Games, equilibrium semantics and many-valued connectives

Chris Fermüller

Technische Universität Wien Theory and Logic Group www.logic.at/people/chrisf/

Motivation:

Motivation:
Two kinds of game semantics for many-valued logics:

Motivation:

Two kinds of game semantics for many-valued logics:
(1) Nash equilibria for languages of imperfect information

Motivation:

Two kinds of game semantics for many-valued logics:
(1) Nash equilibria for languages of imperfect information
(2) Giles's game for Łukasiewicz logic

Motivation:

Two kinds of game semantics for many-valued logics:
(1) Nash equilibria for languages of imperfect information
(2) Giles's game for Łukasiewicz logic

The two semantics are quite different

Motivation:

Two kinds of game semantics for many-valued logics:
(1) Nash equilibria for languages of imperfect information
(2) Giles's game for Łukasiewicz logic

The two semantics are quite different - at least at a first glimpse.

Motivation:

Two kinds of game semantics for many-valued logics:
(1) Nash equilibria for languages of imperfect information
(2) Giles's game for Łukasiewicz logic

The two semantics are quite different - at least at a first glimpse.
Aim of the talk:
to show that the two approaches nicely augment each other and fit into a common frame that opens new perspectives for both: incomplete information as well as many-valued connectives.

Plan of the talk

- very brief reminder on equilibrium semantics
- brief reminder on Giles's game for Łukasiewicz logic
- Hintikka-Sandu games as dispersive experiments
- independence-friendly Łukasiewicz logic?
- more connectives from incomplete information
- summary, perspectives

Plan of the talk

- very brief reminder on equilibrium semantics
- brief reminder on Giles's game for Łukasiewicz logic
- Hintikka-Sandu games as dispersive experiments
- independence-friendly Łukasiewicz logic?
- more connectives from incomplete information
- summary, perspectives

The main message in three lines:
Imperfect information in semantic games can explain intermediate truth values, but also gives raise to a richer set of connectives and quantifiers. However, Giles's more general notion of a state is used.

The classic semantic game (Hintikka's game)
Proponent \mathbf{P} defends/asserts and Opponent \mathbf{O} attacks the claim that a formula F is true under a fixed interpretation (model) \mathcal{I}.

The classic semantic game (Hintikka's game)

Proponent \mathbf{P} defends/asserts and Opponent \mathbf{O} attacks the claim that a formula F is true under a fixed interpretation (model) \mathcal{I}.

Rules of the game:
\mathbf{P} asserts $F \wedge G$: \mathbf{O} picks F or G, \mathbf{P} asserts F or G, accordingly
\mathbf{P} asserts $F \vee G$: \mathbf{P} asserts F or G, according to her own choice
\mathbf{P} asserts $\neg F: \mathbf{P}$ asserts F, but the roles $(\mathbf{P} / \mathbf{O})$ are switched
\mathbf{P} asserts $\forall x F(x): \mathbf{O}$ picks $a \in|\mathcal{I}|$ and \mathbf{P} asserts $F(a)$
\mathbf{P} asserts $\exists x F(x): \mathbf{P}$ picks $a \in|\mathcal{I}|$ and \mathbf{P} asserts $F(a)$
Winning condition:
\mathbf{P} (after switch: \mathbf{O}) wins if an atom that is true in \mathcal{I} is reached
Central Fact: (characterization of Tarski's "truth in a model")
\mathbf{P} has a winning strategy iff F is true in \mathcal{I}

Imperfect information (Hintikka-Sandu game)

The players may not know the full history of a game run.
This triggers a richer syntax (IF logic):
E.g., $\forall x(\exists y /\{x\}) x=y$ means that \mathbf{P} has to pick the witness for y without knowing which element in $|\mathcal{I}|$ was picked by \mathbf{O} for x.

