \rightarrow \varphi \lor \psi$$

$$\vee 3 (\varphi \rightarrow \xi) \land (\psi \rightarrow \xi) \rightarrow (\varphi \lor \psi \rightarrow \xi)$$

$$\wedge 1 \varphi \land \psi \rightarrow \varphi$$

$$\wedge 2 \varphi \land \psi \rightarrow \psi$$

Rules:

$$\begin{array}{l} \mathsf{M}.\mathsf{P}. \ \{\varphi, \varphi \to \psi\} \vdash \psi \\ \land \text{-rule} \ \{\xi \to \varphi, \xi \to \psi\} \vdash \xi \to \varphi \land \psi. \end{array}$$

イロン イヨン イヨン イヨン

æ

How about the \wedge -rule?

2

How about the \wedge -rule?

$$\not\vdash (\varphi \to \psi) \land (\varphi \to \chi) \to (\varphi \to \psi \land \chi)$$

・ロン ・回 と ・ ヨン ・ ヨン

in the states of the section

How about the \wedge -rule?

$$\not\vdash (\varphi \rightarrow \psi) \land (\varphi \rightarrow \chi) \rightarrow (\varphi \rightarrow \psi \land \chi)$$

Is it possible to obtain an axiomatic presentation of LBCK with Modus Ponens as the only rule?

< □ > < □ > < □ >

æ

L(C)

・ロ・ ・ 日・ ・ 日・ ・ 日・

F={ a, b, e, T }

\longrightarrow	0	а	b	е	Т
0	Т	т	т	т	Т
а	0	т	е	т	т
b	0	е	т	т	т
е	0	е	е	т	т
т	0	а	b	е	т

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Las unassignation

C is a BCK-lattice.

F is closed under Modus Ponens.

F is not closed under \land -rule, because $e \rightarrow a = e \rightarrow b = e \in F$, but $e \rightarrow a \land b = e \rightarrow 0 = 0 \notin F$.

Hence $\langle \mathbf{C}, F \rangle$ is a model of all theorems of *LBCK*, modus ponens and it is not a model of \wedge -rule.

イロト イポト イヨト イヨト

C is a BCK-lattice.

F is closed under Modus Ponens.

F is not closed under \land -rule, because $e \rightarrow a = e \rightarrow b = e \in F$, but $e \rightarrow a \land b = e \rightarrow 0 = 0 \notin F$.

Hence $\langle \mathbf{C}, F \rangle$ is a model of all theorems of *LBCK*, modus ponens and it is not a model of \wedge -rule.

There is no axiomatic presentation of LBCK with Modus Ponens as the only rule.

イロト イポト イヨト イヨト

in the states of the section

æ

Residuated Lattice BCK logic (*RLBCK* to short) is the axiomatic extension of LBCK adding the axiom

$$(\land 3) \qquad (\varphi \to \psi) \land (\varphi \to \chi) \to (\varphi \to \psi \land \chi)$$

- 4 回 2 - 4 □ 2 - 4 □

Limit UNVERSITATE INACELONA

Residuated Lattice BCK logic (*RLBCK* to short) is the axiomatic extension of LBCK adding the axiom

$$(\land 3) \qquad (\varphi \to \psi) \land (\varphi \to \chi) \to (\varphi \to \psi \land \chi)$$

RLBCK is the $\{\land, \lor, \rightarrow\}$ -fragment of the FLew logic.

イロト イヨト イヨト イヨト

Limit UNVERSITATE INACELONA

Residuated Lattice BCK logic (*RLBCK* to short) is the axiomatic extension of LBCK adding the axiom

$$(\land 3) \qquad (\varphi \to \psi) \land (\varphi \to \chi) \to (\varphi \to \psi \land \chi)$$

RLBCK is the $\{\land, \lor, \rightarrow\}$ -fragment of the FLew logic.

RLBCK can be axiomatized by Axioms: B, C, K, \lor 1, \lor 2, \lor 3, \land 1, \land 2, \land 3 + $\varphi \rightarrow (\psi \rightarrow \varphi \land \psi)$ Rule: M.P.

