Lexicographic MV-algebras. Through a generalization of Di Nola-Lettieri functors

DENISA DIACONESCU

Faculty of Mathematics and Computer Science University of Bucharest

(WITH IOANA LEUŞTEAN AND TOMMASO FLAMINIO)

MANYVAL 2013

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

OUTLINE

GOAL 1:

When an MV-algebra can be represented as a lexicographic product between an ℓu -group and an ℓ -group?

GOAL 2:

What other MV-algebras are equivalent with ℓ -groups?

GOAL 3:

Are there "states" on MV-algebra which save infinitesimals?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

OUTLINE

GOAL 1:

When an MV-algebra can be represented as a lexicographic product between an ℓu -group and an ℓ -group?

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ► Di Nola, Lettieri (1994)
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

 $A \simeq \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- ► Di Nola, Lettieri (1994)
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

• then *A* is a perfect MV-algebra

- ► Di Nola, Lettieri (1994)
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$$

- then *A* is a perfect MV-algebra
- ► Di Nola, Lettieri (1996)
 - ▶ \mathbb{R}' a subgroup of \mathbb{R}
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(\mathbb{R}' \times_{lex} G, \langle 1, 0 \rangle)$$

< □ > < @ > < E > < E > E のQ@

- ► Di Nola, Lettieri (1994)
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$$

- then *A* is a perfect MV-algebra
- ► Di Nola, Lettieri (1996)
 - ▶ \mathbb{R}' a subgroup of \mathbb{R}
 - ► *G* an *l*-group
 - ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(\mathbb{R}' \times_{lex} G, \langle 1, 0 \rangle)$$

• A a local MV-algebra with retractive radical

LEXICOGRAPHIC PRODUCT OF ℓ -GROUPS

 ▶ A.M.W. Glass, W. Charles Holland - Lattice-Ordered Groups (1989) H×_{lex} G is an ℓ-group iff H is an *o*-group and G is an ℓ-group

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

LEXICOGRAPHIC PRODUCT OF ℓ -GROUPS

A.M.W. Glass, W. Charles Holland - Lattice-Ordered Groups (1989)
 H×_{lex} G is an ℓ-group
 iff
 H is an *o*-group and G is an ℓ-group

► It is easy to see:

 $(H \times_{lex} G, \langle u, 0 \rangle)$ is an ℓu -group iff (H, u) is an *ou*-group and *G* is an ℓ -group

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

Our goal 1

- ▶ (H, u) an *ou*-group
- ► *G* an *l*-group
- ► *A* an MV-algebra s.t.

 $A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Our goal 1

- ▶ (H, u) an *ou*-group
- ► *G* an *l*-group
- ► *A* an MV-algebra s.t.

$$A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

▶ What kind of MV-algebra is *A*?

We recall:

Definition.

An ideal *I* of an MV-algebra *A* is called *prime* if it is proper and $a \odot b^* \in I$ or $b \odot a^* \in I$

for any $a, b \in A$.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We recall:

Definition.

An ideal I of an MV-algebra A is called *prime* if it is proper and

 $a \odot b^* \in I \text{ or } b \odot a^* \in I$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

for any $a, b \in A$.

Proposition.

If A is an MV-algebra and I is a proper ideal of A, then t.f.a.e.:

1. I is a prime ideal,

2. A/I is an MV-chain.

We recall:

Definition.

An ideal *I* of an MV-algebra *A* is called *retractive* if there exists a morphism $\delta_I : A/I \to A$ such that

 $\pi_I \circ \delta_I = id_{A/I}.$

< □ > < @ > < E > < E > E のQ@

We recall:

Definition.

An ideal *I* of an MV-algebra *A* is called *retractive* if there exists a morphism $\delta_I : A/I \to A$ such that

 $\pi_I \circ \delta_I = id_{A/I}.$

Remark.

If *I* is retractive, then A/I is isomorphic with a subalgebra of *A*.

Ideals of MV-algebras

Definition.

An ideal *I* of an MV-algebra *A* is called *strict* if $\pi_I(a) < \pi_I(b)$ implies a < b,

< □ > < @ > < E > < E > E のQ@

for any $a, b \in A$.

Definition.

An ideal *I* of an MV-algebra *A* is called *strict* if $\pi_I(a) < \pi_I(b)$ implies a < b,

for any $a, b \in A$.

Remark.

