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aguzzoli@di.unimi.it

(2)Dipartimento di Scienze Teoriche e Applicate, Università dell’Insubria, Varese
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Chang’s MV-algebra

Linearly ordered MV-algebras (MV-chains) can be simple or non-simple:
simple MV-chains are subalgebras of the standard MV-algebra [0, 1].

The basic example of a non simple MV-chain is Chang’s MV-algebra.

It can be defined as
C = Γ(Z lexZ, (1, 0)) ,

where Z lexZ is the abelian `-group obtained as the lexicographic product
of two copies of the `-group Z of the integer numbers, and Γ is Mundici’s
functor, which implements a categorical equivalence between abelian
`-groups with a distinguished strong unit and MV-algebras.
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DLMV

DLMV is the variety generated by the Chang’s MV-algebra C.

The variety DLMV is axiomatized from the variety of MV-algebras adding
the axiom

(2x)2 = 2x2 .

The variety DLMV is not standard complete, i.e., there is no MV-algebra
generating DLMV that has [0, 1] as support.

C is a subalgebra of Γ(Z lexR, (1, 0)).

Γ(Z lexR, (1, 0)) also generates DLMV.
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The MV-algebra [0, 1](1/2)

We can represent Γ(Z lexR, (1, 0)) isomorphically as an MV-algebra

[0, 1](1/2) = ([0, 1/2) ∪ (1/2, 1], �̃,¬, 0)

which is clearly not a subalgebra of the standard MV-algebra [0, 1], nor it
is complete as a lattice.

The monoidal operation �̃ is given by

x�̃y =


1− x − y + 2xy if x , y ∈ (1/2, 1]
x+y−1
2y−1 if x ∈ [0, 1/2), y ∈ (1/2, 1] and x + y > 1

0 otherwise

.
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Cancellative hoops

Definition

A cancellative hoop is a hoop (H, ∗,→, 1) such that x ∗ y ≤ z ∗ y implies
x ≤ z for each x , y , z ∈ H.

The main example of cancellative hoop is ((0, 1], ·,→·, 1) where · is the
usual product of real numbers and

x →· y =

{
1 if x ≤ y
y/x otherwise.

The map h : x ∈ (0, 1]→ (x + 1)/2 ∈ (1/2, 1] is a bijection and, so, h
induces on (1/2, 1] a structure of cancellative hoop.
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Disconnected rotation

Definition

Let (H, ·,→, 1) be a hoop and H− be a set disjoint from H, and let − be a
bijection from H onto H−. We denote by DR(H) the structure whose
domain is H ∪ H−, whose constants are 1 and 0 = 1− and whose
operations ◦, ⇒ and ¬ are defined, for all x , y ∈ H by the following
clauses:

x ◦ y =


x · y , if x , y ∈ H
(x → y−)− if x ∈ H, y ∈ H−

(y → x−)− if x ∈ H−, y ∈ H
0 otherwise.

x ⇒ y =


x → y , if x , y ∈ H
(x · y−)− if x ∈ H, y ∈ H−

1 if x ∈ H−, y ∈ H
y− → x− if x , y ∈ H−

This construction is called disconnected rotation.
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Starting from cancellative hoops

The MV-algebra [0, 1](1/2) is, up to isomorphisms, the disconnected
rotation of the standard cancellative hoop ((0, 1], ·,→, 1).

In the paper [CigTor] a very general construction is given, that has as a
particular case the construction of the algebras in the variety DLMV from
cancellative hoops.

Another case of the same construction permits to obtain product algebras
from cancellative hoops:

Product standard algebra is given by the t-norm of product and its
associated residuum

x →· y =

{
1 if x ≤ y
y/x otherwise.

It is easy to see that the product algebra ([0, 1], ·,→·, 0) can be obtained
from the cancellative hoop ((0, 1], ·,→·, 1) by adding a bottom element
and properly extending the operations.
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Free algebras

In this section we give an explicit functional description of the free algebra
in the variety DLMV. It is know that

Theorem (CigTor)

Fn
DLMV '

2n∏
i=1

DR(Fn
CH)

In order to give a [0, 1]-functional representation of Fn
DLMV, we are going

to use the fact that DLMV is generated by a disconnected rotation of the
cancellative hoop (0, 1], together with resizing functions:

β0 : x ∈ [0, 1/2)→ 1− 2x ∈ (0, 1],

β1 : x ∈ (1/2, 1]→ 2x − 1 ∈ (0, 1].
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Free cancellative hoops

Definition

A monomial n-variate function on D ⊆ R is a function f : Dn → D such
that f (x1, . . . , xn) = 1 ∧ (xm1

1 · . . . · xmn
n ) where mi ∈ Z, for each

i = 1, . . . , n.
A piece-wise monomial function f on D ⊆ R is a continuous function f
such that there exists a family {fm}m∈M of monomial functions and
f =

∨
p

∧
q fpq.

