Strongly semisimple MV-algebras and tangents

Leonardo Manuel Cabrer

Università degli Studi di Firenze
Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”
Marie Curie Intra-European Fellowship – FP7

ManyVal – 2013
Introduction
Syntactic vs Semantic Consequence

Ł∞ logic. (Łukasiewicz, Tarski - 1930)
Introduction

Syntactic vs Semantic Consequence

Ł∞ logic. (Łukasiewicz, Tarski - 1930)

Semantics

A valuation \(v : \mathcal{FM} \to [0, 1] \) (where \(\mathcal{FM} \) is the set of formulas on the language \(\{\to, \neg\} \)) is a map satisfying:

- \(v(\alpha \to \beta) = \min\{1 - v(\alpha), v(\beta), 1\} \)
- \(v(\neg \alpha) = 1 - v(\alpha) \)
Introduction
Syntactic vs Semantic Consequence

Ł∞ logic. (Łukasiewicz,Tarski - 1930)

Semantics

A valuation \(v : \mathcal{FM} \rightarrow [0, 1] \) (where \(\mathcal{FM} \) is the set of formulas on the language \(\{\rightarrow, \neg\} \)) is a map satisfying:

\[
\begin{align*}
\triangleright & \quad v(\alpha \rightarrow \beta) = \min \{ (1 - v(\alpha)) + v(\beta), 1 \} \\
\triangleright & \quad v(\neg \alpha) = 1 - v(\alpha)
\end{align*}
\]

Calculus

<table>
<thead>
<tr>
<th>Axioms</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha \rightarrow (\beta \rightarrow \alpha))</td>
<td>(\alpha, \alpha \rightarrow \beta \vdash \beta)</td>
</tr>
<tr>
<td>((\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)))</td>
<td></td>
</tr>
<tr>
<td>(((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha))</td>
<td></td>
</tr>
<tr>
<td>((\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha))</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Syntactic vs Semantic Consequence

Syntactic Consequence

Θ ⊩_{Ł∞} ϕ iff there exists an Ł∞-proof of ϕ from Θ.
Introduction

Syntactic vs Semantic Consequence

Syntactic Consequence

\[\Theta \vdash_{\mathcal{L}_\infty} \varphi \] iff there exists an \(\mathcal{L}_\infty \)-proof of \(\varphi \) from \(\Theta \).

Semantic Consequence

\[\Theta \models_{\mathcal{L}_\infty} \varphi \] iff for each valuation \(\nu : \mathcal{F}\mathcal{M} \rightarrow [0, 1] \)

\[\nu(\Theta) = \{1\} \] implies \(\nu(\varphi) = 1 \).
Soundness:

If $\Theta \vdash \mathcal{L}_\infty \varphi$, then $\Theta \models \mathcal{L}_\infty \varphi$.

Introduction

Syntactic vs Semantic Consequence

Other Results
Soundness:

If $\Theta \vdash L_\infty \varphi$, then $\Theta \models L_\infty \varphi$.

Finite Completeness (Hay-Wójcicki):

If $|\Theta| < \kappa_0$ and $\Theta \models L_\infty \varphi$, then $\Theta \vdash L_\infty \varphi$.
Introduction

Syntactic vs Semantic Consequence

What if Θ is not finite?
What if Θ is not finite?

Theorem

Given a set of formulas Θ, the following are equivalent:

1. For each formula φ, $\Theta \vdash_{\mathfrak{L}_\infty} \varphi$ iff $\Theta \models_{\mathfrak{L}_\infty} \varphi$.

2. The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ is semisimple (that is, its radical is $\{0\}$).

3. The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ belongs to $\text{ISP}([0, 1]_{\mathcal{MV}})$.

What if Θ is not finite?

Theorem

Given a set of formulas Θ, the following are equivalent:

- For each formula φ, $\Theta \vdash \mathcal{L}_\infty \varphi$ iff $\Theta \models \mathcal{L}_\infty \varphi$.
- The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ is semisimple (that is, its radical is $\{0\}$).
What if Θ is not finite?