 $\cdot \pi_I(a) < \pi_I(b)$ means that $a \odot b^* \in I$ and $b \odot a^* \notin I$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• we require that $a \odot b^* = 0$ and $b \odot a^* \neq 0$.

Definition.

An ideal *I* of an MV-algebra *A* is called *strict* if

 $\pi_I(a) < \pi_I(b)$ implies a < b,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

for any $a, b \in A$.

Remark.

- $\cdot \pi_I(a) < \pi_I(b)$ means that $a \odot b^* \in I$ and $b \odot a^* \notin I$.
- we require that $a \odot b^* = 0$ and $b \odot a^* \neq 0$.

Example.

In any local MV-algebra, the radical is strict.

A FIRST REMARK

Proposition.

Let A be an MV-algebra such that

 $A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle),$

< □ > < @ > < E > < E > E のQ@

where (H, u) is an ou-group and G is a nontrivial ℓ -group.

A FIRST REMARK

Proposition.

Let A be an MV-algebra such that

 $A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle),$

where (H, u) is an ou-group and G is a nontrivial ℓ -group.

There exists an ideal I of A such that the following are satisfied:

- 1. $I \neq \{0\}$
- 2. I is strict
- 3. *I is retractive*
- 4. I is prime

5. $\tau \leq a \leq \tau^*$, for any $\tau \in I$ and any $a \in A \setminus \langle I \rangle$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

A FIRST REMARK

Proposition.

Let A be an MV-algebra such that

 $A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle),$

where (H, u) is an ou-group and G is a nontrivial ℓ -group.

There exists an ideal I of A such that the following are satisfied:

1. $I \neq \{0\}$

- 2. I is strict
- 3. *I is retractive*
- 4. I is prime

5. $\tau \leq a \leq \tau^*$, for any $\tau \in I$ and any $a \in A \setminus \langle I \rangle$.

Sketch of the proof.

The desired ideal is $I = \{ \langle 0, k \rangle \mid k \in G_+ \}.$

LEXICOGRAPHIC IDEALS OF MV-ALGEBRAS

Definition.

An ideal *I* of an MV-algebra *A* is called *lexicographic* if:

- 1. $I \neq \{0\}$
- 2. *I* is strict
- 3. *I* is retractive
- 4. *I* is prime

5.
$$\tau \leq a \leq \tau^*$$
, for any $\tau \in I$ and any $a \in A \setminus \langle I \rangle$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

LEXICOGRAPHIC IDEALS OF MV-ALGEBRAS

Definition.

An ideal *I* of an MV-algebra *A* is called *lexicographic* if:

1. $I \neq \{0\}$

- 2. *I* is strict
- 3. *I* is retractive
- 4. *I* is prime

5.
$$\tau \leq a \leq \tau^*$$
, for any $\tau \in I$ and any $a \in A \setminus \langle I \rangle$.

We denote by LexId(A) the set of all lexicographic ideals of A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LEXICOGRAPHIC IDEALS OF MV-ALGEBRAS

Definition.

An ideal *I* of an MV-algebra *A* is called *lexicographic* if:

1. $I \neq \{0\}$

- 2. *I* is strict
- 3. *I* is retractive
- 4. *I* is prime

5.
$$\tau \leq a \leq \tau^*$$
, for any $\tau \in I$ and any $a \in A \setminus \langle I \rangle$.

We denote by LexId(A) the set of all lexicographic ideals of A.

Lemma.

If I is a lexicographic ideal of an MV-algebra A, then I \subseteq *Rad*(*A*).

Definition.

An MV-algebra *A* is called *lexicographic* if $LexId(A) \neq \emptyset$.

< □ > < @ > < E > < E > E のQ@

Definition.

An MV-algebra *A* is called *lexicographic* if $LexId(A) \neq \emptyset$.

Remark.

For any $I \in LexId(A)$, we consider

 $S_I = \delta_I(A/I).$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 S_I is an MV-subalgebra of A and it is isomorphic with A/I.

Definition.

An MV-algebra *A* is called *lexicographic* if $LexId(A) \neq \emptyset$.

Remark.

For any $I \in LexId(A)$, we consider

 $S_I = \delta_I(A/I).$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 S_I is an MV-subalgebra of A and it is isomorphic with A/I.

Example.

Any perfect MV-algebra is lexicographic.

Example.

· consider an infinitesimal $c \in *[0, 1]$ such that $c \neq 0$

Example.

