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Motivation:

Two kinds of game semantics for many-valued logics:

(1) Nash equilibria for languages of imperfect information
(2) Giles's game for tukasiewicz logic

The two semantics are quite different — at least at a first glimpse.

Aim of the talk:

to show that the two approaches nicely augment each other and
fit into a common frame that opens new perspectives for both:
incomplete information as well as many-valued connectives.
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> very brief reminder on equilibrium semantics

> brief reminder on Giles's game for tukasiewicz logic
» Hintikka-Sandu games as dispersive experiments

» independence-friendly tukasiewicz logic?

» more connectives from incomplete information

> summary, perspectives

The main message in three lines:

Imperfect information in semantic games can explain intermediate
truth values, but also gives raise to a richer set of connectives and
quantifiers. However, Giles's more general notion of a state is used.
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The classic semantic game (Hintikka's game)

Proponent P defends/asserts and Opponent O attacks the claim
that a formula F is true under a fixed interpretation (model) Z.

Rules of the game:

P asserts F A G: O picks F or G, P asserts F or G, accordingly
P asserts FV G: P asserts F or G, according to her own choice
P asserts =F: P asserts F, but the roles (P/O) are switched

P asserts VxF(x): O picks a € |Z| and P asserts F(a)

P asserts IxF(x): P picks a € |Z| and P asserts F(a)

Winning condition:

P (after switch: O) wins if an atom that is true in Z is reached

Central Fact: (characterization of Tarski's “truth in a model")

P has a winning strategy iff F is true in Z



Imperfect information (Hintikka-Sandu game)
The players may not know the full history of a game run.

This triggers a richer syntax (IF logic):
E.g., Vx(EIy/{x})x = y means that P has to pick the witness for y
without knowing which element in |Z| was picked by O for x.



Imperfect information (Hintikka-Sandu game)

The players may not know the full history of a game run.

This triggers a richer syntax (IF logic):

E.g., Vx(EIy/{x})x = y means that P has to pick the witness for y
without knowing which element in |Z| was picked by O for x.
Important properties:

» determinedness is lost: e.g., neither P nor O has a winning
strategy for Vx(Jy/{x})x =y if there is more than one
element in the domain |Z|

» |IF logic is more expressive: the set of formulas for which P
has a winning strategy corresponds to valid formulas of
existential second order logic

» IF logic is non-classical: E.g., AV —A is not valid, but

> except for “slashing” the syntax remains with VvV, A, =, V., 3



Equilibrium Semantics

In the classical Hintkka game backward induction yields the value
of a game for F with respect to Z:

IIFllz =1 ... P has a winning strategy for F w.r.t. Z

IFllz =0 ... O has a winning strategy for F w.r.t. Z

For general IF formulas one still obtains a unique

Nash equilibrium for mixed strategies as value:

E.g. the value of Vx(Jy/{x})x = y (“matching pennies”) is 1/n,
where n is the cardinality of Z. Similarly Vx(3y/{x})x # y
(“inverse matching pennies”) has value (n —1)/n.
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In the classical Hintkka game backward induction yields the value
of a game for F with respect to Z:

IIFllz =1 ... P has a winning strategy for F w.r.t. Z

IFllz =0 ... O has a winning strategy for F w.r.t. Z

For general IF formulas one still obtains a unique

Nash equilibrium for mixed strategies as value:

E.g. the value of Vx(Jy/{x})x = y (“matching pennies”) is 1/n,
where n is the cardinality of Z. Similarly Vx(3y/{x})x # y
(“inverse matching pennies”) has value (n —1)/n.

Equilibrium semantics leads to truth functional semantics for the
“weak fragment” of tukasiewicz logic:

I=Fllz=1-|Flz

IIF vV G|z = max(||F||z,||Gl||z) (analogously for 3)

I|F A Gllz = min(]|F||z,]|Gllz) (analogously for V)

Every rational € [0,1] is a value of some F in some finite Z
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Meaning of connectives specified by dialogue rules (Lorenzen):

Let X/Y stand for P/O or for O/P

’ X asserts \ ‘attack’ by Y \ answer by X ‘
A—B A B
AV B 7 A or B (X chooses)
ANB ‘17" or 'r?" (Y chooses) | A or B (accordingly)
A& B e A and B

Note: —A abbreviates A — |
The answer L (‘I loose’) is allows allowed
(= Giles's “principle of limited liability” — only relevant for &)

Game states are pairs of multisets: [A1,...,Am[Bi, ..., Bn]
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Meaning of connectives specified by dialogue rules (Lorenzen):

Let X/Y stand for P/O or for O/P

’ X asserts \ ‘attack’ by Y \ answer by X
A—B A B
AV B 7 A or B (X chooses)
ANB ‘17" or 'r?" (Y chooses) | A or B (accordingly)
A& B e A and B

Note: —A abbreviates A — |
The answer L (‘I loose’) is allows allowed
(= Giles's “principle of limited liability” — only relevant for &)

Game states are pairs of multisets: [A1,...,Am[Bi, ..., Bn]
Still missing:
» winning conditions for atomic states

» regulations defining admissible runs of a game



ad: winning conditions
Giles's idea: Players bet on the truth of their (atomic) claims!
(Yes/no-)experiments — that may be dispersive — decide.

» P pays 1€ to O for each false atomic assertions made by him,
O pays 1€ to P for each false atomic assertion made by her

A final states [p1,...,Pm|q1,---,qn] results in a pay-off of
(Dotpy =D "(a)€ for me
i=1 j=1

risk value (p)= probability of “no” as result of the experiment for p
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Giles's idea: Players bet on the truth of their (atomic) claims!
(Yes/no-)experiments — that may be dispersive — decide.

» P pays 1€ to O for each false atomic assertions made by him,
O pays 1€ to P for each false atomic assertion made by her

A final states [p1,...,Pm|q1,---,qn] results in a pay-off of
(Dotpy =D "(a)€ for me
i=1 j=1

risk value (p)= probability of “no” as result of the experiment for p
ad: regulations
Constraints on dialogues like the following suffice:

(R-) If O attacks P's assertion of A — B by claiming A, then,
in reply, P has to assert also B eventually.

Attacked formulas are removed from the current state.
No particular regulation for the order of moves is required!



Definition:
A game for F w.r.t. Z has (risk-)value x if P has a strategy to limit
his loss to x€, while O has a strategy to guarantee a win of x€.

Giles's Theorem:
F evaluates to v in Z according to (full) tukasiewicz logic iff
the risk-value of the corresponding game is 1 — v.



Definition:
A game for F w.r.t. Z has (risk-)value x if P has a strategy to limit
his loss to x€, while O has a strategy to guarantee a win of x€.

Giles's Theorem:
F evaluates to v in Z according to (full) tukasiewicz logic iff
the risk-value of the corresponding game is 1 — v.

Remarks:
» standard rules for V and 3 work under some provisions:
consider ‘limit values’ or just witnessed models
» the game can be generalized in different ways to cover
various other many-valued logics

» connection to proof systems: analytic (hypersequent) proofs
arise from systematic search for winning strategies
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Major differences between HS- and G-games

> different format of rules:
possibly two succeeding formulas in G-games (—, &)
no ‘role switch’ G-games (— derived from —)

» consequently: more general concept of state in G-games:
pairs of multisets instead of single formulas

» different languages:
no implication and strong conjunction in HS-games
no ‘slashed’ quantifiers (or connectives) in G-games

» G-games are always determined

» different origin of truth values:
in G-games: probabilities of dispersive experiments
in HS-games: expected pay-offs at Nash equilibria

Is there any non-trivial common ground at all?



HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of
an HS-game. In other words: consider every run of an HS-game as
dispersive experiment.

Lukasiewicz logic turns into a logic for talking about (gains/losses
for) compounds of classical ‘formulas of imperfect information’.



HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of
an HS-game. In other words: consider every run of an HS-game as
dispersive experiment.