イロト イポト イヨト イヨト

Our purpose is to study axiomatic extensions of LBCK with Modus Ponens as the only rule

F={ a, b, e, T }

\longrightarrow	0	а	b	е	Т
0	Т	т	т	т	Т
а	0	т	е	т	т
b	0	е	т	т	т
е	0	е	е	т	т
т	0	а	b	е	т

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule

◆□ > ◆□ > ◆臣 > ◆臣 > ○

i-filters and ∧-i-filters

```
We recall that an implicative filter (i-filter to short) of a BCK-lattice B is a subset F of B such that
(f1) \top \in F.
(f2) For every a, b \in \mathbf{B}, a, a \to b \in F implies b \in F.
```

We say that an i-filter F of **B** is a \wedge -implicative filter (\wedge -i-filter) if and only if

```
(f3) For every a, b, c \in \mathbf{B},
a \rightarrow b, a \rightarrow c \in F implies a \rightarrow b \land c \in F
```

イロト イポト イヨト イヨト

(Kühr 2007)

In every BCK-lattice the posets of congruence relations and \wedge -*i*-*f*ilters are isomorphic, both ordered by inclusion.

(本間) (本語) (本語)

Let L be an axiomatic extension of LBCK and let V_L be its associated variety. If L admits an axiomatic presentation with Modus Ponens as the only rule then for every $\mathbf{A} \in V_L$, every i-filter on \mathbf{A} is an \wedge -i-filter.

Let L be an axiomatic extension of LBCK and let V_L be its associated variety. If L admits an axiomatic presentation with Modus Ponens as the only rule then for every $\mathbf{A} \in V_L$, every i-filter on \mathbf{A} is an \wedge -i-filter.

The converse is also true

iswastore

Characterization Theorem

Theorem

An axiomatic extension L of LBCK admits Modus Ponens as the only rule if and only if there are n, m non negative integers such that

$$\vdash_L (\varphi \to \psi)^n \to ((\varphi \to \chi)^m \to (\varphi \to \psi \land \chi)).$$

イロト イポト イヨト イヨト

INVESTOR ENVELON

Characterization Theorem

Theorem

An axiomatic extension L of LBCK admits Modus Ponens as the only rule if and only if there are n, m non negative integers such that

$$\vdash_L (\varphi \to \psi)^n \to ((\varphi \to \chi)^m \to (\varphi \to \psi \land \chi)).$$

where $x^n \to y$ is defined recursively: $x^0 \to y := y$ and $x^{n+1} \to y := x \to (x^n \to y)$ for any $n \ge 0$.

イロト イポト イヨト イヨト

in the states of the section

æ

For every $n, m \in \omega$ we denote by $LBCK_{n,m}$ the axiomatic extension of LBCK obtained by adding the axiom

$$(\varphi \to \psi)^n \to ((\varphi \to \chi)^m \to (\varphi \to \psi \land \chi))$$

- - 4 回 ト - 4 回 ト

For every $n, m \in \omega$ we denote by $LBCK_{n,m}$ the axiomatic extension of LBCK obtained by adding the axiom

$$(\varphi \to \psi)^n \to ((\varphi \to \chi)^m \to (\varphi \to \psi \land \chi))$$

Given two logics L, K we denote by $L \leq K$ the usual relation of K beeing stronger than L (L beeing weaker than K) that is: For every set of formuli Γ and every formula φ , if $\Gamma \vdash_L \varphi$ then $\Gamma \vdash_K \varphi$. Then,

イロト イポト イヨト イヨト

For every $n, m \in \omega$ we denote by $LBCK_{n,m}$ the axiomatic extension of LBCK obtained by adding the axiom

$$(\varphi \to \psi)^n \to ((\varphi \to \chi)^m \to (\varphi \to \psi \land \chi))$$

Given two logics L, K we denote by $L \leq K$ the usual relation of K beeing stronger than L (L beeing weaker than K) that is: For every set of formuli Γ and every formula φ , if $\Gamma \vdash_L \varphi$ then $\Gamma \vdash_K \varphi$. Then,

For any $n, m, k \in \omega$, we have (a) $LBCK_{n,m} = LBCK_{m,n}$. (b) If $k \le n$ then $LBCK_{n,m} \le LBCK_{k,m}$ (c) If n, m > 0 then $LBCK_{n,m} \le RBCK$. (d) $LBCK_{n,0}$ is the inconsistent logic.

in the states of the section

Our aim is to see that for every n > 0,

 $RLBCK > LBCK_{n,n} > LBCK_{n+1,n+1}.$

The first strict inclusion follows from the next result.