Theorem

Given a set of formulas Θ, the following are equivalent:

- For each formula φ, $\Theta \models \mathcal{L}_\infty \varphi$ iff $\Theta \models \mathcal{L}_\infty \varphi$.
- The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ is semisimple (that is, its radical is $\{0\}$).
- The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ belongs to $\text{ISP}([0, 1]_{\text{MV}})$.
Introduction
Syntactic vs Semantic Consequence

(Hay-Wójcicki):

If $|\Theta| < \aleph_0$, then $\Theta \models_{\mathcal{L}_\infty} \varphi$ iff $\Theta \vdash_{\mathcal{L}_\infty} \varphi$.
Introduction
Syntactic vs Semantic Consequence

(Hay-Wójcicki):

If $|\Theta| < \aleph_0$, then $\Theta \models_{L_\infty} \varphi$ iff $\Theta \vdash_{L_\infty} \varphi$.

If Θ is a finite set of formulas, for each formula α:

$\Theta \cup \{\alpha\} \models_{L_\infty} \varphi$ iff $\Theta \cup \{\alpha\} \vdash_{L_\infty} \varphi$.
What if Θ is not finite?
Introduction
Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem
For each Θ set of formulas, the following are equivalent:

- For every α, φ,

$$\Theta \cup \{\alpha\} \vdash_{\mathcal{L}_\infty} \varphi \iff \Theta \cup \{\alpha\} \models_{\mathcal{L}_\infty} \varphi.$$

Strongly semisimple MV-algebras and tangents
L.M. Cabrer
What if Θ is not finite?

Theorem

For each Θ set of formulas, the following are equivalent:

- For every α, φ,

 $$\Theta \cup \{\alpha\} \vdash_{\mathcal{L}_\infty} \varphi \iff \Theta \cup \{\alpha\} \models_{\mathcal{L}_\infty} \varphi.$$

- The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ is **strongly semisimple**.

Definition

An MV-algebra A is **strongly semisimple** if for every finitely generated ideal (filter) I, the MV-algebra A/I is semisimple.
Introduction
Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem
For each Θ set of formulas, the following are equivalent:

▶ For every α, φ,

$$\Theta \cup \{\alpha\} \vdash_{\mathbf{L}_\infty} \varphi \text{ iff } \Theta \cup \{\alpha\} \models_{\mathbf{L}_\infty} \varphi.$$

▶ The MV-algebra presented by $(\text{Var}(\Theta), \Theta)$ is strongly semisimple.

An MV-algebra A is strongly semisimple if for every finitely generated ideal (filter) I, the MV-algebra A/I is semisimple.
Main Goal

To present a geometric description of finitely generated strongly semisimple MV-algebras.
Main Goal

To present a geometric description of finitely generated strongly semisimple MV-algebras.

More precisely, for each n-generated semisimple MV-algebra A there exists X a closed subset of $[0, 1]^n$, such that A is isomorphic to

$$\mathcal{M}(X) = \{ f|_X \mid f : [0, 1]^n \to [0, 1] \text{ is a McNaughton map} \}.$$

We will present necessary and sufficient conditions on the closed set $X \subseteq [0, 1]^n$ for $A \cong \mathcal{M}(X)$ to be strongly semisimple.
2-generated case

Syntactic vs Semantic Consequence

\[X = \{(x, y) \in \mathbb{R}^2 \mid (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{4}\} \]
2-generated case
Syntactic vs Semantic Consequence
2-generated case

Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple
Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$
2-generated case

Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

(i) $x_i \neq x$ for all i,
(ii) $\lim_{i \to \infty} x_i = x$,
(iii) $\lim_{i \to \infty} (x_i - x) / ||x_i - x|| = u$,
(iv) $\text{conv}(x, x + \lambda u) \cap X = \{x\}$,
(v) the coordinates of x and $x + \lambda u$ are rational.
2-generated case

Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

(i) $x_i \neq x$ for all i,

(ii) $\lim_{i \to \infty} x_i = x$,

(iii) $\lim_{i \to \infty} (x_i - x) / ||x_i - x|| = u$, where $||x||$ denotes the Euclidean norm of x.
2-generated case

Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

(i) $x_i \neq x$ for all i,

(ii) $\lim_{i \to \infty} x_i = x$,

(iii) $\lim_{i \to \infty} \frac{(x_i - x)}{||x_i - x||} = u$,

(iv) $\text{conv}(x, x + \lambda u) \cap X = \{x\}$,
2-generated case

Theorem (Busaniche, Mundici)

Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

(i) $x_i \neq x$ for all i,
(ii) $\lim_{i \to \infty} x_i = x$,
(iii) $\lim_{i \to \infty} (x_i - x) / \|x_i - x\| = u$,
(iv) $\text{conv}(x, x + \lambda u) \cap X = \{x\}$, and
(v) the coordinates of x and $x + \lambda u$ are rational.
2-generated case

Syntactic vs Semantic Consequence

\[X = \{(x, y) \in \mathbb{R}^2 \mid (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{4}\} \]
Definition (Bouligand, Severi)

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$. A **Bouligand-Severi tangent of X at x** is a unit vector $u \in \mathbb{R}^n$ such that X contains a sequence x_1, x_2, \ldots with the following properties:

(i) $x_i \neq x$ for all i;

(ii) $\lim_{i \to \infty} x_i = x$; and

(iii) $\lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u$.
2-generated case
Bouligand-Severi Tangents

Definition (Bouligand, Severi)

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

A Bouligand-Severi tangent of X at x is a unit vector $u \in \mathbb{R}^n$ such that X contains a sequence x_1, x_2, \ldots with the following properties:

(i) $x_i \neq x$ for all i;

(ii) $\lim_{i \to \infty} x_i = x$; and

(iii) $\lim_{i \to \infty} (x_i - x)/||x_i - x|| = u$.

The tangent u is said to be **outgoing** if there exists $\lambda > 0$ such that

$$\text{conv}(x, x + \lambda u) \cap X = \{x\}.$$
Finitely generated case

Key Remarks

- Importance of the 2-generated case:
Finitely generated case

Importance of the 2-generated case:

An MV-algebra A is strongly semisimple iff every 2-generated subalgebra of A is strongly semisimple.
Finitely generated case

Key Remarks

- Importance of the 2-generated case:
 An MV-algebra A is strongly semisimple iff every 2-generated subalgebra of A is strongly semisimple.

We need

- n-dimensional generalisation of Bouligand-Severi tangents.
- the right definition of “rational” outgoingness.
Finitely generated case

Bouligand-Severi tangents of higher dimension
Finitely generated case

Bouligand-Severi tangents of higher dimension

Let \(\gamma: [a, b] \to \mathbb{R}^n \) be a \(C^k \) \((k \leq n) \) function such that for all \(a < t < b \), the \(k \)-tuple of vectors

\[
(\gamma'(t), \gamma''(t), \ldots, \gamma^{(k)}(t))
\]

forms a linear independent set in \(\mathbb{R}^n \).
Let $\gamma: [a, b] \to \mathbb{R}^n$ be a C^k ($k \leq n$) function such that for all $a < t < b$, the k-tuple of vectors
\[
(\gamma'(t), \gamma''(t), \ldots, \gamma^{(k)}(t))
\]
forms a linear independent set in \mathbb{R}^n. The Gram-Schmidt orthonormalization process yields an orthonormal k-tuple
\[
(\nu_1(t), \ldots, \nu_k(t)),
\]
called the Frenet k-frame of γ at $\gamma(t)$.

Finitely generated case
Bouligand-Severi tangents of higher dimension
Finitely generated case

Bouligand-Severi tangents of higher dimension

Definition

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if:

1. there is a sequence of points $x_1, x_2, \ldots \in X$ such that
 \[\lim_{i \to \infty} x_i = x; \]
2. \[\lim_{i \to \infty} (x_i - x) / ||x_i - x|| = u_1, \]
3. \[\lim_{i \to \infty} (x_i - x - pR u_1 (x_i - x)) / ||x_i - x - pR u_1 (x_i - x)|| = u_2, \]
4. \[\vdots \]
5. \[\lim_{i \to \infty} (x_i - x - pR u_1 + \ldots + R u_k - 1 (x_i - x)) / ||x_i - x - pR u_1 + \ldots + R u_k - 1 (x_i - x)|| = u_k. \]
Finitely generated case
Bouligand-Severi tangents of higher dimension

Definition
A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if:

- there is a sequence of points $x_1, x_2, \ldots \in X$ such that

 $\lim_{i \to \infty} x_i = x$;

 $x_i - x \notin \mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}$;
Finitely generated case
Bouligand-Severi tangents of higher dimension

Definition
A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if:

- there is a sequence of points $x_1, x_2, \ldots \in X$ such that:
 - $\lim_{i \to \infty} x_i = x$;
 - $x_i - x \notin \mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}$;
 - $1 \lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u_1$,

- $\lim_{i \to \infty} x_i = x$;
- $x_i - x \notin \mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}$;
- $1 \lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u_1$,
- $\lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u_1$.
Finitely generated case

Bouligand-Severi tangents of higher dimension

Definition

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if:

1. there is a sequence of points $x_1, x_2, \ldots \in X$ such that
 \[
 \lim_{i \to \infty} x_i = x;
 \]
 \[
 x_i - x \not\in \mathbb{R} u_1 + \cdots + \mathbb{R} u_{k-1};
 \]
 \[
 1 \lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u_1,
 \]
 \[
 2 \lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{\|x_i - x - p_{\mathbb{R}u_1}(x_i - x)\|} = u_2,
 \]
Finitely generated case
Bouligand-Severi tangents of higher dimension

Definition
A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if:

1. there is a sequence of points $x_1, x_2, \ldots \in X$ such that
 \[\lim_{i \to \infty} x_i = x; \]
2. $x_i - x \notin \mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}$;
3. $\lim_{i \to \infty} (x_i - x)/\|x_i - x\| = u_1$,
4. $\lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{\|x_i - x - p_{\mathbb{R}u_1}(x_i - x)\|} = u_2$,
5. \ldots
Definition

A \(k \)-tuple \(u = (u_1, \ldots, u_k) \) of pairwise orthogonal unit vectors in \(\mathbb{R}^n \) is said to be a **\(k \)-tangent of \(X \) at \(x \)** if:

1. there is a sequence of points \(x_1, x_2, \ldots \in X \) such that:
 - \(\lim_{i \to \infty} x_i = x \);
 - \(x_i - x \notin \mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1} \);
 - \(\lim_{i \to \infty} (x_i - x)/||x_i - x|| = u_1 \),
 - \(\lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1}(x_i - x)||} = u_2 \),
 - \(\cdots \)
 - \(\lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1 + \cdots + \mathbb{R}u_{k-1}}(x_i - x)||} = u_k \).
Finitely generated case

Bouligand-Severi tangents of higher dimension

Key Remarks

Bouligand-Severi tangents of higher dimension
Finitely generated case
Bouligand-Severi tangents of higher dimension

Theorem (LMC, Mundici)

Suppose $\gamma : [a, b] \rightarrow \mathbb{R}^n$ is a C^{k+1} function and $a < t_0 < b$ is such that $\gamma'(t_0), \gamma''(t_0), \ldots, \gamma^{(k)}(t_0)$ are linearly independent and let $v = (v_1, \ldots, v_k)$ be its Frenet k-frame at $\gamma(t_0)$. Then the set $\gamma([t_0 - \epsilon, t_0 + \epsilon]) \subseteq \mathbb{R}^n$ has exactly two k-tangents at $\gamma(t_0)$, v and $(-v_1, v_2, -v_3, \ldots)$.

Strongly semisimple MV-algebras and tangents
L.M. Cabrer

Introduction
Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated case
Key Remarks
Bouligand-Severi tangents of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

Other Results
Finitely generated case
Bouligand-Severi tangents of higher dimension

Theorem (LMC, Mundici)

Suppose \(\gamma: [a, b] \to \mathbb{R}^n \) is a \(C^{k+1} \) function and \(a < t_0 < b \) is such that \(\gamma'(t_0), \gamma''(t_0), \ldots, \gamma^{(k)}(t_0) \) are linearly independent and let \(v = (v_1, \ldots, v_k) \) be its Frenet k-frame at \(\gamma(t_0) \).

Then the set \(\gamma([t_0 - \epsilon, t_0 + \epsilon]) \subseteq \mathbb{R}^n \) has exactly two \(k \)-tangents at \(\gamma(t_0) \),

\[v \text{ and } (-v_1, v_2, -v_3, \ldots). \]
Finitely generated case
Rationally outgoing tangent

Theorem (Busaniche, Mundici)
Let $X \subseteq [0, 1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, and a unit vector $u \in \mathbb{R}^2$ such that

(i) u is a Bouligand-Severi tangent of X at x; and
(ii) there exists a real number $\lambda > 0$

$$\text{conv}(x, x + \lambda u) \cap X = \{x\}$$

and the coordinates of x and $x + \lambda u$ are rational.
Finitely generated case
Rationally outgoing tangent

Definition
A tangent \(u \) of \(X \subseteq \mathbb{R}^n \) at \(x \) is rationally outgoing if there is a \(\lambda \in \mathbb{R}_{>0} \), and a rational simplex \(S \), such that

\[
\text{conv}(x, x + \lambda u) = S
\]

and

\[
\{x\} = S \cap X.
\]
Definition

A k-tangent $u = (u_1, \ldots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is **rationally outgoing** if there is a $\lambda \in \mathbb{R}_{>0}$, and a rational simplex S, such that

$$ \text{conv}(x, x + \lambda u) = S $$

and

$$ \{x\} = S \cap X.$$
Finitely generated case
Rationally outgoing tangent

Definition
A k-tangent $u = (u_1, \ldots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is **rationally outgoing** if there is a k-tuple $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k$, and a rational simplex S, such that

$$\text{conv}(x, x + \lambda \ u) = S$$

and

$$\{x\} = S \cap X.$$
Finitely generated case
Rationally outgoing tangent

Definition
A \(k \)-tangent \(u = (u_1, \ldots, u_k) \) of \(X \subseteq \mathbb{R}^n \) at \(x \) is rationally outgoing if there is a \(k \)-tuple \(\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k \), and a rational simplex \(S \), such that

\[
\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) = S
\]

and

\[
\{x\} = S \cap X.
\]
Finitely generated case
Rationally outgoing tangent

Definition
A k-tangent $u = (u_1, \ldots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k$, and a rational simplex S, such that

$$\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S$$

and

$$\{x\} = S \cap X.$$
Finitely generated case
Rationally outgoing tangent

Definition
A k-tangent $u = (u_1, \ldots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k$, and a rational simplex S, together with a face $F \subseteq S$ such that
\[
\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S
\]
and
\[
\{x\} = S \cap X.
\]
Finitely generated case
Rationally outgoing tangent

Definition
A k-tangent $u = (u_1, \ldots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k$, and a rational simplex S, together with a face $F \subseteq S$ such that

$$\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S,$$

$$\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \not\subseteq F$$

and

$$\{x\} = S \cap X.$$
Finitely generated case
Rationally outgoing tangent

Definition
A \(k \)-tangent \(u = (u_1, \ldots, u_k) \) of \(X \subseteq \mathbb{R}^n \) at \(x \) is **rationally outgoing** if there is a \(k \)-tuple \(\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}_{>0}^k \), and a rational simplex \(S \), together with a face \(F \subseteq S \) such that

\[
\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S,
\]

\[
\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \not\subseteq F
\]

and

\[
F \cap X = S \cap X.
\]
Main Result

Theorem

For any closed $X \subseteq [0, 1]^n$ the following conditions are equivalent:

(i) The MV-algebra $\mathcal{M}(X)$ is strongly semisimple.

(ii) For no $k = 1, \ldots, n - 1$, X has a rationally outgoing k-tangent.
Main Result

(i)⇒(ii)

Let u be a rationally outgoing k-tangent of X at x and let S be a rational k-simplex together with a proper face $F \subseteq S$ and reals $\lambda_1, \ldots, \lambda_k \in \mathbb{R}_0^k$ such that

(a) $\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S$,
(b) $\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \not\subseteq F$, and
(c) $S \cap X = F \cap X$.
Main Result

(i) \Rightarrow (ii)

Let u be a rationally outgoing k-tangent of X at x and let S be a rational k-simplex together with a proper face $F \subset S$ and reals $\lambda_1, \ldots, \lambda_k \in \mathbb{R}^k_{>0}$ such that

(a) $\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \subseteq S$,
(b) $\text{conv}(x, x + \lambda_1 u_1, \ldots, x + \lambda_1 u_1 + \cdots + \lambda_k u_k) \nsubseteq F$, and
(c) $S \cap X = F \cap X$.

