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BCK Logic

BCK logic [Meredith 1962]

Axioms:

B (ϕ→ ψ)→ ((ψ → ξ)→ (ϕ→ ξ)

C (ϕ→ (ψ → ξ))→ (ψ → (ϕ→ ξ))

K ϕ→ (ψ → ϕ)

Rules:

MP {ϕ,ϕ→ ψ} ` ψ
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BCK Algebras

An algebra B = 〈B;→,>〉 of type (2, 0) is called BCK-algebra
[Iseki 1966] provided that it satisfies:

(x → y)→ ((y → z)→ (x → z) ≈ >.

> → x ≈ x .

x → > ≈ >.

If x → y ≈ > and y → x ≈ >, then x ≈ y

The class of all BCK-algebras (BCK) is a quasivariety.
In fact it is a strict quasivariety [Wronski 1983]
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BCK logic is algebraizable with ϕ ≈ > as defining equation and
{ϕ→ ψ,ψ → ϕ} as set of equivalence formuli. Moreover BCK is
its equivalent algebraic quasivariety.

BCK logic is the >-assertional logic of BCK.
i.e. Γ `BCK ϕ if and only if for every A ∈ BCK, e[Γ] ⊆ {>}
implies e(ϕ) = > for every evaluation e on A

There is a one to one correspondence from the class of all finitary
(axiomatic) extensions of BCK logic and the class of all
subquasivarieties (relative subvarieties) of BCK
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Lattice BCK logic

Lattice BCK logic (LBCK to short).

Axioms:

B (ϕ→ ψ)→ ((ψ → ξ)→ (ϕ→ ξ)

C (ϕ→ (ψ → ξ))→ (ψ → (ϕ→ ξ))

K ϕ→ (ψ → ϕ)

∨ 1 ϕ→ ϕ ∨ ψ
∨ 2 ψ → ϕ ∨ ψ
∧ 1 ϕ ∧ ψ → ϕ

∧ 2 ϕ ∧ ψ → ψ

Rules:

M.P. {ϕ,ϕ→ ψ} ` ψ
∨-rule {ϕ→ ξ, ψ → ξ} ` ϕ ∨ ψ → ξ

∧-rule {ξ → ϕ, ξ → ψ} ` ξ → ϕ ∧ ψ.
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BCK Lattices

An algebra A = 〈A;→,∧,∨,>〉 of type (2, 2, 2, 0) is a
BCK-lattice [Idziak 1984] provided that

A− = 〈A;→ >〉 is a BCK-algebra

L(A) = 〈A;∧,∨〉 is a lattice.

Natural order given by A− coincides with lattice order.
i.e. For every a, b ∈ A, a→ b = > iff a ∧ b = a

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule
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The class of all BCK lattices (LBCK) is a variety. [Idziak 1984]

x → > ≈ >
> → x ≈ x
(x → y)→ ((y → z)→ (x → z)) ≈ >

x ∧ y → y ≈ > x → x ∨ y ≈ >
x ∧ ((x → y)→ y) ≈ x x ∨ ((x → y)→ y) ≈ (x → y)→ y
x ∧ x ≈ x x ∨ x ≈ x
x ∧ y ≈ y ∧ x x ∨ y ≈ y ∨ x
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z
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New presentation of LBCK

Axioms:

B (ϕ→ ψ)→ ((ψ → ξ)→ (ϕ→ ξ)

C (ϕ→ (ψ → ξ))→ (ψ → (ϕ→ ξ))

K ϕ→ (ψ → ϕ)

∨ 1 ϕ→ ϕ ∨ ψ
∨ 2 ψ → ϕ ∨ ψ
∧ 1 ϕ ∧ ψ → ϕ

∧ 2 ϕ ∧ ψ → ψ

Rules:

M.P. {ϕ,ϕ→ ψ} ` ψ
∨-rule {ϕ→ ξ, ψ → ξ} ` ϕ ∨ ψ → ξ
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How about the ∧-rule?

6` (ϕ→ ψ) ∧ (ϕ→ χ)→ (ϕ→ ψ ∧ χ)

Is it possible to obtain an axiomatic presentation of LBCK with
Modus Ponens as the only rule?
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T

e

a b

0

0 a b e T

0 T T T T T

a 0 T e T T

b 0 e T T T

e 0 e e T T

T 0 a b e T

C=< {0,a,b,e,T}; , , , T >

L(C)
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T

e
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0

0 a b e T
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b 0 e T T T

e 0 e e T T

T 0 a b e T

F= a, b, e,  T 
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C is a BCK-lattice.

F is closed under Modus Ponens.

F is not closed under ∧-rule, because e → a = e → b = e ∈ F ,
but e → a ∧ b = e → 0 = 0 6∈ F .

Hence 〈C,F 〉 is a model of all theorems of LBCK , modus ponens
and it is not a model of ∧-rule.

There is no axiomatic presentation of LBCK with Modus Ponens
as the only rule.
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Residuated Lattice BCK logic (RLBCK to short) is the
axiomatic extension of LBCK adding the axiom

(∧ 3) (ϕ→ ψ) ∧ (ϕ→ χ)→ (ϕ→ ψ ∧ χ)

RLBCK is the {∧,∨,→}-fragment of the FLew logic.

RLBCK can be axiomatized by
Axioms: B, C, K, ∨ 1, ∨ 2, ∨ 3, ∧ 1, ∧ 2, ∧ 3 + ϕ→ (ψ → ϕ∧ψ)
Rule: M.P.
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Objective

Our purpose is to study axiomatic extensions of LBCK with Modus
Ponens as the only rule
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i-filters and ∧-i-filters

We recall that an implicative filter (i-filter to short) of a
BCK-lattice B is a subset F of B such that

(f1) > ∈ F .