 $RLBCK \neq LBCK_{1,1}$.

イロン イヨン イヨン イヨン

INVESTOR LANCEON

æ

3=T Ł4

• 2

• 1

0

\longrightarrow	0	1	2	Т
0	т	т	т	т
1	2	т	т	т
2	1	2	т	Т
т	0	1	2	Т

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule

・ロン ・回 と ・ ヨン ・ モン

INVESTOR LANCEON

æ

= 990

-D is a BCK- lattice.

$$-(\varphi
ightarrow \psi)
ightarrow ((\varphi
ightarrow \chi)
ightarrow (\varphi
ightarrow \psi \wedge \chi))$$
 is a **D** tautology.

Moreover, since

$$(2 \rightarrow \alpha) \land (2 \rightarrow \beta) \rightarrow (2 \rightarrow (\alpha \land \beta)) = 2 \land 2 \rightarrow (2 \rightarrow 0) = 2 \neq \top,$$

 $-(\varphi \to \psi) \land (\varphi \to \chi) \to (\varphi \to \psi \land \chi)$ is not a **D** tautology

Hence, $LBCK_{1,1} \neq RBCK$

・ロト ・回ト ・ヨト ・ヨト

To prove that $LBCK_{n,n} < LBCK_{n+1,n+1}$, it suffices to prove $LBCK_{n,n} \neq LBCK_{n+1,n+1}$

E 990

\longrightarrow	0	1	2		k-2	k-1	k
0	k	k	k	•••	k	k	k
1	k-1	k	k	•••	k	k	k
2	k-2	k-1	k		k	k	k
k-2	2	3	4		k	k	k
k-1	1	2	3		k-1	k	k
k	0	1	2		k-2	k-1	k

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule

◆□> ◆□> ◆注> ◆注>

$$-L_{k+1}^+$$
 is a BCK lattice

$$-(\varphi \to \psi)^{k-1} \to ((\varphi \to \chi)^{k-1} \to (\varphi \to \psi \land \chi))$$
 is a L_{k+1}^+ tautology.

$$-(\varphi \to \psi)^{k-2} \to ((\varphi \to \chi)^{k-2} \to (\varphi \to \psi \land \chi))$$
 is not a L_{k+1}^+ tautology.

because, for every
$$m \in \omega$$
,
 $(\alpha_k \to \alpha_k)^m \to ((\alpha_k \to k-2)^{k-2} \to (\alpha_k \to \alpha_k \land k-2)) = k - 1 \neq \top$.

・ロン ・回 と ・ ヨン ・ モン

Theorem

For every n > 0, $LBCK_{n+1,n+1} < LBCK_{n,n}$

INVERSE

Theorem

For every n > 0, $LBCK_{n+1,n+1} < LBCK_{n,n}$

Corollary

There is no weakest consistent axiomatic extension of LBCK with modus ponens as the only rule.

Local Deduction Theorem

Let *L* be an axiomatic extension of $LBCK_{n,m}$. Then for every set of formuli Σ and every formuli φ and ψ ,

 $\Sigma \cup \{\varphi\} \vdash_L \psi$ if and only if $\Sigma \vdash_L \varphi^k \rightarrow \psi$ for some $k \in \omega$

イロン 不同と 不同と 不同と

Local Deduction Theorem

Let *L* be an axiomatic extension of $LBCK_{n,m}$. Then for every set of formuli Σ and every formuli φ and ψ ,

 $\Sigma \cup \{\varphi\} \vdash_L \psi$ if and only if $\Sigma \vdash_L \varphi^k \to \psi$ for some $k \in \omega$

This is a special case of local deduction theorem, which we call the **natural local deduction theorem**

・ロン ・回 と ・ ヨ と ・ ヨ と

INVESTOR ENVELON

Local Deduction Theorem

Let *L* be an axiomatic extension of $LBCK_{n,m}$. Then for every set of formuli Σ and every formuli φ and ψ ,

 $\Sigma \cup \{\varphi\} \vdash_L \psi$ if and only if $\Sigma \vdash_L \varphi^k \to \psi$ for some $k \in \omega$

This is a special case of local deduction theorem, which we call the **natural local deduction theorem**

Theorem

Let L be an axiomatic extension of LBCK, then L admits Modus Ponens as the only rule if and only if L satisfies the natural local deduction theorem.