Theorem

The free cancellative hoop Fn
CH over n generators is the algebra of

functions from (0, 1]n → (0, 1] that are piecewise monomial.
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Free DLMV -algebras

Definition

For every b = (b1, . . . , bn) ∈ {0, 1}n consider

Bb
i =

{
[0, 1/2) if bi = 0
(1/2, 1] if bi = 1

and let
Db = Bb

1 × . . .× Bb
n .
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Let

β(Db) =
n∏

i=1

βi (B
b
i ) ⊆ (0, 1]n .

Theorem

Fn
DLMV is isomorphic to the MV-algebra of functions

f : [0, 1](1/2)
n → [0, 1](1/2)

such that, for every b ∈ {0, 1}n, there exists a piecewise monomial function

pb : (0, 1]n → (0, 1]

such that either

f � Db = β−1
0 ◦ pb ◦ β or

f � Db = β−1
1 ◦ pb ◦ β,

with operations defined pointwisely.
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Example

This is an example for n = 1:
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Adding 1/2 to [0, 1] \ {1/2}
We want now to extend the operation �̃ to the operation �JΠ defined on
the whole interval [0, 1]:

x �JΠ y =


x�̃y if x , y /∈ S3

x �3 y if x , y ∈ S3

x �3 dye2 if x ∈ S3 \ {1}, y /∈ S3

dxe2 �3 y if x /∈ S3, y ∈ S3 \ {1}

where �̃ is the conjunction of [0, 1](1/2), S3 is the MV-chain {0, 1/2, 1},
�3 is the conjunction in S3 and for each x ∈ [0, 1],

dxe2 =


0 if x = 0

1/2 if 0 < x ≤ 1/2

1 if 1/2 < x ≤ 1
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Rotation of product t-norm

Definition

Let T be a left continuous t-norm without zero divisors and T1 the linear
trasformation of T into [1/2, 1]. Define TJ : [0, 1]2 → [0, 1] by

TJ(x , y) =


T1(x , y) if x , y > 1/2

¬IT1(x ,¬y) if x > 1/2, y ≤ 1/2

¬IT1(y ,¬x) if x ≤ 1/2, y > 1/2

0 if x , y ≤ 1/2

,

where IT1(x , y) = sup{s ∈ [1/2, 1] | T1(x , s) ≤ y}.

We call TJ the connected rotation of T .

Proposition

�JΠ is a left-continuous t-norm. In particular it is the connected rotation
of the product t-norm.
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We can then consider the MTL-algebra

[0, 1]JΠ = ([0, 1],�JΠ,→JΠ,∧, 0)

(that actually is an IMTL-algebra). Note that [0, 1]JΠ is not an
MV-algebra.

We further have

[0, 1]JΠ is the connected rotation of the cancellative hoop ((0, 1], ·,→·, 1).

Definition

Let JΠ denote the variety of IMTL-algebras generated by

([0, 1],�JΠ,→JΠ,∧, 0).
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Free algebras in JΠ

Theorem

Fn
JΠ
∼= DR(Fn

CH)2n ×
n−1∏
j=1

(CR(F i
CH))2i(ni)
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Functional description of Fn
JΠ

We define

β(Db) =
∏
i∈Ib

βi (B
b
i ) ⊆ (0, 1]nb

where Ib = {i | bi 6= 1/2} and nb = |Ib|.

B. Gerla (DiSTA) Involutive left-continuous t-norms arising from completion of MV-chains



Functional description of Fn
JΠ

We define

β(Db) =
∏
i∈Ib

βi (B
b
i ) ⊆ (0, 1]nb

where Ib = {i | bi 6= 1/2} and nb = |Ib|.

B. Gerla (DiSTA) Involutive left-continuous t-norms arising from completion of MV-chains



Let FJΠn be the set of functions

f : [0, 1]n → [0, 1]

such that, for every b ∈ {0, 1/2, 1}n, there exists a piecewise monomial
function pb : (0, 1]nb → (0, 1] such that either

f � Db = β−1
0 ◦ pb ◦ β or

f � Db = β−1
1 ◦ pb ◦ β or

(just in case nb < n) f � Db = 1/2.

The set FJΠn can be equipped with a structure of IMTL-algebra by
extending componentwise the operations of [0, 1]JΠ.

Theorem

Fn
JΠ is isomorphic to FJΠn.
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Axiomatising MV from IMTL

Let
B = [0, 1](1/2) C = {0, 1/2, 1} D = [0, 1]JΠ

and note that B and C are MV-algebras, while D is not (we fix a common
IMTL-language).

Then, from a direct inspection of the functions involved, we have the
following result

F1(V(B,C )) ∼= F1(V(D)) .

As a consequence, the two varieties cannot be distinguished by equations
with one variable.

Hence, all one-variable equations holding for MV-algebras must also hold
in D.
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Axiomatising MV from IMTL

Theorem

The variety of MV-algebras admits no one-variable axiomatisation from
the variety of MTL-algebras.

Corollary

The variety of BL-algebras admits no one-variable axiomatisation from the
variety of MTL-algebras.

The variety V(B,C ) can be axiomatized with one-variable equations from
the axioms defining MV-algebras; hence:

Proposition

MV ∩ V(D) = V(B,C ) .
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the axioms defining MV-algebras; hence:

Proposition

MV ∩ V(D) = V(B,C ) .
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Categorical equivalences

Let us consider the categories Π, DLMV, JΠ and CH and their full
subcategories of directly indecomposable objects.

Directly indecomposable algebras in Π are exactly cancellative hoops with
an added bottom.

Directly indecomposable algebras in DLMV are exactly disconnected
rotation of cancellative hoops.

Directly indecomposable algebras in JΠ are either disconnected or
connected rotation of cancellative hoops.
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Categorical equivalences: directly indecomposable
We can hence establish a categorical equivalence among the following
categories:

The categories of directly indecomposable Π algebras, directly
indecomposable DLMV algebras and cancellative hoops are equivalent.

We can then consider a category Π[ whose objects are pairs

(P, b)

of a Π-algebra P and an element b in the Boolean skeleton of P, and
whose arrows (P1, b1)→ (P2, b2) are product algebras homomorphisms
f : P1 → P2 such that f (b1) ≤ b2.

Further, let Π[
1 be the subcategory of Π[ in which the product algebras are

directly indecomposable. Then:

The category of directly indecomposable JΠ algebras is equivalent to Π[
1.
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Categorical equivalences: finitely presented

Finitely presented algebras are direct product of finitely many directly
indecomposable algebras, hence we have:

The category of finitely presented DLMV algebras is equivalent to the
category of finitely presented Π algebras.

Further, let Π[
2 be the subcategory of Π[ in which the product algebras are

finitely presented.

The category of finitely presented JΠ algebras is equivalent to Π[
2.
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Generalising
Let us fix some notation: we set

Sω
n = Γ(Z lexZ, (n − 1, 0)) ,

S c
n = Γ(Z lexR, (n − 1, 0)) ,

Sn = Γ(Z, n − 1) .

Note that

Sn ∼= Ln =

{
0,

1

n − 1
,

2

n − 1
. . . ,

n − 2

n − 1
, 1

}
.

For each integer n > 1, we can find an MV-chain Lcn with universe

[0, 1] \
{

1

n
,

2

n
. . . ,

n − 2

n

}
such that

Sω
n ⊆ S c

n
∼= Lcn .
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Left-continuous t-norms �∗n

Clearly, [0, 1] = Lcn ∪ Ln+1.

We can define for each integer n > 1 the operation �∗n setting, for every
x , y ∈ [0, 1]:

x �∗n y =


x �c

n y if x , y /∈ Ln+1

x �n+1 y if x , y ∈ Ln+1

x �n+1 dyen+1 if x ∈ Ln+1, y /∈ Ln+1

dxen+1 �n+1 y if x /∈ Ln+1, y ∈ Ln+1

where �c
n is the monoidal conjunction of Lcn, �n+1 is the monoidal

conjunction of Ln+1 and for each x ∈ [0, 1], dxen+1 is the smallest element
of Ln+1 greater or equal to x .

�∗n is a left-continuous t-norm.
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This is an example for n = 3:

0.0

0.5

1.0
0.0

0.5

1.0

0.0

0.5

1.0
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This is an example for n = 4:
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This is an example for n = 5:
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This is an example for n = 20:
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We obtain an IMTL-algebra ([0, 1],�c
n,→c

n,∧, 0).

Note that, for each n > 1,

F1(V([0, 1],�c
n,→c

n,∧, 0)) ∼= F1(V(Sω
n ,Sn+1)),

and
MV ∩ V([0, 1],�c

n,→c
n,∧, 0)) = V(Sω

n ,Sn+1) .

Theorem

Given a subvariety of MV-algebras V, if there exists a standard
IMTL-algebra L such that:

F1(V) ∼= F1(V(L))

then either V = MV (and the L is the standard MV-algebra) or there is n
such that V = V(Sω

n ,Sn+1).
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