On logics of formal inconsistency and fuzzy logics

M Coniglio1, F. Esteva2 and L. Godo2

1 Department of Philosophy Campinas University (Brasil) and
2 Artificial Intelligence Research Institute (IIIA - CSIC) (Spain)

Manyval 2013, Prague 4-6 September
The major motivation behind paraconsistent logic has always been the thought that in certain circumstances we may be in a situation where our information or theory is inconsistent, and yet we are required to draw inferences in a sensible fashion.
Western Philosophy has been, in general, hostile to contradictions.

Aristotle’s Law of Non-contradiction

It is impossible for the same thing to belong and not to belong at the same time to the same thing and in the same respect.

Therefore $\varphi, \neg \varphi \models \psi$ (Classical logic is explosive)

In the presence of contradictions, Classical Logic does not allow to *draw inferences in a sensible fashion.*

Definition

A logic is **paraconsistent** if it is not explosive.
Non-contradiction law is finally well established in the nineteenth century in classical logic with the systems of Boole and Frege.

Paraconsistent logics arrive in the twentieth century:

- Vasil’év (1910): Aristotelian syllogistic with “S is both P and not P”.
- Orlov (1929): First axiomatization of relevant logic R.
- Jaśkowski (1948): First non-adjunctive paraconsistent logic.
 \[\Gamma \vdash J \varphi \iff \box\Gamma \vdash S5 \box\varphi \]

Da Costa (1963): Axiomatization of a family of paraconsistent logics (C systems) and first quantified paraconsistent logic. Campinas School.

A. Avron and A. Zamansky, work also in Paraconsistency in the recent years.
Paraconsistency: basic references

 Carnielli and Marcos (2002): Logics of Formal Inconsistency (LFIs) as *paraconsistent logics that internalize the notions of consistency and inconsistency at the object-language level*.
We are concerned with logics for reasoning with imperfect information (imprecision (e.g. vagueness), uncertainty, inconsistency, ...).

Paraconsistent fuzzy logics would be a tool to deal with inconsistent and vague information.

To the best of our knowledge, paraconsistency has not been considered in the framework of Mathematical Fuzzy Logic (MFL).
Usual (truth-preserving) fuzzy logics are explosive:

- $\varphi, \psi \vdash \varphi \land \psi$
- $\varphi \land \neg \varphi \vdash \overline{0}$
- $\overline{0} \vdash \psi$

Therefore:

- $\varphi, \neg \varphi \vdash \psi$
Given a (\triangle)-core fuzzy logic L, its **degree-preserving companion** $L \leq$ is defined as:

$$\Gamma \vdash_{L \leq} \varphi \text{ iff for every } L\text{-chain } A, \text{ every } a \in A, \text{ and every } A\text{-evaluation } v, \text{ if } a \leq v(\psi) \text{ for every } \psi \in \Gamma, \text{ then } a \leq v(\varphi).$$

- Font, Gil, Torrens, Verdú (AML, 2006): the case of Łukasiewicz logic
- Bou, Esteva, Font, Gil, Godo, Torrens, Verdú (JLC, 2009): the case of logics of bounded commutative integral residuated lattices
The theorems of L and $L \leq$ coincide.

$\psi_1, \ldots, \psi_n \vdash_L \varphi$ iff $\psi_1 \land \ldots \land \psi_n \vdash_L \varphi$.

$\psi_1, \ldots, \psi_n \vdash_{L \leq} \varphi$ iff $\psi_1 \land \ldots \land \psi_n \vdash_{L \leq} \varphi$ iff $\vdash_{L \leq} \psi_1 \land \ldots \land \psi_n \rightarrow \varphi$ iff $\vdash_L \psi_1 \land \ldots \land \psi_n \rightarrow \varphi$.

$L \leq$ can be presented by the Hilbert system whose axioms are the theorems of L and the following deduction rules:

- $(\land\text{-adj})$ From φ and ψ, infer $\varphi \land \psi$.
- $(\text{MP}) \leq$ From φ, if $\varphi \rightarrow \psi$ is a theorem of L, infer ψ.
Theorem

\(L \leq \) is paraconsistent iff \(L \) is not pseudo-complemented.

1. \(\varphi, \neg \varphi \vdash_{L \leq} \varphi \land \neg \varphi \)
2. \(\vdash_{L \leq} \varphi \land \neg \varphi \rightarrow 0 \) iff \(\vdash_{L} \varphi \land \neg \varphi \rightarrow 0 \) iff \(L \) is pseudo-complemented

Therefore \(L \leq \) is paraconsistent iff \(L \) is not an extension of SMTL.
Let L be a logic containing a negation \neg, and let $\bigcirc(p)$ be a nonempty set of formulas depending exactly on the propositional variable p. Then L is an LFI if the following holds:

(i) $\varphi, \neg \varphi \not\models \psi$ for some φ and ψ, i.e., L is not explosive w.r.t. \neg;

(ii) $\bigcirc(\varphi), \varphi \not\models \psi$ for some φ and ψ;

(iii) $\bigcirc(\varphi), \neg \varphi \not\models \psi$ for some φ and ψ; and

(iv) $\bigcirc(\varphi), \varphi, \neg \varphi \models \psi$ for every φ and ψ.

$\bigcirc(p)$ is what we need to internalize the notions of consistency at the object-language level.
Having in mind the properties that a consistency operator has to verify and that core fuzzy logics are logics complete with respect to the chains, it seems reasonable to define:

Consistency operators in non-SMTL chains

A consistency operator over a non-SMTL chain A is a unary operator $\circ : A \rightarrow A$ satisfying these minimal conditions:

- (i) $x \land \circ(x) \neq 0$ for some $x \in A$;
- (ii) $\neg x \land \circ(x) \neq 0$ for some $x \in A$;
- (iii) $x \land \neg x \land \circ(x) = 0$ for every $x \in A$.

Such an operator \circ can be thought as denoting the (fuzzy) degree of ‘classicality’ (or ‘reliability’, or ‘robustness’) of x with respect to the satisfaction of the law of explosion.
Proposed postulates:

(c1) If $x \land \neg x \neq 0$ then $\circ(x) = 0$;

(c2) If $x \in \{0, 1\}$ then $\circ(x) = 1$;

(c3) If $\neg x = 0$ and $x \leq y$ then $\circ(x) \leq \circ(y)$.
Definition

Let L be a non-$SMTL$ logic. L_\circ is the expansion of L in a language which incorporates a new unary connective \circ with the following axioms:

(A1) $\neg (\varphi \land \neg \varphi \land \circ \varphi)$
(A2) $\circ \bar{1}$
(A3) $\circ \bar{0}$

and the following inference rules:

(sCng) $\frac{(\varphi \leftrightarrow \psi) \lor \delta}{(\circ \varphi \leftrightarrow \circ \psi) \lor \delta}$
(Coh) $\frac{\neg \neg \varphi \land (\varphi \rightarrow \psi) \lor \delta}{(\circ \varphi \rightarrow \circ \psi) \lor \delta}$
Some properties of logics L_\circ

- Chain-completeness: the logic L_\circ is strongly complete with respect to the class of L_\circ-chains
- Conservativeness: L_\circ is a conservative expansion of L
- Real completeness preservation: a logic L_\circ is complete over $[0, 1]$-chains for deductions from a finite (resp. arbitrary) set of premises iff it is so the logic L.

M Coniglio, F. Esteva and L. Godo

On logics of formal inconsistency and fuzzy logics
Some interesting extensions / expansions

Recall the general form of \circ operators in L chains:

\[(x) \text{ remains undetermined in the interval } \mathbb{I}_{\neg} = \{x < 1 \mid \neg(x) = 0\}. \]

Next we consider some particular logics depending on \circ in this interval.
1) the case $\mathbb{I}_\neg = \emptyset$: the logic $L_{\neg\neg}^{-}$

The logic $L_{\neg\neg}^{-}$ is defined as the extension of L by adding the following rule:

$$
\frac{-\neg \varphi}{\varphi}
$$

Then define the logic $L_{\circ \neg\neg}^{-}$ as the expansion L_\circ with the rule $(\neg \neg)$.

Observe that over chains, $\circ(x) = 1$ if $x \in \{0, 1\}$ and 0 otherwise.

Relation with Baaz-Monteiro’s Δ operator:

- $\circ(\varphi) = \Delta(\varphi \lor \neg \varphi)$ and $\Delta(\varphi) = \circ(\varphi) \land \varphi$.
- $L_{\circ \neg\neg}^{-}$ “equivalent” to $(L_\Delta)^{-}$
2) the case of crisp \circ operators

<table>
<thead>
<tr>
<th>L^c_0</th>
<th>$L_0 + (c) \circ \varphi \lor \neg \circ \varphi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^min_0</td>
<td>$L_0 + (A4) \varphi \lor \neg \varphi \lor \neg \circ \varphi$</td>
</tr>
<tr>
<td>L^max_0</td>
<td>$L_0 + (\neg \neg \circ) \frac{\neg \circ \varphi \lor \delta}{\circ \varphi \lor \delta}$</td>
</tr>
</tbody>
</table>
A family of Fuzzy LFIs

Our ultimate goal is the axiomatization of the expansions of paraconsistent logics L^\leq with a consistency operator \circ.

Axiomatization of L^\leq

It is obtained by taking the same axioms of L_\circ and adding the following inference rules:

- **(Adj-\land)** from φ and ψ deduce $\varphi \land \psi$
- **(MP-r)** if $\vdash_{L_\circ} \varphi \rightarrow \psi$, then from φ derive ψ
- **(Cong-r)** if $\vdash_{L_\circ} (\varphi \leftrightarrow \psi) \lor \delta$ then derive $(\circ \varphi \leftrightarrow \circ \psi) \lor \delta$
- **(Coh-r)** if $\vdash_{L_\circ} (\neg \neg \varphi \land (\varphi \rightarrow \psi)) \lor \delta$ then derive $(\circ \varphi \rightarrow \circ \psi) \lor \delta$

Similarly, when we replace L_\circ by any of the above considered expansions / extensions.
A family of Fuzzy LFI\textsc{s}

<table>
<thead>
<tr>
<th>Logic</th>
<th>Inference rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_\leq</td>
<td>rules of L_\leq + (Cong-r) $\frac{\vdash_{L_\leq} (\varphi \leftrightarrow \psi) \lor \delta}{(\varphi \leftrightarrow \varphi) \lor \delta}$ (Coh-r) $\frac{\vdash_{L_\leq} (\neg \neg \varphi \land (\varphi \rightarrow \psi)) \lor \delta}{(\varphi \rightarrow \varphi) \lor \delta}$</td>
</tr>
<tr>
<td>$(L_{\neg\neg})_\leq$</td>
<td>rules of L_\leq + (\neg\neg-r) $\frac{\vdash_{L_{\neg\neg}} \neg \neg \varphi}{\varphi}$</td>
</tr>
<tr>
<td>$(L^c_\leq$</td>
<td>rules of L_\leq</td>
</tr>
<tr>
<td>$(L^\text{min}_\leq$</td>
<td>rules of L_\leq</td>
</tr>
<tr>
<td>$(L^\text{max}_\leq$</td>
<td>rules of L_\leq + (\neg\neg_{\text{o}}-r) $\frac{\vdash_{L^\text{max}_\leq} \neg \neg \varphi \lor \delta}{\varphi \lor \delta}$</td>
</tr>
</tbody>
</table>
In the context of LFIs, it is a desirable property to recover classical reasoning by means of the consistency connective \circ:

\[(\text{DAT}) \quad \Gamma \vdash_{\text{CPL}} \varphi \iff \circ(\Theta), \Gamma \vdash_{\text{L}} \varphi.\]

where Θ, Γ and φ are in the language of CPL. This is known as \textit{Derivability Adjustment Theorem} (DAT).

When the operator \circ \textit{suitably propagates} through connectives of a LFI logic L the DAT reduces to this simplified form:

\[
(\text{PDAT}) \quad \Gamma \vdash_{\text{CPL}} \varphi \iff \\{\circ p_1, \ldots, \circ p_n\} \cup \Gamma \vdash_{\text{L}} \varphi
\]

where $\{p_1, \ldots, p_n\}$ is the set of propositional variables occurring in $\Gamma \cup \{\varphi\}$.

M Coniglio, F. Esteva and L. Godo

On logics of formal inconsistency and fuzzy logics
Is there a DAT for the LFI logics L_\leq?

Consider this (simplified form) of the translation:

$$(PDAT^*) \vdash_{\text{CPL}} \varphi \iff \{\circ p_1, \ldots, \circ p_n\} \vdash_{L_\leq} \varphi$$

$$(\text{iff} \quad \vdash_{L_\circ} \left(\bigwedge_{i=1}^{n} \circ p_i \right) \rightarrow \varphi)$$

Unfortunately, this does not hold in general:

$\vdash_{\text{CPL}} p \lor \neg p$ but, in general, $\not\vdash_{L_\leq} \circ p \rightarrow (p \lor \neg p)$

Define L_{\circ}^{dat} as the extension of L_\circ with the axiom $\circ \varphi \rightarrow (\varphi \lor \neg \varphi)$

A DAT property for L_\leq

$\Gamma \vdash_{\text{CPL}} \varphi$ iff there is some $k \geq 1$ such that $\Gamma \vdash_{L_\circ^{\text{dat}}} (\bigwedge_{i=1}^{m} \circ p_i)^k \rightarrow \varphi$

Open question: do we need $k > 1$?
Conclusions

- We have investigated the possibility of defining paraconsistent logics of formal inconsistency (LFIs) based on systems of mathematical fuzzy logic by:
 (i) expanding axiomatic extensions of the fuzzy logic MTL with the characteristic consistency operators \(\circ \) of LFIs
 (ii) considering their degree-preserving versions, that are paraconsistent.
- One could dually consider *inconsistency* operators \(\bullet = \neg \circ \)
- Together with a companion paper Ertola-Esteva-Flaminio-Godo-Noguera, these are first attempts to contribute to the study and understanding of the relationships between paraconsistency and fuzziness.