Imperfect information (Hintikka-Sandu game)

The players may not know the full history of a game run.
This triggers a richer syntax (IF logic):
E.g., $\forall x(\exists y /\{x\}) x=y$ means that \mathbf{P} has to pick the witness for y without knowing which element in $|\mathcal{I}|$ was picked by \mathbf{O} for x.
Important properties:

- determinedness is lost: e.g., neither \mathbf{P} nor \mathbf{O} has a winning strategy for $\forall x(\exists y /\{x\}) x=y$ if there is more than one element in the domain $|\mathcal{I}|$
- IF logic is more expressive: the set of formulas for which \mathbf{P} has a winning strategy corresponds to valid formulas of existential second order logic
- IF logic is non-classical: E.g., $A \vee \neg A$ is not valid, but
- except for "slashing" the syntax remains with $\vee, \wedge, \neg, \forall, \exists$

Equilibrium Semantics

In the classical Hintkka game backward induction yields the value of a game for F with respect to \mathcal{I} :
$\|F\|_{\mathcal{I}}=1 \quad \ldots \mathbf{P}$ has a winning strategy for F w.r.t. \mathcal{I}
$\|F\|_{\mathcal{I}}=0 \ldots \mathbf{O}$ has a winning strategy for F w.r.t. \mathcal{I}
For general IF formulas one still obtains a unique Nash equilibrium for mixed strategies as value:
E.g. the value of $\forall x(\exists y /\{x\}) x=y$ ("matching pennies") is $1 / n$, where n is the cardinality of \mathcal{I}. Similarly $\forall x(\exists y /\{x\}) x \neq y$ ("inverse matching pennies") has value $(n-1) / n$.

Equilibrium Semantics

In the classical Hintkka game backward induction yields the value of a game for F with respect to \mathcal{I} :
$\|F\|_{\mathcal{I}}=1 \quad \ldots \mathbf{P}$ has a winning strategy for F w.r.t. \mathcal{I}
$\|F\|_{\mathcal{I}}=0 \quad \ldots \mathbf{O}$ has a winning strategy for F w.r.t. \mathcal{I}
For general IF formulas one still obtains a unique Nash equilibrium for mixed strategies as value:
E.g. the value of $\forall x(\exists y /\{x\}) x=y$ ("matching pennies") is $1 / n$, where n is the cardinality of \mathcal{I}. Similarly $\forall x(\exists y /\{x\}) x \neq y$ ("inverse matching pennies") has value $(n-1) / n$.
Equilibrium semantics leads to truth functional semantics for the "weak fragment" of Łukasiewicz logic:
$\|\neg F\|_{\mathcal{I}}=1-\|F\|_{\mathcal{I}}$
$\|F \vee G\|_{\mathcal{I}}=\max \left(\|F\|_{\mathcal{I}},\|G\|_{\mathcal{I}}\right) \quad$ (analogously for \exists)
$\|F \wedge G\|_{\mathcal{I}}=\min \left(\|F\|_{\mathcal{I}},\|G\|_{\mathcal{I}}\right) \quad$ (analogously for \forall)
Every rational $\in[0,1]$ is a value of some F in some finite \mathcal{I}

Giles's analysis of approximate reasoning

Giles's analysis of approximate reasoning
Meaning of connectives specified by dialogue rules (Lorenzen):
Let \mathbf{X} / \mathbf{Y} stand for \mathbf{P} / \mathbf{O} or for \mathbf{O} / \mathbf{P}

\mathbf{X} asserts	'attack' by \mathbf{Y}	answer by \mathbf{X}
$A \rightarrow B$	A	B
$A \vee B$	'?'	A or B (\mathbf{X} chooses)
$A \wedge B$	'I?' or 'r?' (Y chooses)	A or B (accordingly)
$A \& B$	'?'	A and B

Note: $\neg A$ abbreviates $A \rightarrow \perp$
The answer \perp ('I loose') is allows allowed
(= Giles's "principle of limited liability" - only relevant for \&)
Game states are pairs of multisets: $\left[A_{1}, \ldots, A_{m} \| B_{1}, \ldots, B_{n}\right]$

Giles's analysis of approximate reasoning
Meaning of connectives specified by dialogue rules (Lorenzen):
Let \mathbf{X} / \mathbf{Y} stand for \mathbf{P} / \mathbf{O} or for \mathbf{O} / \mathbf{P}

\mathbf{X} asserts	'attack' by \mathbf{Y}	answer by \mathbf{X}
$A \rightarrow B$	A	B
$A \vee B$	'?'	A or B (\mathbf{X} chooses)
$A \wedge B$	'I?' or 'r?' (Y chooses)	A or B (accordingly)
$A \& B$	'?'	A and B

Note: $\neg A$ abbreviates $A \rightarrow \perp$
The answer \perp ('I loose') is allows allowed
(= Giles's "principle of limited liability" - only relevant for \&)
Game states are pairs of multisets: $\left[A_{1}, \ldots, A_{m} \rrbracket B_{1}, \ldots, B_{n}\right]$
Still missing:

- winning conditions for atomic states
- regulations defining admissible runs of a game
ad: winning conditions
Giles's idea: Players bet on the truth of their (atomic) claims! (Yes/no-)experiments - that may be dispersive - decide.
- \mathbf{P} pays $1 €$ to \mathbf{O} for each false atomic assertions made by him, \mathbf{O} pays $1 €$ to \mathbf{P} for each false atomic assertion made by her

A final states $\left[p_{1}, \ldots, p_{m} \| q_{1}, \ldots, q_{n}\right]$ results in a pay-off of

$$
\left(\sum_{i=1}^{m}\left\langle p_{i}\right\rangle-\sum_{j=1}^{n}\left\langle q_{j}\right\rangle\right) € \quad \text { for me }
$$

risk value $\langle p\rangle=$ probability of "no" as result of the experiment for p
ad: winning conditions
Giles's idea: Players bet on the truth of their (atomic) claims! (Yes/no-)experiments - that may be dispersive - decide.

- \mathbf{P} pays $1 €$ to \mathbf{O} for each false atomic assertions made by him, \mathbf{O} pays $1 €$ to \mathbf{P} for each false atomic assertion made by her

A final states $\left[p_{1}, \ldots, p_{m} \| q_{1}, \ldots, q_{n}\right.$] results in a pay-off of

$$
\left(\sum_{i=1}^{m}\left\langle p_{i}\right\rangle-\sum_{j=1}^{n}\left\langle q_{j}\right\rangle\right) € \quad \text { for } \mathrm{me}
$$

risk value $\langle p\rangle=$ probability of "no" as result of the experiment for p ad: regulations

Constraints on dialogues like the following suffice:
$\left(R_{\rightarrow}\right)$ If \mathbf{O} attacks \mathbf{P} 's assertion of $A \rightarrow B$ by claiming A, then, in reply, \mathbf{P} has to assert also B eventually.
Attacked formulas are removed from the current state.
No particular regulation for the order of moves is required!

Definition:

A game for F w.r.t. \mathcal{I} has (risk-)value x if \mathbf{P} has a strategy to limit his loss to $x €$, while \mathbf{O} has a strategy to guarantee a win of $x €$.

Giles's Theorem:
F evaluates to v in \mathcal{I} according to (full) Łukasiewicz logic iff the risk-value of the corresponding game is $1-v$.

Definition:

A game for F w.r.t. \mathcal{I} has (risk-)value x if \mathbf{P} has a strategy to limit his loss to $x €$, while \mathbf{O} has a strategy to guarantee a win of $x \in$.

Giles's Theorem:
F evaluates to v in \mathcal{I} according to (full) Łukasiewicz logic iff the risk-value of the corresponding game is $1-v$.

Remarks:

- standard rules for \forall and \exists work under some provisions: consider 'limit values' or just witnessed models
- the game can be generalized in different ways to cover various other many-valued logics
- connection to proof systems: analytic (hypersequent) proofs arise from systematic search for winning strategies

Major differences between HS- and G-games

Major differences between HS- and G-games

- different format of rules:
possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)

Major differences between HS- and G-games

- different format of rules: possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)
- consequently: more general concept of state in G-games: pairs of multisets instead of single formulas

Major differences between HS- and G-games

- different format of rules: possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)
- consequently: more general concept of state in G-games: pairs of multisets instead of single formulas
- different languages:
no implication and strong conjunction in HS-games
no 'slashed' quantifiers (or connectives) in G-games

Major differences between HS- and G-games

- different format of rules: possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)
- consequently: more general concept of state in G-games: pairs of multisets instead of single formulas
- different languages:
no implication and strong conjunction in HS-games
no 'slashed' quantifiers (or connectives) in G-games
- G-games are always determined

Major differences between HS- and G-games

- different format of rules:
possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)
- consequently: more general concept of state in G-games: pairs of multisets instead of single formulas
- different languages:
no implication and strong conjunction in HS-games no 'slashed' quantifiers (or connectives) in G-games
- G-games are always determined
- different origin of truth values:
in G-games: probabilities of dispersive experiments in HS-games: expected pay-offs at Nash equilibria

Major differences between HS- and G-games

- different format of rules:
possibly two succeeding formulas in G-games $(\rightarrow, \&)$ no 'role switch' G-games (\neg derived from \rightarrow)
- consequently: more general concept of state in G-games: pairs of multisets instead of single formulas
- different languages:
no implication and strong conjunction in HS-games
no 'slashed' quantifiers (or connectives) in G-games
- G-games are always determined
- different origin of truth values:
in G-games: probabilities of dispersive experiments in HS-games: expected pay-offs at Nash equilibria

Is there any non-trivial common ground at all?

HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of an HS-game. In other words: consider every run of an HS-game as dispersive experiment.
Łukasiewicz logic turns into a logic for talking about (gains/losses for) compounds of classical 'formulas of imperfect information'.

HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of an HS-game. In other words: consider every run of an HS-game as dispersive experiment.
Łukasiewicz logic turns into a logic for talking about (gains/losses for) compounds of classical 'formulas of imperfect information'.

A two-tiered language:
$I F:=$ atom $|\neg I F| I F \vee I F|I F \wedge I F| \forall v /\left\{v_{1}, \ldots, v_{n}\right\} I F \mid \forall v /\left\{v_{1}, \ldots, v_{n}\right\} I F$
$Ł F:=I F|\perp| Ł F \vee^{\prime} Ł F \mid Ł F \wedge^{\prime}\lfloor F|Ł F \rightarrow Ł F| Ł F \& Ł F[|\forall v Ł F| \exists v Ł F]$

HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of an HS-game. In other words: consider every run of an HS-game as dispersive experiment.
Łukasiewicz logic turns into a logic for talking about (gains/losses for) compounds of classical 'formulas of imperfect information'.

A two-tiered language:
$I F:=$ atom $|\neg I F| I F \vee I F|I F \wedge I F| \forall v /\left\{v_{1}, \ldots, v_{n}\right\} I F \mid \forall v /\left\{v_{1}, \ldots, v_{n}\right\} I F$ $Ł F:=I F|\perp| Ł F \vee^{\prime} Ł F \mid Ł F \wedge^{\prime}\lfloor F|Ł F \rightarrow Ł F| Ł F \& Ł F[|\forall v Ł F| \exists v Ł F]$
Game semantics:
(1) play the G-game to reduce $\lfloor F$-formulas to $I F$-formulas
(2) play an independent HS-game for each IF-formula
(3) evaluate like in G-games: pay $1 €$ for each lost HS-(sub)game

Note: risk-values are sums of inverted equilibrium values.
Definition: (truth) value $=$ inverted risk-value

HS-games as dispersive experiments (ctd.)

HS-games as dispersive experiments (ctd.)
Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

HS-games as dispersive experiments (ctd.)
Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

- MP: \mathbf{P} has to pay $1 €$ with probability $(n-1) / n$ \Longrightarrow value $1-(n-1) / n=1 / n$

HS-games as dispersive experiments (ctd.)
Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

- MP: \mathbf{P} has to pay $1 €$ with probability $(n-1) / n$ \Longrightarrow value $1-(n-1) / n=1 / n$
- MP \rightarrow MP: no expected loss for $\mathbf{P} \Longrightarrow$ value 1

HS-games as dispersive experiments (ctd.)
Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

- MP: \mathbf{P} has to pay $1 €$ with probability $(n-1) / n$
\Longrightarrow value $1-(n-1) / n=1 / n$
- MP \rightarrow MP: no expected loss for $\mathbf{P} \Longrightarrow$ value 1
- $M P \vee^{\prime} \neg^{\prime} M P$, where $\neg^{\prime} M P=M P \rightarrow \perp$:
$M P \rightarrow \perp$ incurs an expected loss of $1-(n-1) / n=(1 / n) €$
if $n \leq 2 \mathbf{P}$ picks $\neg^{\prime} M P \Longrightarrow$ value $(n-1) / n$

HS-games as dispersive experiments (ctd.)

Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

- MP: \mathbf{P} has to pay $1 €$ with probability $(n-1) / n$ \Longrightarrow value $1-(n-1) / n=1 / n$
- MP \rightarrow MP: no expected loss for $\mathbf{P} \Longrightarrow$ value 1
- $M P \vee^{\prime} \neg^{\prime} M P$, where $\neg^{\prime} M P=M P \rightarrow \perp$: $M P \rightarrow \perp$ incurs an expected loss of $1-(n-1) / n=(1 / n) €$ if $n \leq 2 \mathbf{P}$ picks $\neg^{\prime} M P \Longrightarrow$ value $(n-1) / n$
- MP $\vee^{\prime} I M P$: if $n \geq 2 \mathbf{P}$ picks $I M P$ and expects to lose $(1 / n) € \Longrightarrow$ value $(n-1) / n$

HS-games as dispersive experiments (ctd.)