Lukasiewicz logic turns into a logic for talking about (gains/losses
for) compounds of classical ‘formulas of imperfect information’.

A two-tiered language:
IF := atom|—~IF|IF V/ IF|IF NF|Yv/{vi,...;va HF|YV/{va,...;va }IF
LF:= IF|LILFV' LFILF N LFILF — LFILF& LF [[VvEF|3vEF |



HS-games as dispersive experiments

Idea:

Analyze each atomic assertion in a G-game as initial assertion of
an HS-game. In other words: consider every run of an HS-game as
dispersive experiment.

Lukasiewicz logic turns into a logic for talking about (gains/losses
for) compounds of classical ‘formulas of imperfect information’.

A two-tiered language:

IF := atom|—~IF|IF V/ IF|IF NF|Yv/{vi,...;va HF|YV/{va,...;va }IF
LF:= IF|LILFV' LFILF N LFILF — LFILF& LF [[VvEF|3vEF |
Game semantics:

(1) play the G-game to reduce tF-formulas to /F-formulas

(2) play an independent HS-game for each /F-formula

(3) evaluate like in G-games: pay 1€ for each lost HS-(sub)game

Note: risk-values are sums of inverted equilibrium values.
Definition: (truth) value = inverted risk-value
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Mixing the levels:
(A) Independence-friendly tukasiewicz logic

One can study incomplete information quantifiers — and
connectives — in Lukasiewicz logic via Giles's game.

But why should one do so? Is it interesting? Is it useful?
Answer: Since it is very useful it has already been done

independently of IF logic, at least in a very special case:
randomized choices as models of fuzzy quantifiers

Main idea of randomized choices for (semi-fuzzy) quantifiers:
instead of letting P or O pick the witnessing constant, consider
random witnesses (w.r.t. uniform distribution over the domain).

This turns out to match various ‘vague’ (semi-fuzzy) quantifiers.

E.g., '‘Many x F(x)' might be modeled as ‘A randomly picked
domain element satisfies F with probability > ~' (some threshold)
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The basic random choice quantifier I1 is given by the rule:

P asserts Nx F(x): P asserts F(a) for a randomly picked a € |Z]

NB: Many more interesting quantifiers can be defined similarly.
E.g. proportionality quantifiers modeling about half, few, many.
These can be reduced to I1 within Giles's game!

See F/Roschger: Randomized Game Semantics for Semi-Fuzzy
Quantifiers, IGPL Journal, to appear

Fine, but was does this have to do with IF logic?

Answer:

Mx F(x) = Vx/{x,...} F(x) & 3x/{x,...}F(x)

In other words:

Picking x without any information amounts to randomized choice!
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Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of
further connectives, enabled by Giles’s more general notion of state!

Example: (evaluation in Z with cardinality n)
Consider Vx[(Jy/{x})x # y or (3z/{x})x # 2|
» or =V (classic IF): equilibrium value (n —1)/n
» or = V' (Lukasiewicz): inverted risk-value (n —1)/n
> ‘commonsense or': it does not matter that P doesn't know
the witness for x: P just picks different witnesses for y and z
— value =1
Note: this form of disjunction is not truth functional!

Remark for experts on tukasiewicz logic:
‘or' could also be strong disjunction, leading also to value 1.
It can also be modeled in Giles's game and is truth functional!
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Connectives arising from incomplete information (ctd.)

» ‘commonsense conjunction’: To win Fand G
P has to win both: a game for F and a game for G
> many more variants of connectives and quantifiers arise

» some similarity with game semantics for linear logic,
but even more with Japaridze's Computability Logic

Message: It's fine to stick just with Hintikka's rules for Vv, A, = in
classical logic; but incomplete information widens the playground
and naturally leads to further (variants of) connectives!
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Summary

» games of Hintikka-Sandu and Giles look very different at first
> but there are (at least) three ways to combine them:

» HS-games as sub-games (‘dispersive experiments') in G-games
» independence-friendly quantifiers in Lukasiewicz logic
» more connectives arising in the incomplete information scenario

» overall, we obtain a rich new field of investigation!



