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Motivation:

Two kinds of game semantics for many-valued logics:

(1) Nash equilibria for languages of imperfect information

(2) Giles’s game for  Lukasiewicz logic

The two semantics are quite different — at least at a first glimpse.

Aim of the talk:

to show that the two approaches nicely augment each other and
fit into a common frame that opens new perspectives for both:
incomplete information as well as many-valued connectives.
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Plan of the talk

I very brief reminder on equilibrium semantics

I brief reminder on Giles’s game for  Lukasiewicz logic

I Hintikka-Sandu games as dispersive experiments

I independence-friendly  Lukasiewicz logic?

I more connectives from incomplete information

I summary, perspectives

The main message in three lines:

Imperfect information in semantic games can explain intermediate
truth values, but also gives raise to a richer set of connectives and
quantifiers. However, Giles’s more general notion of a state is used.
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The classic semantic game (Hintikka’s game)

Proponent P defends/asserts and Opponent O attacks the claim
that a formula F is true under a fixed interpretation (model) I.

Rules of the game:

P asserts F ∧ G : O picks F or G , P asserts F or G , accordingly

P asserts F ∨ G : P asserts F or G , according to her own choice

P asserts ¬F : P asserts F , but the roles (P/O) are switched

P asserts ∀xF (x): O picks a ∈ |I| and P asserts F (a)

P asserts ∃xF (x): P picks a ∈ |I| and P asserts F (a)

Winning condition:
P (after switch: O) wins if an atom that is true in I is reached

Central Fact: (characterization of Tarski’s “truth in a model”)

P has a winning strategy iff F is true in I



The classic semantic game (Hintikka’s game)

Proponent P defends/asserts and Opponent O attacks the claim
that a formula F is true under a fixed interpretation (model) I.

Rules of the game:

P asserts F ∧ G : O picks F or G , P asserts F or G , accordingly

P asserts F ∨ G : P asserts F or G , according to her own choice

P asserts ¬F : P asserts F , but the roles (P/O) are switched

P asserts ∀xF (x): O picks a ∈ |I| and P asserts F (a)

P asserts ∃xF (x): P picks a ∈ |I| and P asserts F (a)

Winning condition:
P (after switch: O) wins if an atom that is true in I is reached

Central Fact: (characterization of Tarski’s “truth in a model”)

P has a winning strategy iff F is true in I



Imperfect information (Hintikka-Sandu game)

The players may not know the full history of a game run.

This triggers a richer syntax (IF logic):

E.g., ∀x
(
∃y/{x}

)
x = y means that P has to pick the witness for y

without knowing which element in |I| was picked by O for x .

Important properties:

I determinedness is lost: e.g., neither P nor O has a winning
strategy for ∀x

(
∃y/{x}

)
x = y if there is more than one

element in the domain |I|
I IF logic is more expressive: the set of formulas for which P

has a winning strategy corresponds to valid formulas of
existential second order logic

I IF logic is non-classical: E.g., A ∨ ¬A is not valid, but

I except for “slashing” the syntax remains with ∨,∧,¬,∀, ∃
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Equilibrium Semantics

In the classical Hintkka game backward induction yields the value
of a game for F with respect to I:
‖F‖I = 1 . . . P has a winning strategy for F w.r.t. I
‖F‖I = 0 . . . O has a winning strategy for F w.r.t. I
For general IF formulas one still obtains a unique
Nash equilibrium for mixed strategies as value:
E.g. the value of ∀x

(
∃y/{x}

)
x = y (“matching pennies”) is 1/n,

where n is the cardinality of I. Similarly ∀x
(
∃y/{x}

)
x 6= y

(“inverse matching pennies”) has value (n − 1)/n.

Equilibrium semantics leads to truth functional semantics for the
“weak fragment” of  Lukasiewicz logic:
‖¬F‖I = 1− ‖F‖I
‖F ∨ G‖I = max(‖F‖I , ‖G‖I) (analogously for ∃)
‖F ∧ G‖I = min(‖F‖I , ‖G‖I) (analogously for ∀)

Every rational ∈ [0, 1] is a value of some F in some finite I
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Giles’s analysis of approximate reasoning

Meaning of connectives specified by dialogue rules (Lorenzen):

Let X/Y stand for P/O or for O/P

X asserts ‘attack’ by Y answer by X

A→ B A B

A ∨ B ‘?’ A or B (X chooses)

A ∧ B ‘l?’ or ‘r?’ (Y chooses) A or B (accordingly)

A & B ‘?’ A and B

Note: ¬A abbreviates A→ ⊥
The answer ⊥ (‘I loose’) is allows allowed
(= Giles’s “principle of limited liability” – only relevant for & )

Game states are pairs of multisets: [A1, . . . ,Am B1, . . . ,Bn]

Still missing:

I winning conditions for atomic states

I regulations defining admissible runs of a game
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ad: winning conditions

Giles’s idea: Players bet on the truth of their (atomic) claims!
(Yes/no-)experiments — that may be dispersive — decide.

I P pays 1€ to O for each false atomic assertions made by him,
O pays 1€ to P for each false atomic assertion made by her

A final states [p1, . . . , pm q1, . . . , qn] results in a pay-off of( m∑
i=1

〈pi 〉 −
n∑

j=1

〈qj〉
)
€ for me

risk value 〈p〉= probability of “no” as result of the experiment for p

ad: regulations

Constraints on dialogues like the following suffice:

(R→) If O attacks P’s assertion of A→ B by claiming A, then,
in reply, P has to assert also B eventually.

Attacked formulas are removed from the current state.
No particular regulation for the order of moves is required!
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Definition:
A game for F w.r.t. I has (risk-)value x if P has a strategy to limit
his loss to x€, while O has a strategy to guarantee a win of x€.

Giles’s Theorem:
F evaluates to v in I according to (full)  Lukasiewicz logic iff
the risk-value of the corresponding game is 1− v .

Remarks:

I standard rules for ∀ and ∃ work under some provisions:
consider ‘limit values’ or just witnessed models

I the game can be generalized in different ways to cover
various other many-valued logics

I connection to proof systems: analytic (hypersequent) proofs
arise from systematic search for winning strategies
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Major differences between HS- and G-games

I different format of rules:
possibly two succeeding formulas in G-games (→, &)
no ‘role switch’ G-games (¬ derived from →)

I consequently: more general concept of state in G-games:
pairs of multisets instead of single formulas

I different languages:
no implication and strong conjunction in HS-games
no ‘slashed’ quantifiers (or connectives) in G-games

I G-games are always determined

I different origin of truth values:
in G-games: probabilities of dispersive experiments
in HS-games: expected pay-offs at Nash equilibria

Is there any non-trivial common ground at all?
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HS-games as dispersive experiments

Idea:
Analyze each atomic assertion in a G-game as initial assertion of
an HS-game. In other words: consider every run of an HS-game as
dispersive experiment.

 Lukasiewicz logic turns into a logic for talking about (gains/losses
for) compounds of classical ‘formulas of imperfect information’.

A two-tiered language:
IF := atom|¬IF |IF ∨ IF |IF ∧ IF |∀v/{v1, ..., vn}IF |∀v/{v1, ..., vn}IF
 LF := IF |⊥| LF ∨′  LF| LF ∧′  LF| LF→  LF| LF &  LF

[
|∀v  LF|∃v  LF

]
Game semantics:

(1) play the G-game to reduce  LF-formulas to IF -formulas

(2) play an independent HS-game for each IF -formula

(3) evaluate like in G-games: pay 1€ for each lost HS-(sub)game

Note: risk-values are sums of inverted equilibrium values.
Definition: (truth) value = inverted risk-value
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HS-games as dispersive experiments (ctd.)