Some simple examples:
Let $M P=\forall x(\exists y /\{x\}) x=y$ and $I M P=\forall x(\exists y /\{x\}) x \neq y$ and let n be the cardinality of the model \mathcal{I}

- MP: \mathbf{P} has to pay $1 €$ with probability $(n-1) / n$ \Longrightarrow value $1-(n-1) / n=1 / n$
- MP \rightarrow MP: no expected loss for $\mathbf{P} \Longrightarrow$ value 1
- $M P \vee^{\prime} \neg^{\prime} M P$, where $\neg^{\prime} M P=M P \rightarrow \perp$: $M P \rightarrow \perp$ incurs an expected loss of $1-(n-1) / n=(1 / n) €$ if $n \leq 2 \mathbf{P}$ picks $\neg^{\prime} M P \Longrightarrow$ value $(n-1) / n$
- MP $\vee^{\prime} I M P$: if $n \geq 2 \mathbf{P}$ picks $I M P$ and expects to lose $(1 / n) € \Longrightarrow$ value $(n-1) / n$

Mixing the levels:
(A) Independence-friendly Łukasiewicz logic

Mixing the levels:
(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.

Mixing the levels:
(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.
But why should one do so? Is it interesting? Is it useful?

Mixing the levels:

(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.
But why should one do so? Is it interesting? Is it useful?
Answer: Since it is very useful it has already been done independently of IF logic, at least in a very special case:

Mixing the levels:

(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.
But why should one do so? Is it interesting? Is it useful?
Answer: Since it is very useful it has already been done independently of IF logic, at least in a very special case: randomized choices as models of fuzzy quantifiers

Mixing the levels:

(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.
But why should one do so? Is it interesting? Is it useful?
Answer: Since it is very useful it has already been done independently of IF logic, at least in a very special case: randomized choices as models of fuzzy quantifiers
Main idea of randomized choices for (semi-fuzzy) quantifiers: instead of letting \mathbf{P} or \mathbf{O} pick the witnessing constant, consider random witnesses (w.r.t. uniform distribution over the domain).

Mixing the levels:

(A) Independence-friendly Łukasiewicz logic

One can study incomplete information quantifiers - and connectives - in Łukasiewicz logic via Giles's game.
But why should one do so? Is it interesting? Is it useful?
Answer: Since it is very useful it has already been done independently of IF logic, at least in a very special case: randomized choices as models of fuzzy quantifiers

Main idea of randomized choices for (semi-fuzzy) quantifiers: instead of letting \mathbf{P} or \mathbf{O} pick the witnessing constant, consider random witnesses (w.r.t. uniform distribution over the domain).

This turns out to match various 'vague' (semi-fuzzy) quantifiers.
E.g., 'Many $x F(x)$ ' might be modeled as ' A randomly picked domain element satisfies F with probability $\geq \gamma^{\prime}$ (some threshold)

The basic random choice quantifier Π is given by the rule:
\mathbf{P} asserts $\Pi x F(x): \mathbf{P}$ asserts $F(a)$ for a randomly picked $a \in|\mathcal{I}|$

The basic random choice quantifier Π is given by the rule:
\mathbf{P} asserts $\Pi x F(x): \mathbf{P}$ asserts $F(a)$ for a randomly picked $a \in|\mathcal{I}|$
NB: Many more interesting quantifiers can be defined similarly.
E.g. proportionality quantifiers modeling about half, few, many.

These can be reduced to Π within Giles's game!
See F/Roschger: Randomized Game Semantics for Semi-Fuzzy
Quantifiers, IGPL Journal, to appear

The basic random choice quantifier Π is given by the rule:
\mathbf{P} asserts $\Pi x F(x): \mathbf{P}$ asserts $F(a)$ for a randomly picked $a \in|\mathcal{I}|$
NB: Many more interesting quantifiers can be defined similarly.
E.g. proportionality quantifiers modeling about half, few, many.

These can be reduced to Π within Giles's game!
See F/Roschger: Randomized Game Semantics for Semi-Fuzzy
Quantifiers, IGPL Journal, to appear
Fine, but was does this have to do with IF logic?

The basic random choice quantifier Π is given by the rule:
\mathbf{P} asserts $\Pi x F(x): \mathbf{P}$ asserts $F(a)$ for a randomly picked $a \in|\mathcal{I}|$
NB: Many more interesting quantifiers can be defined similarly.
E.g. proportionality quantifiers modeling about half, few, many.

These can be reduced to Π within Giles's game!
See F/Roschger: Randomized Game Semantics for Semi-Fuzzy
Quantifiers, IGPL Journal, to appear
Fine, but was does this have to do with IF logic?
Answer:
$\Pi_{x} F(x) \approx \forall x /\{x, \ldots\} F(x) \Leftrightarrow \exists x /\{x, \ldots\} F(x)$
In other words:
Picking x without any information amounts to randomized choice!

Mixing the levels:
(B) Connectives arising from incomplete information

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!

Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!

Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

- or $=\vee$ (classic IF): equilibrium value $(n-1) / n$

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!
Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

- or $=\vee$ (classic IF): equilibrium value $(n-1) / n$
- or $=\vee^{\prime}$ (Łukasiewicz): inverted risk-value $(n-1) / n$

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!
Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

- or $=\vee$ (classic IF): equilibrium value $(n-1) / n$
- or $=\vee^{\prime}$ (Łukasiewicz): inverted risk-value $(n-1) / n$
- 'commonsense or':

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!
Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

- or $=\vee$ (classic IF): equilibrium value $(n-1) / n$
- or $=\mathrm{V}^{\prime}$ (Łukasiewicz): inverted risk-value $(n-1) / n$
- 'commonsense or': it does not matter that \mathbf{P} doesn't know the witness for $x: \mathbf{P}$ just picks different witnesses for y and z
\Longrightarrow value $=1$
Note: this form of disjunction is not truth functional!

Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of further connectives, enabled by Giles's more general notion of state!
Example: (evaluation in \mathcal{I} with cardinality n)
Consider $\forall x[(\exists y /\{x\}) x \neq y$ or $(\exists z /\{x\}) x \neq z]$

- or $=\vee$ (classic IF): equilibrium value $(n-1) / n$
- or $=\mathrm{V}^{\prime}$ (Łukasiewicz): inverted risk-value $(n-1) / n$
- 'commonsense or': it does not matter that \mathbf{P} doesn't know the witness for $x: \mathbf{P}$ just picks different witnesses for y and z \Longrightarrow value $=1$
Note: this form of disjunction is not truth functional!
Remark for experts on Łukasiewicz logic:
'or' could also be strong disjunction, leading also to value 1.
It can also be modeled in Giles's game and is truth functional!

Connectives arising from incomplete information (ctd.)

Connectives arising from incomplete information (ctd.)

- 'commonsense conjunction': To win F and G
\mathbf{P} has to win both: a game for F and a game for G

Connectives arising from incomplete information (ctd.)

- 'commonsense conjunction': To win F and G P has to win both: a game for F and a game for G
- many more variants of connectives and quantifiers arise

Connectives arising from incomplete information (ctd.)

- 'commonsense conjunction': To win F and G \mathbf{P} has to win both: a game for F and a game for G
- many more variants of connectives and quantifiers arise
- some similarity with game semantics for linear logic, but even more with Japaridze's Computability Logic

Connectives arising from incomplete information (ctd.)

- 'commonsense conjunction': To win F and G \mathbf{P} has to win both: a game for F and a game for G
- many more variants of connectives and quantifiers arise
- some similarity with game semantics for linear logic, but even more with Japaridze's Computability Logic

Message: It's fine to stick just with Hintikka's rules for \vee, \wedge, \neg in classical logic; but incomplete information widens the playground and naturally leads to further (variants of) connectives!

Summary

Summary

- games of Hintikka-Sandu and Giles look very different at first

Summary

- games of Hintikka-Sandu and Giles look very different at first
- but there are (at least) three ways to combine them:
- HS-games as sub-games ('dispersive experiments') in G-games
- independence-friendly quantifiers in Łukasiewicz logic
- more connectives arising in the incomplete information scenario

Summary

- games of Hintikka-Sandu and Giles look very different at first
- but there are (at least) three ways to combine them:
- HS-games as sub-games ('dispersive experiments') in G-games
- independence-friendly quantifiers in Łukasiewicz logic
- more connectives arising in the incomplete information scenario
- overall, we obtain a rich new field of investigation!