イロン イヨン イヨン イヨン

in the states of the section

æ

LBCK does not enjoy local deduction theorem.

LBCK does not enjoy local deduction theorem.

Algebraic proof: \mathbb{LBCK} does not satisfy the congruence extension property CEP (equivalently filter extension property FEP).

・ 同 ト ・ ヨ ト ・ ヨ ト

Ξ.

・ロト ・回ト ・ヨト ・ヨト

2

・ロン ・四 と ・ 臣 と ・ 臣 と

2

G3<C

・ロン ・回 と ・ ヨン ・ ヨン

in the states of the section

• An axiomatic extension of *LBCK* admits modus ponens as unique rule if and only if it is an axiomatic extension of *LBCK_{n,m}* for some non negative integers *n* and *m*

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Conclusions

- An axiomatic extension of *LBCK* admits modus ponens as unique rule if and only if it is an axiomatic extension of *LBCK*_{n,m} for some non negative integers n and m
- There is a decreasing unbounded chain of axiomatic extensions of LBCK with modus ponens as unique rule

 $RLBCK > LBCK_{1,1} > \cdots > LBCK_{n,n} > LBCK_{n+1,n+1} > \cdots$

イロト イポト イヨト イヨト

Conclusions

- An axiomatic extension of *LBCK* admits modus ponens as unique rule if and only if it is an axiomatic extension of *LBCK*_{n,m} for some non negative integers n and m
- There is a decreasing unbounded chain of axiomatic extensions of LBCK with modus ponens as unique rule

 $RLBCK > LBCK_{1,1} > \cdots > LBCK_{n,n} > LBCK_{n+1,n+1} > \cdots$

• Natural local deduction theorem also characterizes axiomatic extensions of LBCK with modus ponens as the only rule. While *LBCK* does not satisfy any local deduction theorem.

イロン 不同と 不同と 不同と

INVESTIGATION

Open questions

• We know from previous result that $\bigcap_{n,m\in\omega} LBCL_{n,m}$ is not an axiomatic extension of LBCK which admits modus ponens as unique rule, it remains an open question whether LBCK and $\bigcap_{n,m\in\omega} LBCL_{n,m}$ are the same logic or if not, whether they share same theorems.

Open questions

• We know from previous result that $\bigcap_{n,m\in\omega} LBCL_{n,m}$ is not an axiomatic extension of LBCK which admits modus ponens as unique rule, it remains an open question whether LBCK and $\bigcap_{n,m\in\omega} LBCL_{n,m}$ are the same logic or if not, whether they

share same theorems.

• We know that $LBCK_{n,m} = LBCK_{m,n}$ and we also know that $LBCK_{n,n} \ge LBCK_{n,n+1} > LBCK_{n+1,n+1}$; a natural question is whether $LBCK_{n,n} = LBCK_{n,n+1}$.

イロト イポト イヨト イヨト

Open questions

• We know from previous result that $\bigcap_{n,m\in\omega} LBCL_{n,m}$ is not an axiomatic extension of LBCK which admits modus ponens as unique rule, it remains an open question whether LBCK and

 $\bigcap_{n,m\in\omega} LBCL_{n,m} \text{ are the same logic or if not, whether they}$

share same theorems.

- We know that $LBCK_{n,m} = LBCK_{m,n}$ and we also know that $LBCK_{n,n} \ge LBCK_{n,n+1} > LBCK_{n+1,n+1}$; a natural question is whether $LBCK_{n,n} = LBCK_{n,n+1}$.
- Is the local deduction theorem in the frame of LBCK axiomatic extensions, equivalent to the property of admitting modus ponens as unique rule?

THANK YOU FOR YOUR ATTENTION

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule