On logics of formal inconsistency and fuzzy logics

M Coniglio¹, F. Esteva² and L. Godo²

 ¹ Department of Philosophy Campinas University (Brasil) and
 ² Artificial Intelligence Research Institute (IIIA - CSIC) (Spain)

Manyval 2013, Prague 4-6 september

Graham Priest, *Paraconsistent logic*, Handbook of Philosophical Logic, Volume 6, 2nd edition, 2002.

The major motivation behind paraconsistent logic has always been the thought that in certain circumstances we may be in a situation where our information or theory is inconsistent, and yet we are required to draw inferences in a sensible fashion. Western Philosophy has been, in general, hostile to contradictions.

Aristotle's Law of Non-contradiction

It is impossible for the same thing to belong and not to belong at the same time to the same thing and in the same respect.

Therefore $\varphi, \neg \varphi \models \psi$ (Classical logic is explosive) In the presence of contradictions, Classical Logic does not allow to *draw inferences in a sensible fashion*.

Definition

A logic is paraconsistent if it is not explosive.

Non-contradiction law is finally well established in the nineteenth century in classical logic with the systems of Boole and Frege.

Paraconsistent logics arrive in the twentieth century:

- Vasil'év (1910): Aristotelian syllogistic with "S is both P and not P".
- Orlov (1929): First axiomatization of relevant logic R.
- Łukasiewicz (1910): Critique of Aristotle's Law of Non-contradiction.
- Jaśkowski (1948): First non-adjunctive paraconsistent logic.

 $\Gamma \vdash_{\mathsf{J}} \varphi \text{ iff } \Diamond \Gamma \vdash_{\mathsf{S5}} \Diamond \varphi$

• Asenjo (1954): First many-valued paraconsistent logic.

- Smiley (1959): Filter logic. Relevant paraconsistent logics.
 Pittsburgh school (Anderson, Belnap, Meyer, Dunn), Australian school (R. Routley, V. Routley, G. Priest).
- Da Costa (1963): Axiomatization of a family of paraconsistent logics (C systems) and first quantified paraconsistent logic. Campinas School.
- A. Avron and A. Zamansky, work also in Paraconsistency in the recent years.

• G. Priest, *Paraconsistent logic*, Handbook of Philosophical Logic, Volume 6, 2nd edition, 2002.

- W.A. Carnielli, M.E. Coniglio, and J. Marcos. Logics of Formal Inconsistency (LFIs). In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic (2nd. edition), volume 14, pages 1–93. Springer, 2007.
 - Carnielli and Marcos (2002): Logics of Formal Inconsistency (LFIs) as paraconsistent logics that internalize the notions of consistency and inconsistency at the object-language level.

We are concerned with logics for reasoning with imperfect information (imprecision (e.g. vagueness), uncertainty, inconsistency, ...).

Paraconsistent fuzzy logics would be a tool to deal with inconsistent and vague information.

To the best of our knowledge, paraconsistency has not been considered in the framework of Mathematical Fuzzy Logic (MFL).

Usual (truth-preserving) fuzzy logics are explosive:

•
$$\varphi, \psi \vdash \varphi \& \psi$$

•
$$\varphi \& \neg \varphi \vdash 0$$

•
$$\overline{0} \vdash \psi$$

Therefore:

•
$$\varphi, \neg \varphi \vdash \psi$$

Given a ()-core fuzzy logic L, its degree-preserving companion L^\leq is defined as:

 $\Gamma \vdash_{L^{\leq}} \varphi$ iff for every L-chain *A*, every $a \in A$, and every *A*-evaluation *v*, if $a \leq v(\psi)$ for every $\psi \in \Gamma$, then $a \leq v(\varphi)$.

- Font, Gil, Torrens, Verdú (AML, 2006): the case of Łukasiewicz logic
- Bou, Esteva, Font, Gil, Godo, Torrens, Verdú (JLC, 2009): the case of logics of bounded commutative integral residuated lattices

- The theorems of L and L^{\leq} coincide.
- $\psi_1, \ldots, \psi_n \vdash_{\mathbf{L}} \varphi$ iff $\psi_1 \& \ldots \& \psi_n \vdash_{\mathbf{L}} \varphi$.
- $\psi_1, \ldots, \psi_n \vdash_{\mathbf{L}} \varphi$ iff $\psi_1 \land \ldots \land \psi_n \vdash_{\mathbf{L}} \varphi$ iff $\vdash_{\mathbf{L}} \psi_1 \land \ldots \land \psi_n \to \varphi$ iff $\vdash_{\mathbf{L}} \psi_1 \land \ldots \land \psi_n \to \varphi$.
- L[≤] can be presented by the Hilbert system whose axioms are the theorems of L and the following deduction rules:

(\wedge -adj) From φ and ψ , infer $\varphi \wedge \psi$.

 $(MP)^{\leq}$ From φ , if $\varphi \to \psi$ is a theorem of L, infer ψ .

Theorem

 L^{\leq} is paraconsistent iff L is not pseudo-complemented.

•
$$\varphi, \neg \varphi \vdash_{\mathbf{L}^{\leq}} \varphi \land \neg \varphi$$

$$\bullet \vdash_{\mathrm{L}^{\leq}} \varphi \wedge \neg \varphi \to \overline{0} \quad \text{iff} \quad \vdash_{\mathrm{L}} \varphi \wedge \neg \varphi \to \overline{0} \quad \text{iff}$$

L is pseudo-complemented

Therefore L^{\leq} is paraconsistent iff L is not an extension of SMTL.

Definition

Let L be a logic containing a negation \neg , and let $\bigcirc(p)$ be a nonempty set of formulas depending exactly on the propositional variable *p*. Then L is an LFI if the following holds :

(i)
$$\varphi, \neg \varphi \nvDash \psi$$
 for some φ and ψ , i.e., L is not explosive w.r.t. \neg ;

(ii)
$$\bigcirc(\varphi), \varphi \nvDash \psi$$
 for some φ and ψ ;

(iii)
$$\bigcirc(\varphi), \neg \varphi \nvDash \psi$$
 for some φ and ψ ; and

(iv)
$$\bigcirc(\varphi), \varphi, \neg \varphi \vdash \psi$$
 for every φ and ψ .

 \bigcirc (*p*) is what we need to *internalize the notions of consistency at the object-language level.*

Having in mind the properties that a consistency operator has to verify and that core fuzzy logics are logics complete with respect to the chains , it seems reasonable to define:

Consistency operators in non-SMTL chains

A consistency operator over a non-SMTL chain A is a unary operator $\circ : A \rightarrow A$ satisfying these minimal conditions:

```
(i) x \land \circ(x) \neq 0 for some x \in A;
```

```
(ii) \neg x \land \circ(x) \neq 0 for some x \in A;
```

```
(iii) x \wedge \neg x \wedge \circ(x) = 0 for every x \in A.
```

Such an operator \circ can be thought as denoting the (fuzzy) degree of 'classicality' (or 'reliability', or 'robustness') of *x* with respect to the satisfaction of the law of explosion.

Axiomatizing consistency operators over fuzzy logics II

Proposed postulates:

(c1) If
$$x \wedge \neg x \neq 0$$
 then $\circ(x) = 0$;

(c2) If
$$x \in \{0, 1\}$$
 then $\circ(x) = 1$;

(c3) If
$$\neg x = 0$$
 and $x \le y$ then $\circ(x) \le \circ(y)$.

M Coniglio, F. Esteva and L. Godo On logics of formal inconsistency and fuzzy logics

Axiomatizing consistency operators over fuzzy logics

Definition

Let L be a non-SMTL logic. L_\circ is the expansion of L in a language which incorporates a new unary connective \circ with the following axioms:

$$\begin{array}{ll} (A1) & \neg(\varphi \land \neg \varphi \land \circ \varphi) \\ (A2) & \circ \overline{1} \\ (A3) & \circ \overline{0} \end{array}$$

and the following inference rules:

$$(\text{sCng}) \quad \frac{(\varphi \leftrightarrow \psi) \lor \delta}{(\circ \varphi \leftrightarrow \circ \psi) \lor \delta} \qquad \qquad (\text{Coh}) \quad \frac{(\neg \neg \varphi \land (\varphi \to \psi)) \lor \delta}{(\circ \varphi \to \circ \psi) \lor \delta}$$

- Chain-completeness: the logic L_\circ is strongly complete with respect to the class of $L_\circ\text{-chains}$
- $\bullet\,$ Conservativeness: L_\circ is a conservative expansion of $L\,$
- Real completeness preservation: a logic L_{\circ} is complete over [0, 1]-chains for deductions from a finite (resp. arbitrary) set of premises iff it is so the logic L.

Some interesting extensions / expansions

Recall the general form of \circ operators in L chains:

 $\circ(x)$ remains undetermined in the interval $\mathbb{I}_{\neg} = \{x < 1 \mid \neg(x) = 0\}$. Next we consider some particular logics depending on \circ in this interval The logic $L^{\neg \neg}$ is defined as the extension of L by adding the following rule:

 $(\neg \neg) \frac{\neg \neg \varphi}{\varphi}$

Then define the logic $L_{\circ}^{\neg \neg}$ as the expansion L_{\circ} with the rule $(\neg \neg)$.

Observe that over chains, $\circ(x) = 1$ if $x \in \{0, 1\}$ and 0 otherwise.

Relation with Baaz-Monteiro's Δ operator:

•
$$\circ(\varphi) = \Delta(\varphi \vee \neg \varphi)$$
 and $\Delta(\varphi) = \circ(\varphi) \wedge \varphi$.

• $L_{\circ}^{\neg \neg}$ "equivalent" to $(L_{\Delta})^{\neg \neg}$

2) the case of crisp \circ operators

M Coniglio, F. Esteva and L. Godo On logics of formal inconsistency and fuzzy logics

A family of Fuzzy LFIs

Our ultimate goal is the axiomatization of the expansions of paraconsistent logics L^\leq with a consistency operator $\circ.$

Axiomatization of L_{\circ}^{\leq}

It is obtained by taking the same axioms of ${\rm L}_{\circ}$ and adding the following inference rules:

$$\begin{array}{ll} (\mathsf{Adj}\text{-}\wedge) \ \text{from } \varphi \ \text{and } \psi \ \text{deduce } \varphi \wedge \psi \\ (\mathsf{MP}\text{-}r) \ \text{if } \vdash_{\mathsf{L}_{\circ}} \varphi \to \psi \ \text{, then from } \varphi \ \text{derive } \psi \\ \mathbf{Cong}\text{-}r) \ \text{if } \vdash_{\mathsf{L}_{\circ}} (\varphi \leftrightarrow \psi) \vee \delta \ \text{then derive } (\circ \varphi \leftrightarrow \circ \psi) \vee \delta \\ (\mathbf{Coh}\text{-}r) \ \text{if } \vdash_{\mathsf{L}_{\circ}} (\neg \neg \varphi \wedge (\varphi \to \psi)) \vee \delta \ \text{then derive } \\ (\circ \varphi \to \circ \psi) \vee \delta \end{array}$$

Similarly, when we replace L_{\circ} by any of the above consideres expansions / extensions.