(f2) For every a, b ∈ B, a, a→ b ∈ F implies b ∈ F .

We say that an i-filter F of B is a ∧-implicative filter (∧-i-filter)
if and only if

(f 3) For every a, b, c ∈ B,
a→ b, a→ c ∈ F implies a→ b ∧ c ∈ F

Gispert - Torrens Lattice BCK logics with modus ponens as the only rule
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(Kühr 2007)

In every BCK-lattice the posets of congruence relations and
∧-i-filters are isomorphic, both ordered by inclusion.
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Let L be an axiomatic extension of LBCK and let VL be its
associated variety. If L admits an axiomatic presentation with
Modus Ponens as the only rule then for every A ∈ VL, every i-filter
on A is an ∧-i-filter.

The converse is also true
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Characterization Theorem

Theorem

An axiomatic extension L of LBCK admits Modus Ponens as the
only rule if and only if there are n,m non negative integers such
that

`L (ϕ→ ψ)n → ((ϕ→ χ)m → (ϕ→ ψ ∧ χ)).

where xn → y is defined recursively: x0 → y := y and
xn+1 → y := x → (xn → y) for any n > 0.
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For every n,m ∈ ω we denote by LBCKn,m the axiomatic
extension of LBCK obtained by adding the axiom

(ϕ→ ψ)n → ((ϕ→ χ)m → (ϕ→ ψ ∧ χ))

Given two logics L,K we denote by L ≤ K the usual relation of K
beeing stronger than L (L beeing weaker than K ) that is: For
every set of formuli Γ and every formula ϕ, if Γ `L ϕ then Γ `K ϕ.
Then,

For any n,m, k ∈ ω, we have

(a) LBCKn,m = LBCKm,n.

(b) If k ≤ n then LBCKn,m ≤ LBCKk,m

(c) If n,m > 0 then LBCKn,m ≤ RBCK .

(d) LBCKn,0 is the inconsistent logic.
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Our aim is to see that for every n > 0,

RLBCK > LBCKn,n > LBCKn+1,n+1.

The first strict inclusion follows from the next result.

RLBCK 6= LBCK1,1.
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-D is a BCK- lattice.

-(ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ ψ ∧ χ)) is a D tautology.

Moreover, since

(2→ α)∧(2→ β)→ (2→ (α∧β)) = 2∧2→ (2→ 0) = 2 6= >,

-(ϕ→ ψ) ∧ (ϕ→ χ)→ (ϕ→ ψ ∧ χ) is not a D tautology

Hence, LBCK1,1 6= RBCK
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To prove that LBCKn,n < LBCKn+1,n+1, it suffices to prove
LBCKn,n 6= LBCKn+1,n+1
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-L+
k+1 is a BCK lattice

-(ϕ→ ψ)k−1 → ((ϕ→ χ)k−1 → (ϕ→ ψ ∧ χ)) is a L+
k+1

tautology.

-(ϕ→ ψ)k−2 → ((ϕ→ χ)k−2 → (ϕ→ ψ ∧ χ)) is not a L+
k+1

tautology.

because, for every m ∈ ω,
(αk → αk)m → ((αk → k − 2)k−2 → (αk → αk ∧ k − 2)) =
k − 1 6= >.
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Theorem

For every n > 0, LBCKn+1,n+1 < LBCKn,n

Corollary

There is no weakest consistent axiomatic extension of LBCK with
modus ponens as the only rule.
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Local Deduction Theorem

Let L be an axiomatic extension of LBCKn,m. Then for every set of
formuli Σ and every formuli ϕ and ψ,

Σ ∪ {ϕ} `L ψ if and only if Σ `L ϕk → ψ for some k ∈ ω

This is a special case of local deduction theorem, which we call the
natural local deduction theorem

Theorem

Let L be an axiomatic extension of LBCK , then L admits Modus
Ponens as the only rule if and only if L satisfies the natural local
deduction theorem.
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LBCK does not enjoy local deduction theorem.

Algebraic proof: LBCK does not satisfy the congruence extension
property CEP (equivalently filter extension property FEP).
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Conclusions

An axiomatic extension of LBCK admits modus ponens as
unique rule if and only if it is an axiomatic extension of
LBCKn,m for some non negative integers n and m

There is a decreasing unbounded chain of axiomatic
extensions of LBCK with modus ponens as unique rule

RLBCK > LBCK1,1 > · · · > LBCKn,n > LBCKn+1,n+1 > · · ·

Natural local deduction theorem also characterizes axiomatic
extensions of LBCK with modus ponens as the only rule.
While LBCK does not satisfy any local deduction theorem.
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Open questions

We know from previous result that
⋂

n,m∈ω
LBCLn,m is not an

axiomatic extension of LBCK which admits modus ponens as
unique rule, it remains an open question whether LBCK and⋂
n,m∈ω

LBCLn,m are the same logic or if not, whether they

share same theorems.

We know that LBCKn,m = LBCKm,n and we also know that
LBCKn,n ≥ LBCKn,n+1 > LBCKn+1,n+1; a natural question is
whether LBCKn,n = LBCKn,n+1.

Is the local deduction theorem in the frame of LBCK
axiomatic extensions, equivalent to the property of admitting
modus ponens as unique rule?
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Thank you for your attention
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