- · consider an infinitesimal $c \in *[0, 1]$ such that $c \neq 0$
- · take the MV-algebra

 $C\mathbb{Z} = \langle \{0, 1, c, c^2\} \rangle_{*[0,1]}$

< □ > < @ > < E > < E > E のQ@

Example.

- · consider an infinitesimal $c \in *[0, 1]$ such that $c \neq 0$
- · take the MV-algebra

$$C\mathbb{Z} = \langle \{0, 1, c, c^2\} \rangle_{*[0,1]}$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $\cdot \,$ lexicographic ideals of CZ:
 - $I_1 = \{mc^2 \mid m \in \mathbb{Z}_+ \cup \{0\}\}$
 - ► $I_2 = \{nc + mc^2 \mid n, m \in \mathbb{Z}_+ \cup \{0\}\} = Rad(C\mathbb{Z})$

Example.

- · consider an infinitesimal $c \in *[0, 1]$ such that $c \neq 0$
- · take the MV-algebra

$$C\mathbb{Z} = \langle \{0, 1, c, c^2\} \rangle_{*[0,1]}$$

- · lexicographic ideals of $C\mathbb{Z}$:
 - $I_1 = \{mc^2 \mid m \in \mathbb{Z}_+ \cup \{0\}\}$
 - ► $I_2 = \{nc + mc^2 \mid n, m \in \mathbb{Z}_+ \cup \{0\}\} = Rad(C\mathbb{Z})$
- $\cdot \ C\mathbb{Z}$ is a lexicographic MV-algebra

PROPERTIES OF LEXICOGRAPHIC MV-ALGEBRAS

Proposition.

The class of lexicographic MV-algebras does not form a variety.

PROPERTIES OF LEXICOGRAPHIC MV-ALGEBRAS

Proposition.

The class of lexicographic MV-algebras does not form a variety.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Sketch of the proof.

- · Chang MV-algebra C is a lexicographic MV-algebra
- $\cdot C \times C$ is not a lexicographic MV-algebra

CHARACTERIZATION THEOREM

Theorem.

Let A be an MV-algebra. T.f.a.e.:

- 1. A is a lexicographic MV-algebra,
- 2. there exist an ou-group (H, u) and a nontrivial ℓ -group G s.t. $A \simeq \Gamma(H \times_{lex} G, \langle u, 0 \rangle).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

CHARACTERIZATION THEOREM

Sketch of the proof.

CHARACTERIZATION THEOREM

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Sketch of the proof.

· let $I \in LexId(A)$
CHARACTERIZATION THEOREM

Sketch of the proof.

- · let $I \in LexId(A)$
- · take the *ou*-group $(H, u) \simeq \Gamma^{-1}(A/I)$
- · take the nontrivial ℓ -group $G \simeq \Delta^{-1}(\langle I \rangle)$

CHARACTERIZATION THEOREM

Sketch of the proof.

- · let $I \in LexId(A)$
- · take the *ou*-group $(H, u) \simeq \Gamma^{-1}(A/I)$
- · take the nontrivial ℓ -group $G \simeq \Delta^{-1}(\langle I \rangle)$
- · there exists a morphism $\delta_I : A/I \to A$ such that $\pi_I \circ \delta_I = id_{A/I}$
- · for any $a \in A$, we set

 $s_a = \delta_I(\pi_I(a))$ $\epsilon_a = a \odot s_a^*$ $\tau_a = a^* \odot s_a$

• we have $s_a \in S_I$ and $\tau_a, \epsilon_a \in I$ such that

 $a = (s_a \odot \tau_a^*) \oplus \epsilon_a = (s_a \oplus \epsilon_a) \odot \tau_a^*$

CHARACTERIZATION THEOREM

Sketch of the proof (cont).

• we have the following isomorphisms:

 $\zeta_I: S_I \to \Gamma(H, u) \qquad \eta_I: I \to G_+$

· We define

 $f_I : A \to \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$ $f_I(a) = \langle \zeta_I(s_a), \eta_I(\epsilon_a) - \eta_I(\tau_a) \rangle$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 \cdot f_I is an isomorphism of MV-algebras

A lexicographic MV-algebra can have several representations as a lexicographic product.

A lexicographic MV-algebra can have several representations as a lexicographic product.

- · lexicographic ideals of $C\mathbb{Z}$:
 - $I_1 = \{mc^2 \mid m \in \mathbb{Z}_+ \cup \{0\}\}$
 - ► $I_2 = \{nc + mc^2 \mid n, m \in \mathbb{Z}_+ \cup \{0\}\} = Rad(C\mathbb{Z})$

A lexicographic MV-algebra can have several representations as a lexicographic product.

Example.

We obtain two different representations:

Corollary.

Let A be a lexicographic MV-algebra. T.f.a.e.:

1. there exist a subgroup of the reals $(\mathbb{R}',1)$ and a nontrivial $\ell\text{-group}\ G$ such that

 $A \simeq \Gamma(\mathbb{R}' \times_{lex} G, \langle 1, 0 \rangle),$

2. $Rad(A) \in LexId(A)$.

Corollary.

Let A be a lexicographic MV-algebra. T.f.a.e.:

1. there exist a subgroup of the reals $(\mathbb{R}',1)$ and a nontrivial $\ell\text{-group}\ G$ such that

 $A \simeq \Gamma(\mathbb{R}' \times_{lex} G, \langle 1, 0 \rangle),$

2. $Rad(A) \in LexId(A)$.

Remark.

- ► Di Nola, Lettieri (1996)
 - \mathbb{R}' a subgroup of \mathbb{R} and G an ℓ -group such that

 $A \simeq \Gamma(\mathbb{R}' \times_{lex} G, \langle 1, 0 \rangle)$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• *A* a local MV-algebra with retractive radical

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Theorem.

If A is a lexicographic MV-algebra, then A is a local MV-algebra.

Theorem.

If A is a lexicographic MV-algebra, then A is a local MV-algebra.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let *A* be a lexicographic MV-algebra. We have two cases:

▶ $Rad(A) \in LexId(A)$

▶ $Rad(A) \notin LexId(A)$

Theorem.

If A is a lexicographic MV-algebra, then A is a local MV-algebra.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let *A* be a lexicographic MV-algebra. We have two cases:

► *Rad*(*A*) is retractive

► *Rad*(*A*) is not retractive

Theorem.

If A is a lexicographic MV-algebra, then A is a local MV-algebra.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let *A* be a lexicographic MV-algebra. We have two cases:

- ► *Rad*(*A*) is retractive
 - local MV-algebras with retractive ideals
 - Di Nola, Lettieri (1996)
- ► *Rad*(*A*) is not retractive?

OUTLINE

GOAL 2:

What other MV-algebras are equivalent with ℓ -groups?

・ロト・西ト・ヨー シック・

Di Nola-Lettieri functor Δ

- ► the category of *l*-groups *AG*
- ► the category of perfect MV-algebras *MV*_{perf}
- ► Di Nola, Lettieri (1994) defined the functor

 $\Delta\colon \mathcal{AG} \to \mathcal{MV}_{\textit{perf}}$

- $\Delta(G) = \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$
- $\Delta(g) = \langle id_{\mathbb{Z}}, g \rangle$

DI NOLA-LETTIERI FUNCTOR Δ

- ► the category of *l*-groups *AG*
- ► the category of perfect MV-algebras *MV*_{perf}
- ► Di Nola, Lettieri (1994) defined the functor

 $\Delta\colon \mathcal{AG} \to \mathcal{MV}_{\textit{perf}}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $\Delta(G) = \Gamma(\mathbb{Z} \times_{lex} G, \langle 1, 0 \rangle)$
- $\Delta(g) = \langle id_{\mathbb{Z}}, g \rangle$

Theorem. (Di Nola, Lettieri)

The categories \mathcal{AG} *and* \mathcal{MV}_{perf} *are equivalent.*

• we fix an MV-chain *L*

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

- ▶ we fix an MV-chain *L*
- we define the category \mathcal{LexMV}_L
 - ► objects: lexicographic MV-algebras A for which there exists I ∈ LexId(A) s.t.

 $A/I \simeq L$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 arrows: MV-algebras morphisms

• $(H, u) = \Gamma^{-1}(L)$ is an *ou*-group

- $(H, u) = \Gamma^{-1}(L)$ is an *ou*-group
- ► we define the functor

 $\Delta_L: \mathcal{AG} \to \mathcal{L}ex\mathcal{MV}_L$

- $\Delta_L(G) = \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$
- $\Delta_L(g) = \langle id_H, g \rangle$

- $(H, u) = \Gamma^{-1}(L)$ is an *ou*-group
- ► we define the functor

 $\Delta_L: \mathcal{AG} \to \mathcal{L}ex\mathcal{MV}_L$

- $\Delta_L(G) = \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$
- $\Delta_L(g) = \langle id_H, g \rangle$

Theorem.

For any MV-chain L, the categories AG and $LexMV_L$ are equivalent.

• $(H, u) = \Gamma^{-1}(L)$ is an *ou*-group

► we define the functor

 $\Delta_L: \mathcal{AG} \to \mathcal{L}ex\mathcal{MV}_L$

- $\Delta_L(G) = \Gamma(H \times_{lex} G, \langle u, 0 \rangle)$
- $\Delta_L(g) = \langle id_H, g \rangle$

Theorem.

For any MV-chain L, the categories AG and $Lex MV_L$ are equivalent.

Remark.

Di Nola-Lettieri functor Δ is exactly the functor Δ_L when $L = L_2$.

OUTLINE

GOAL 3:

Are there "states" on MV-algebra which save infinitesimals?

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

STATES ON NON-SEMISIMPLE MV-ALGEBRAS

► states on MV-algebras do not preserve positive infinitesimals

STATES ON NON-SEMISIMPLE MV-ALGEBRAS

► states on MV-algebras do not preserve positive infinitesimals

► each perfect MV-algebra admits only one trivial state

STATES ON NON-SEMISIMPLE MV-ALGEBRAS

- states on MV-algebras do not preserve positive infinitesimals
- each perfect MV-algebra admits only one trivial state
- Chang MV-algebra *C* has only one state *s* which is trivial:

$$s(x) = \begin{cases} 0, & \text{if } x \in Rad(C) \\ 1, & \text{if } x \in Rad(C)^* \end{cases}$$

< □ > < @ > < E > < E > E のQ@

Example.

• Consider an infinitesimal $\varepsilon \in *[0,1]$ such that $\varepsilon \neq 0$

< □ > < @ > < E > < E > E のQ@

Example.

• Consider an infinitesimal $\varepsilon \in *[0, 1]$ such that $\varepsilon \neq 0$

► Let

 $\mathscr{L}(\mathbb{R}) = \left\langle [0,1] \cup \{ r\varepsilon \mid r \in \mathbb{R} \} \right\rangle_{*[0,1]}$

Example.

• Consider an infinitesimal $\varepsilon \in *[0, 1]$ such that $\varepsilon \neq 0$

► Let

 $\mathscr{L}(\mathbb{R}) = \left\langle [0,1] \cup \{ r\varepsilon \mid r \in \mathbb{R} \} \right\rangle_{* [0,1]}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• An element of $\mathscr{L}(\mathbb{R})$ has the form $r + r'\varepsilon$, for $r \in [0, 1]$ and $r' \in \mathbb{R}$

Example.

- Consider an infinitesimal $\varepsilon \in *[0, 1]$ such that $\varepsilon \neq 0$
- ► Let

 $\mathscr{L}(\mathbb{R}) = \left\langle [0,1] \cup \{ r\varepsilon \mid r \in \mathbb{R} \} \right\rangle_{*[0,1]}$

- An element of $\mathscr{L}(\mathbb{R})$ has the form $r + r'\varepsilon$, for $r \in [0, 1]$ and $r' \in \mathbb{R}$
- $\blacktriangleright Rad(\mathscr{L}(\mathbb{R})) = \{ r\varepsilon \mid r \in \mathbb{R}_+ \}$
- $Rad(\mathscr{L}(\mathbb{R}))$ is the unique lexicographic ideal of $\mathscr{L}(\mathbb{R})$

Example.

- Consider an infinitesimal $\varepsilon \in *[0,1]$ such that $\varepsilon \neq 0$
- ► Let

 $\mathscr{L}(\mathbb{R}) = \left\langle [0,1] \cup \{ r\varepsilon \mid r \in \mathbb{R} \} \right\rangle_{*[0,1]}$

- An element of $\mathscr{L}(\mathbb{R})$ has the form $r + r'\varepsilon$, for $r \in [0, 1]$ and $r' \in \mathbb{R}$
- $\blacktriangleright Rad(\mathscr{L}(\mathbb{R})) = \{ r\varepsilon \mid r \in \mathbb{R}_+ \}$
- $Rad(\mathscr{L}(\mathbb{R}))$ is the unique lexicographic ideal of $\mathscr{L}(\mathbb{R})$
- ► We obtain that

 $\mathscr{L}(\mathbb{R}) \simeq \Gamma(\mathbb{R} \times_{lex} \mathbb{R}, \langle 1, 0 \rangle)$

I-LEXICOGRAPHIC STATES

Definition.

Let *A* be a lexicographic MV-algebra and let $I \in LexId(A)$. An *I-lexicographic state* of *A* is a map

 $\mathbf{s}_I: A \to \mathscr{L}(\mathbb{R})$

 $(\mathbf{s}_{I}1) \ \mathbf{s}_{I}(1) = 1$

(**s**_{*I*}2) for all $a, b \in A$ s.t. $a \odot b = 0$, $\mathbf{s}_I(a \oplus b) = \mathbf{s}_I(a) + \mathbf{s}_I(b)$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(**s**_{*I*}3) **s**_{*I*} \upharpoonright_{S_I} is a state of S_I .

I-LEXICOGRAPHIC STATES

Definition.

Let *A* be a lexicographic MV-algebra and let $I \in LexId(A)$. An *I-lexicographic state* of *A* is a map

 $\mathbf{s}_I: A \to \mathscr{L}(\mathbb{R})$

 $(\mathbf{s}_{I}1) \ \mathbf{s}_{I}(1) = 1$

(**s**_{*I*}2) for all $a, b \in A$ s.t. $a \odot b = 0$, $\mathbf{s}_I(a \oplus b) = \mathbf{s}_I(a) + \mathbf{s}_I(b)$

(**s**_{*I*}3) **s**_{*I*} \upharpoonright_{S_I} is a state of S_I .

A *I*-lexicographic state \mathbf{s}_I is *faithful* if $\mathbf{s}_I(a) = 0$ implies a = 0.

LEXICOGRAPHIC STATES

Definition.

Let A be a lexicographic MV-algebra. A map

 $\mathbf{s}: A \to \mathscr{L}(\mathbb{R})$

is a *lexicographic state* of *A* if

s is an *I*-lexicographic state,

for every $I \in LexId(A)$.

LEXICOGRAPHIC STATES

Definition.

Let *A* be a lexicographic MV-algebra. A map

 $\mathbf{s}: A \to \mathscr{L}(\mathbb{R})$

is a *lexicographic state* of *A* if

s is an *I*-lexicographic state,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

for every $I \in LexId(A)$.

A lexicographic state **s** is *faithful* if $\mathbf{s}(a) = 0$ implies a = 0.

LEXICOGRAPHIC STATES

Definition.

Let *A* be a lexicographic MV-algebra. A map

 $\mathbf{s}: A \to \mathscr{L}(\mathbb{R})$

is a *lexicographic state* of *A* if

s is an *I*-lexicographic state,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

for every $I \in LexId(A)$.

A lexicographic state **s** is *faithful* if $\mathbf{s}(a) = 0$ implies a = 0.

We denote by $Lex \mathscr{S}(A)$ the set of all lexicographic states of *A*.
CHARACTERIZATION THEOREM

Theorem.

Let A be a lexicographic MV-algebra and $\mathbf{s} : A \to \mathscr{L}(\mathbb{R})$ *be a map. T.f.a.e.:*

- 1. **s** is a lexicographic state of A,
- 2. for every ou-group (H, u) and every nontrivial ℓ -group G s.t.

 $A\simeq \Gamma(H\times_{lex} G, \langle u, 0\rangle),$

there exist an unique ℓu *-state* $h : (H, u) \to (\mathbb{R}, 1)$ *and an unique* ℓ *-state* $\gamma : G \to \mathbb{R}$ *s.t.*

$$\mathbf{s}(\langle x,y\rangle)=h(x)+\gamma(y)\varepsilon,$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

for every $\langle x, y \rangle \in A$ *.*

CONSEQUENCES

Proposition.

Let A be a countable lexicographic MV-algebra. If $Rad(A) \in LexId(A)$, then t.f.a.e.:

1. A admits a faithful Rad(A)-lexicographic state,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2. $\langle Rad(A) \rangle$ has a faithful ℓ -state.

CONSEQUENCES

Proposition.

Let A be a countable lexicographic MV-algebra. If $Rad(A) \in LexId(A)$, then t.f.a.e.:

- 1. A admits a faithful Rad(A)-lexicographic state,
- 2. $\langle Rad(A) \rangle$ has a faithful ℓ -state.

Corollary.

Chang MV-algebra C admits a faithful lexicographic state.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Thank you!

・ ・ ・ ● ・ ・ = ・ ・ = ・ うへで