A betting metaphor for belief functions on MV-algebras and fuzzy epistemic states

Tommaso Flaminio¹ Lluis Godo²

MANYVAL 2013

¹DiSTA, University of Insubria, Italy. tommaso.flaminio@uninsubria.it ²IIIA - CSIC, Campus de la UAB, Spain. godo@iiia.csic.es

The extension problem: classical setting

Two players, Bookmaker (B) and Gambler (G), play the following game:

- **b** fixes a finite class of *events* e_1, \ldots, e_k and a *Book* $\alpha : e_i \mapsto \alpha_i \in [0, 1]$;
- **G** chooses *stakes* $\sigma_1, \ldots, \sigma_k$ in \mathbb{R} one for each event e_i and **G** pays to **B** the amount of $\sum_{i=1}^k \sigma_i \cdot \alpha_i$ euros.
- ► In a *future* possible word *V*, for each *e*_{*i*}, **B** pays to **G**:
 - 0 euros if e_i is *false* in *V*;
 - σ_i euros if e_i turns out to be *true* in *V*.
- Hence **G** and **B** are betting on unknown events and on the fact that they will turn out to be true.
- ► The total balance of the game for **B** is hence:

$$\sum_{i=1}^k \sigma_i \cdot \alpha_i - \sum_{i=1}^k \sigma_i \cdot V(e_i) = \sum_{i=1}^k \sigma_i \cdot (\alpha_i - V(e_i)).$$

The book α is said to be a *Dutch-Book* provided that Gambler **G** has a strategy of bets ensuring her a *sure win* in every possible world *V*.

Formalization of the problem

Let $X = \{V_1, V_2, \dots, V_n\}$ be a finite set of possible worlds, and let e_1, \dots, e_k in 2^X . A *book* is a map

$$\alpha: e_i \mapsto \alpha_i \in [0,1].$$

Then α is coherent iff for every $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$, there exists a possible world (i.e. a Boolean homomorphism) $V_i : 2^X \to \{0, 1\}$ such that

$$\sum_{i=1}^k \sigma_i(\alpha(e_i) - V_j(e_i)) \ge 0.$$

By de Finetti's theorem the coherence of α is equivalent to the existence of a probability measure P_{α} on 2^{X} such that for each *i*,

$$P_{\alpha}(e_i) = \alpha(e_i) = \alpha_i.$$

For every possible world $V_j \in \{V_1, \ldots, V_n\}$ let

$$p_j = \langle V_j(e_1), \ldots, V_j(e_k) \rangle \in \{0, 1\}^k$$

and let

$$\mathcal{H} = \operatorname{co}\{p_j : j \in \{1, 2, \dots, n\}\} \subseteq [0, 1]^k.$$

Then the book α is coherent (i.e. it extends to P_{α}) iff

 $\langle \alpha_1,\ldots,\alpha_k\rangle\in\mathcal{H}.$

The case of many-valued events

MV-algebras are the equivalent algebraic semantics for Łukasiewicz logic. These algebras are systems $\mathbf{A} = (A, \oplus, \neg, 0, 1)$ of type (2, 1, 0, 0). The class of MV-algebras forms a variety \mathbb{MV} .

- The typical example of MV-algebra is [0, 1]_{MV} = ([0, 1], ⊕, ¬, 0, 1) where, for each *x*, *y* ∈ [0, 1], *x* ⊕ *y* = min{1, *x* + *y*} and ¬*x* = 1 − *x*. The algebra [0, 1]_{MV} is generic for MV.
- (2) The class of all functions from [0, 1]^k to [0, 1] which are continuous, piecewise linear with integer coefficients, together with operations ⊕ and ¬ defined as in [0, 1]_{MV} pointwise, is the free MV-algebra with k generators.

De Finetti's coherence criterion can be stated in the frame of MV-algebras as follows (cf. Paris (7) and Mundici (6)):

Let *A* be an MV-algebra, and let e_1, \ldots, e_k be *events* in *A*. Let further

$$\alpha: e_i \mapsto \alpha_i \in [0,1]$$

be a book on the events e_i 's published by the bookmaker.

Then α is coherent provided that for every choice of stakes $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$, there exists a *many-valued possible world* $V : A \to [0, 1]_{MV}$ (i.e. an MV-homomorphism) such that

$$\sum_{i=1}^k \sigma_i \cdot \alpha(e_i) - \sum_{i=1}^k \sigma_i \cdot V(e_i) = \sum_{i=1}^k \sigma_i(\alpha(e_i) - V(e_i)) \ge 0.$$

A state on an MV-algebra *A* is a map $\mathbf{s} : A \rightarrow [0, 1]$ such that:

► Whenever $x \odot y = 0$, $\mathbf{s}(x \oplus y) = \mathbf{s}(x) + \mathbf{s}(y)$, (where $x \odot y = \neg(\neg x \oplus \neg y)$).

Mundici (6) (and Kühr-Mundici (5)) proved the following generalization of de Finetti's theorem:

Theorem. Let *A* be an MV-algebra, $\{e_1, \ldots, e_k\} \subseteq A$, and $\alpha : e_i \mapsto \alpha_i \in [0, 1]$. Then the following are equivalent:

- α is coherent;
- There exists a state $\mathbf{s} : A \to [0, 1]$ such that $\mathbf{s}(e_i) = \alpha_i$ for each $i = 1, \dots, k$;
- ▶ There are MV-homomorphisms $V_1, \ldots, V_{k+1} : A \rightarrow [0, 1]_{MV}$ such that

$$\langle \alpha_1,\ldots,\alpha_k\rangle\in\mathrm{co}\{p_j\mid j=1,\ldots,k+1\}.$$

where $p_j = \langle V_j(e_1), ..., V_j(e_k) \rangle \in [0, 1]^k$.

Belief functions on Boolean algebras

Belief functions on Boolean algebras can be introduced as follows: Let 2^X be a Boolean algebra of sets. For every $A \subseteq X$, consider the map

 $\beta_A : B \subseteq X \mapsto \begin{cases} 1 & \text{if } B \subseteq A \\ 0 & \text{otherwise.} \end{cases}$

Then *bel* : $2^X \to [0, 1]$ is a *belief function on* 2^X provided that there exists a probability measure $P : 2^{2^X} \to [0, 1]$ such that, for every $A \in 2^X$,

 $bel(A) = P(\beta_A).$

A characterization of coherence in terms of extendability to a belief function was proved by Jaffray, 1989 (4). We will provide a similar result to the case of many-valued events.

Belief functions on MV-algebras of fuzzy sets

In order to generalize belief function to MV-algebras of the form $[0, 1]^X$ (with X finite), consider, for every $a \in [0, 1]^X$, the map ρ_a so defined:

 $\rho_a: \pi \in [0,1]^X \mapsto \inf\{\neg \pi(x) \oplus a(x): x \in X\}.$

Notice that the map ρ_a generalizes β_A : for every $A \in 2^X$, the restriction of ρ_A to 2^X coincides with β_A .

The MV-algebra \mathcal{R}_X generated by all the functions ρ_a (for $a \in [0, 1]^X$) is a separating MV-algebra of continuous functions.

The MV-algebra \mathcal{R}_X is an MV-subalgebra of $[0, 1]^{[0,1]^X}$.

Definition. A map $\mathbf{b} : [0, 1]^X \to [0, 1]$ is belief function if there exists a state $\mathbf{s} : \mathcal{R}_X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

 $\mathbf{b}(a) = \mathbf{s}(\rho_a).$

A belief function **b** is said to be *normalized* provided that $\mathbf{b}(\mathbf{0}) = 0$.

The map $\rho_{(\cdot)}(\pi)$

For each $\pi \in [0, 1]^X$, the map

$$N^{\pi}: a \in [0,1]^X \mapsto \rho_a(\pi) \in [0,1]$$

is a homogeneous necessity measure, Moreover $N^{\pi}(\cdot)$ is normalized provided that there exists an $x \in X$ such that $\pi(x) = 1$.

Lemma. (1) The class of all necessity measures on $[0, 1]^X$ coincides with the class $\{\rho_{(.)}(\pi) : a \in [0, 1]^X \mapsto \rho_a(\pi) \mid \pi \in [0, 1]^X\}$. (2) The class of all normalized necessity measures on $[0, 1]^X$ coincides with the class $\{\rho_{(.)}(\pi) : a \in [0, 1]^X \mapsto \rho_a(\pi) \mid \pi \in [0, 1]^X, \max_{x \in X} \pi(x) = 1\}$.

*

Remark. In order to define (normalized) belief functions on $[0, 1]^X$ we need two kind of mappings:

- A (normalized) necessity measure (equivalently a (normalized) possibility distribution);
- ► A state.

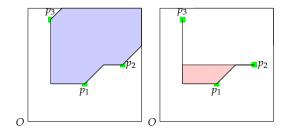
Idempotent (tropical) convex combinations

Fix $p_1, ..., p_n \in [0, 1]^k$. A point $x \in [0, 1]^k$ is a

bounded (normalized) min-plus convex combination of p_1, \ldots, p_n if there exist $\lambda_1, \ldots, \lambda_n \in [-1, 0]$ (with $\bigvee_{i \le n} \lambda_i = 0$) such that

$$x(j) = \bigwedge_{i \le n} (\lambda_i + p_i(j)), \text{ for every } j = 1, \dots, k.$$

The *bounded min-plus convex hull* of $\{p_1, \ldots, p_n\}$ is denoted bmp-co (p_1, \ldots, p_n) , The *bounded normalized min-plus convex hull* of $\{p_1, \ldots, p_n\}$ is denoted nmp-co (p_1, \ldots, p_n) ,



Theorem. [F-Godo, (3)] Let $e_1, \ldots, e_k \in [0, 1]^X$, and let $\alpha : e_i \mapsto \alpha_i$ be an assignment. Then the following hold:

1. α extends to a belief function **b** on $[0, 1]^X$ iff there are MV-homomorphisms $V_x : [0, 1]^X \to [0, 1]_{MV}$ (for $x \in X$) such that

 $\langle \alpha_1, \ldots, \alpha_k \rangle \in \overline{\operatorname{co}}(\operatorname{bmp-co}(\{p_x : x \in X\})).$

2. α extends to a normalized belief function **b** on $[0,1]^X$ iff there are MV-homomorphisms $V_x : [0,1]^X \to [0,1]_{MV}$ (for $x \in X$) such that

 $\langle \alpha_1, \ldots, \alpha_s \rangle \in \overline{\operatorname{co}}(\operatorname{nmp-co}(\{p_x : x \in X\})).$

(For every $x \in X$, $p_x = \langle V_x(e_1), \ldots, V_x(e_k) \rangle$)

Let $X = \{V_1, V_2, V_3\}$, and let $e_1, e_2 \in [0, 1]^X$ be:

$$e_1 = \langle 1/2, 5/6, 1/5 \rangle$$
 and $e_2 = \langle 1/3, 1/2, 9/10 \rangle$,

and the following assignments

$$\alpha_1(e_1) = 1/3, \alpha_1(e_2) = 2/5 \tag{1}$$

and

$$\alpha_2(e_1) = 2/3, \alpha_2(e_2) = 18/40 \tag{2}$$

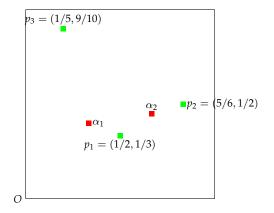
The events e_1 and e_2 corresponds, in $[0, 1]^2$, to the points:

$$p_1 = \langle V_1(e_1), V_1(e_2) \rangle = \langle 1/2, 1/3 \rangle$$

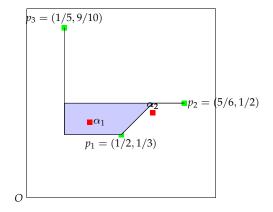
$$p_2 = \langle V_2(e_1), V_2(e_2) \rangle = \langle 5/6, 1/2 \rangle$$

$$p_3 = \langle V_3(e_1), V_3(e_2) \rangle = \langle 1/5, 9/10 \rangle$$

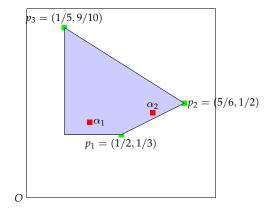
Extending to a Normalized Belief Function



Extending to a Normalized Necessity Measure



Extending to a Normalized Belief Function



Towards a betting interpretation

Turning back to the previous result, given a finite class of events in $[0, 1]^X$, and a book

 $\alpha: e_i \mapsto \alpha_i,$

the following are equivalent:

▶ There exists a (normalized) belief function $\mathbf{b} : [0, 1]^X \rightarrow [0, 1]$ such that

$$\mathbf{b}(e_i) = \alpha$$

for each *i*;

• There exists a state $\mathbf{s} : \mathcal{R}_X \to [0, 1]$ such that, for each $i = 1, \dots, k$

$$\mathbf{s}(\rho_{e_i}) = \alpha_i$$

► The book

 $\alpha_R: \rho_{e_i} \mapsto \alpha_i$

is coherent (in terms of *states*), i.e. for every stakes $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$, there exists a MV-homomorphism $V : \mathcal{R}_X \to [0, 1]_{MV}$ (i.e. a MV-possible world) such that

$$\sum_{i=1}^k \sigma_i(\alpha(\rho_{e_i}) - V(\rho_{e_i})) \ge 0.$$

Lemma. For every homomorphisms $V : \mathcal{R}_X \to [0, 1]_{MV}$ there is a point $\pi \in [0, 1]^X$ such that $V(\rho_a) = \rho_a(\pi) = N^{\pi}(a)$.

Hence we can state the coherence criterion for belief functions as follows:

Definition. A book $\alpha : e_i \in [0, 1]^X \to [0, 1]$ is **b**-coherent iff for all stakes $\sigma_1, \ldots, \sigma_k$, there exists a possibility distribution $\pi : X \to [0, 1]$ such that

$$\sum_{i=1}^k \sigma_i(\alpha(e_i) - N^{\pi}(e_i)) \ge 0$$

Then

Theorem. A book $\alpha : e_i \mapsto \alpha_i \in [0, 1]$ is **b**-coherent iff there exists a belief function **b** : $[0, 1]^X \to [0, 1]$ such that, for each i = 1, ..., k,

 $\mathbf{b}(e_i) = \alpha(e_i).$

Back to betting games

Two players, Bookmaker (B) and Gambler (G), play the following game:

- **b B** fixes a finite class of *events* $e_1, \ldots, e_k \in [0, 1]^X$ and a *book* $\alpha : e_i \mapsto \alpha_i$;
- **G** chooses *stakes* $\sigma_1, \ldots, \sigma_k$ in \mathbb{R} one for each event e_i and **G** pays to **B** $\sum_{i=1}^{k} \sigma_i \cdot \alpha(e_i)$.
- Now G and B are betting on unknown events and on the fact that they will turn out to be necessarily true in a *fuzzy epistemic state* π:
 - ▶ **B** and **G** receive, for every event e_i , a truth value $V_x(e_i)$ from every $x \in X$ (not only one truth-value as in the case of states!).
 - Given π, they aggregate the truth values of each e_i by the necessity measure N^π as

$$N^{\pi}(e_i) = \bigwedge_{x \in X} \neg \pi(e_i) \oplus V_x(e_i).$$

► The total balance of the game for **B** is hence:

$$\sum_{i=1}^k \sigma_i \cdot \alpha(e_i) - \sum_{i=1}^k \sigma_i \cdot N^{\pi}(e_i) = \sum_{i=1}^k \sigma_i \cdot (\alpha(e_i) - N^{\pi}(e_i)).$$

The book α is said to be a **b**-*Dutch*-*Book* provided that Gambler **G** has a winning strategy ensuring a *sure win* in every possibility distribution of worlds (i.e. fuzzy epistemic state) $\pi : X \rightarrow [0, 1]$.

The above criterion is stated with respect to the whole class $\mathscr{P}(X) = [0, 1]^X$ of possibility distribution. Let

$$\mathscr{N}(\mathbf{X}) = \{ \pi \in \mathscr{P}(\mathbf{X}) \mid \exists x \in \mathbf{X}, \pi(x) = 1 \}.$$

and

$$\mathscr{D}(X) = \{ \pi \in \mathscr{N}(X) \mid \exists ! x \in X, \pi(x) = 1 \text{ and } \pi(x') = 0 \text{ if } x' \neq x \}.$$

Then

$$\mathscr{D}(X) \subseteq \mathscr{N}(X) \subseteq \mathscr{P}(X).$$

For a subset $\mathscr{S}(X)$ of $\mathscr{P}(X)$ let us call $\mathscr{S}(X)$ -*coherent* any book α on e_1, \ldots, e_k , for which the betting game fixes the possibility distributions to be in $\mathscr{S}(X)$.

Theorem. Let e_1, \ldots, e_k be events in $[0, 1]^X$ and let $\alpha : e_i \mapsto \alpha_i$ be a book. Then:

- α is $\mathscr{P}(X)$ -coherent iff there exists a **belief function b** : $[0, 1]^X \to [0, 1]$ which extends α .
- α is $\mathcal{N}(X)$ -coherent iff there exists a **normalized** belief function **b** : $[0,1]^X \to [0,1]$ which extends α .
- α is $\mathscr{D}(X)$ -coherent iff there exists a **state** $\mathbf{s} : [0,1]^X \to [0,1]$ which extends α .

Indeterminacy degree and conditional bets (work in progress)

Given a possibility distribution π on worlds, it is natural to define, for every event *e*, its *indeterminacy degree* as:

$$I^{\pi}(e) = \Pi^{\pi}(e) - N^{\pi}(e).$$

Then we can consider a game in which **B**, given a possibility distribution π , is *obliged* to call off a bet on each event e_i involved in a book, for which $I^{\pi}(e_i) = 1$.

In this frame, the total balance for **B**, in a distribution π , is given by

$$\sum_{i=1}^{k} (1 - I^{\pi}(e_i)) \cdot (\sigma_i \cdot (\alpha(e_i) - N^{\pi}(e_i)))$$

A book $\alpha : e_i \to \alpha_i$, is said to be *coherent under indeterminacy* iff there is no way for **G** to make **B** incur in a sure loss, i.e. iff there is no system of bets $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$ such that, for every possibility distribution π ,

$$\sum_{i=1}^{k} (1 - I^{\pi}(e_i)) \cdot (\sigma_i \cdot (\alpha(e_i) - N^{\pi}(e_i))) < 0.$$

Then

Expected result. A book α : $e_i \rightarrow \alpha_i$, is coherent under indeterminacy iff there is a *conditional state* **s** such that, for every i = 1, ..., n

$$\mathbf{s}(\Box e_i \mid \Diamond e_i \rightarrow \Box e_i) = \alpha_i.$$

Future work

We have presented a betting metaphor for belief functions on MV-algebras of fuzzy sets which can be uniformly applied to recover similar results w.r.t. normalized belief functions and states.

- ▶ Provide an *intuitive interpretation* for possibility distributions (fuzzy-epistemic states for **B** and **G**).
- ▶ Defining a *decision procedure* for the players which could suggest them to chose a particular subset of $\mathscr{P}(X)$ for their game (*reliability degree* on agents/possible words).
- Study much more in details the protocol of *coherence under indeterminacy*.

- B. de Finetti, Sul significato soggettivo della probabilità, Fundamenta Mathematicae 17, 298–329, 1931. Translated into English as "On the subjective meaning of probability", in: Paola Monari and Daniela Cocchi (Eds.), Probabilità e Induzione, Clueb, Bologna, pp. 291–321, 1993.
- [2] B. de Finetti B., Theory of Probability, vol. 1, John Wiley and Sons, Chichester, 1974.
- [3] T. Flaminio, L. Godo, A note on the convex structure of uncertainty measures on MV-algebras. In Advances in Intelligent and Soft Computing 190 (Springer), R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics for Intelligence Data Analysis, pp. 73–82, 2013.
- [4] J. -Y. Jaffray. Coherent bets under partially resolving uncertainty and belief functions. Theory and Decision, 26 (1989), 99–105.
- [5] J. Kühr, D. Mundici, De Finetti theorem and Borel states in [0, 1]-valued algebraic logic. International Journal of Approximate Reasoning, 46(3), 605–616, 2007
- [6] D. Mundici, Bookmaking over Infinite-valued Events. International Journal of Approximate Reasoning 43 (2006) 223–240.
- [7] J. B. Paris, A note on the Dutch Book method. In: G.De Cooman, T. Fine, T. Seidenfeld (Eds.) Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications, ISIPTA 2001, Ithaca, NY, USA, Shaker Publishing Company, pp. 301-306, 2001.

Thank you.

*

(Normalized) homogeneous necessity measures

A map $N^b : [0,1]^X \rightarrow [0,1]$ is a homogeneous necessity measure, i.e.

- ► $N^b(\top) = 1, [\rho_{\top}(b) = 1];$
- $N^b(x \wedge y) = \min\{N^b(x), N^b(y)\}, [\rho_{x \wedge y}(b) = \min\{\rho_x(b), \rho_y(b)\}];$
- $N^b(\bar{r} \oplus x) = r \oplus N^b(x), [\rho_{\bar{r} \oplus x}(b) = r \oplus \rho_x(b)].$