A family of Fuzzy LFIs

Logic	Inference rules
$\mathrm{L}_{\mathrm{o}}^{\leq}$	$ \begin{array}{ll} \text{rules of } \mathrm{L}^{\leq} & + & (\mathrm{Cong}\text{-}\mathrm{r}) & \frac{\vdash_{\mathrm{L}_{\circ}}(\varphi \leftrightarrow \psi) \lor \delta}{(\circ \varphi \leftrightarrow \circ \psi) \lor \delta} \\ & (\mathrm{Coh}\text{-}\mathrm{r}) & \frac{\vdash_{\mathrm{L}_{\circ}}(\neg \neg \varphi \land (\varphi \rightarrow \psi)) \lor \delta}{(\circ \varphi \rightarrow \circ \psi) \lor \delta} \end{array} $
(L _° ¬)≤	$\text{rules of } \mathrm{L}_{\mathrm{o}}^{\leq} \hspace{0.1 cm} + \hspace{0.1 cm} (\neg\neg \text{-}r) \hspace{0.1 cm} \frac{\vdash_{\mathrm{L}_{\mathrm{o}}^{\neg \neg}} \hspace{0.1 cm} \neg \neg \varphi}{\varphi}$
$(\mathrm{L}^c_{\circ})^{\leq}$	rules of L_o^{\leq}
$(L_{\circ}^{min})^{\leq}$	rules of L_o^{\leq}
$(L_{\circ}^{max})^{\leq}$	$\text{rules of } \mathrm{L}_{\mathrm{o}}^{\leq} \hspace{0.1 cm} + \hspace{0.1 cm} (\neg \neg_{\mathrm{o}} \textbf{-} r) \hspace{0.1 cm} \frac{\vdash_{\mathrm{L}_{\mathrm{o}}^{max}} \neg \neg \varphi \vee \delta}{\circ \varphi \vee \delta}$

M Coniglio, F. Esteva and L. Godo On logics of formal inconsistency and fuzzy logics

In the context of LFIs, it is a desirable property to recover classical reasoning by means of the consistency connective o:

```
(DAT) \Gamma \vdash_{\mathbf{CPL}} \varphi iff \circ(\Theta), \Gamma \vdash_{\mathbf{L}} \varphi.
```

where Θ , Γ and φ are in the language of **CPL**. This is known as *Derivability Adjustment Theorem* (DAT).

When the operator \circ *suitably propagates* through connectives of a LFI logic L the DAT reduces to this simplified form:

PDAT

(PDAT)
$$\Gamma \vdash_{\mathbf{CPL}} \varphi$$
 iff $\{\circ p_1, \ldots, \circ p_n\} \cup \Gamma \vdash_{\mathbf{L}} \varphi$

where $\{p_1, \ldots, p_n\}$ is the set of propositional variables occurring in $\Gamma \cup \{\varphi\}$.

Is there a DAT for the LFI logics L_{\circ}^{\leq} ?

Consider this (simplified form) of the translation:

$$\begin{array}{ll} (\mathsf{PDAT}^*) & \vdash_{\mathbf{CPL}} \varphi & \text{iff} \quad \{\circ p_1, \dots, \circ p_n\} \vdash_{\mathbf{L}_{\circ}^{\leq}} \varphi \\ & (\text{iff} \quad \vdash_{\mathbf{L}_{\circ}} \left(\bigwedge_{i=1}^n \circ p_i\right) \to \varphi) \end{array}$$

Unfortunately, this does not hold in general: $\vdash_{\mathbf{CPL}} p \lor \neg p$ but, in general, $\nvdash_{\mathbf{L}_{\circ}^{\leq}} \circ p \to (p \lor \neg p)$

Define L^{dat}_{\circ} as the extension of L_{\circ} with the axiom $\circ \varphi \rightarrow (\varphi \vee \neg \varphi)$

A DAT property for L_{\circ}^{\leq}

 $\Gamma \vdash_{\mathbf{CPL}} \varphi$ iff there is some $k \ge 1$ such that $\Gamma \vdash_{\mathbf{L}_{\alpha}^{dat}} (\bigwedge_{i=1}^{m} \circ p_{i})^{k} \to \varphi$

Open question: do we need k > 1?

Conclusions

 We have investigated the possibility of defining paraconsistent logics of formal inconsistency (LFIs) based on systems of mathematical fuzzy logic by:

(i) expanding axiomatic extensions of the fuzzy logic MTL with the characteristic consistency operators of LFIs
(ii) considering their degree-preserving versions, that are paraconsistent.

- One could dually consider *inconsistency* operators = ¬o
- Together with a companion paper Ertola-Esteva-Flaminio-Godo-Noguera, these are first attempts to contribute to the study and understanding of the relationships between paraconsistency and fuzziness.