Some simple examples:

Let MP = ∀x
(
∃y/{x}

)
x = y and IMP = ∀x

(
∃y/{x}

)
x 6= y

and let n be the cardinality of the model I
I MP: P has to pay 1€ with probability (n − 1)/n

=⇒ value 1− (n − 1)/n = 1/n

I MP → MP: no expected loss for P =⇒ value 1

I MP ∨′ ¬′MP, where ¬′MP = MP → ⊥:
MP → ⊥ incurs an expected loss of 1− (n − 1)/n = (1/n)€
if n ≤ 2 P picks ¬′MP =⇒ value (n − 1)/n

I MP ∨′ IMP: if n ≥ 2 P picks IMP and expects
to lose (1/n)€ =⇒ value (n − 1)/n
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Mixing the levels:
(A) Independence-friendly  Lukasiewicz logic

One can study incomplete information quantifiers – and
connectives – in  Lukasiewicz logic via Giles’s game.

But why should one do so? Is it interesting? Is it useful?

Answer: Since it is very useful it has already been done
independently of IF logic, at least in a very special case:
randomized choices as models of fuzzy quantifiers

Main idea of randomized choices for (semi-fuzzy) quantifiers:
instead of letting P or O pick the witnessing constant, consider
random witnesses (w.r.t. uniform distribution over the domain).

This turns out to match various ‘vague’ (semi-fuzzy) quantifiers.

E.g., ‘Many x F (x)’ might be modeled as ‘A randomly picked
domain element satisfies F with probability ≥ γ’ (some threshold)
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The basic random choice quantifier Π is given by the rule:

P asserts Πx F (x): P asserts F (a) for a randomly picked a ∈ |I|

NB: Many more interesting quantifiers can be defined similarly.
E.g. proportionality quantifiers modeling about half, few, many.
These can be reduced to Π within Giles’s game!
See F/Roschger: Randomized Game Semantics for Semi-Fuzzy
Quantifiers, IGPL Journal, to appear

Fine, but was does this have to do with IF logic?

Answer:
Πx F (x) ≈ ∀x/{x , . . .}F (x) ⇔ ∃x/{x , . . .}F (x)
In other words:
Picking x without any information amounts to randomized choice!
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Mixing the levels:
(B) Connectives arising from incomplete information

Claim: The Hintikka-Sandu scenario calls out for the study of
further connectives, enabled by Giles’s more general notion of state!

Example: (evaluation in I with cardinality n)
Consider ∀x

[(
∃y/{x}

)
x 6= y or

(
∃z/{x}

)
x 6= z

]
I or = ∨ (classic IF): equilibrium value (n − 1)/n

I or = ∨′ ( Lukasiewicz): inverted risk-value (n − 1)/n

I ‘commonsense or’: it does not matter that P doesn’t know
the witness for x : P just picks different witnesses for y and z
=⇒ value = 1
Note: this form of disjunction is not truth functional!

Remark for experts on  Lukasiewicz logic:
‘or’ could also be strong disjunction, leading also to value 1.
It can also be modeled in Giles’s game and is truth functional!
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Connectives arising from incomplete information (ctd.)

I ‘commonsense conjunction’: To win F and G
P has to win both: a game for F and a game for G

I many more variants of connectives and quantifiers arise

I some similarity with game semantics for linear logic,
but even more with Japaridze’s Computability Logic

Message: It’s fine to stick just with Hintikka’s rules for ∨, ∧, ¬ in
classical logic; but incomplete information widens the playground
and naturally leads to further (variants of) connectives!
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Summary

I games of Hintikka-Sandu and Giles look very different at first
I but there are (at least) three ways to combine them:

I HS-games as sub-games (‘dispersive experiments’) in G-games
I independence-friendly quantifiers in  Lukasiewicz logic
I more connectives arising in the incomplete information scenario

I overall, we obtain a rich new field of investigation!
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