Let $f, g \in \mathcal{M}([0, 1]^n)$ be maps such that

$$f(v) = 0 \text{ iff } v \in F \quad \text{and} \quad g(v) = 0 \text{ iff } v \in S.$$
Main Result

(i)⇒(ii)

(c) proves that $f \upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g \upharpoonright_X$ does.
Main Result

(i) ⇒ (ii)

(c) proves that $f|_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g|_X$ does.

(a) and (b) imply that $f|_X$ does not belong to the ideal generated by $g|_X$.
Main Result

(i) \implies (ii)

Lemma

Let \(P \subseteq [0, 1]^n \) be a polyhedron such that \(X \subseteq P \).
Main Result

(i) ⇒ (ii)

Lemma

Let $P \subseteq [0, 1]^n$ be a polyhedron such that $X \subseteq P$. Since (u_1, \ldots, u_l) is a k-tangent of X at x,

...
Main Result

(i) \Rightarrow (ii)

Lemma

Let $P \subseteq [0, 1]^n$ be a polyhedron such that $X \subseteq P$. Since (u_1, \ldots, u_l) is a k-tangent of X at x, there exist $\delta_1, \ldots, \delta_k \in \mathbb{R}_{>0}$ with

$$\text{conv}(x, x + \delta_1 u_1, \ldots, x + \delta_1 u_1 + \cdots + \delta_k u_k) \subseteq P.$$
Main Result

(ii) ⇒ (i)

Let \(f, g \in M([0, 1]^n) \) be such that \(f \upharpoonright_X \) does not belong to the ideal generated by \(g \upharpoonright_X \) and that \(f \upharpoonright_X \) belongs to a maximal ideal of \(M(X) \) iff \(g \upharpoonright_X \) does.
Main Result

(ii) \Rightarrow (i)

Let $f, g \in \mathcal{M}([0, 1]^n)$ be such that $f \upharpoonright_X$ does not belong to the ideal generated by $g \upharpoonright_X$ and that $f \upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g \upharpoonright_X$ does.

Let the map $\eta : X \to [0, 1]^2$ be defined by

$$\eta = (f \upharpoonright_X, g \upharpoonright_X).$$
Main Result

(ii) ⇒ (i)

Let \(f, g \in \mathcal{M}([0, 1]^n) \) be such that \(f \upharpoonright_X \) does not belong to the ideal generated by \(g \upharpoonright_X \) and that \(f \upharpoonright_X \) belongs to a maximal ideal of \(\mathcal{M}(X) \) iff \(g \upharpoonright_X \) does.

Let the map \(\eta : X \rightarrow [0, 1]^2 \) be defined by

\[
\eta = (f \upharpoonright_X, g \upharpoonright_X).
\]

Then \(\mathcal{M}(\eta(X)) \) is isomorphic to the subalgebra of \(\mathcal{M}(X) \) generated by \(g \upharpoonright_X \) and \(f \upharpoonright_X \).
Main Result
(ii) ⇒ (i)

Let \(f, g \in \mathcal{M}([0, 1]^n) \) be such that \(f \upharpoonright_X \) does not belong to the ideal generated by \(g \upharpoonright_X \) and that \(f \upharpoonright_X \) belongs to a maximal ideal of \(\mathcal{M}(X) \) iff \(g \upharpoonright_X \) does.

Let the map \(\eta : X \to [0, 1]^2 \) be defined by

\[
\eta = (f \upharpoonright_X, g \upharpoonright_X).
\]

Then \(\mathcal{M}(\eta(X)) \) is isomorphic to the subalgebra of \(\mathcal{M}(X) \) generated by \(g \upharpoonright_X \) and \(f \upharpoonright_X \). Then \(\eta(X) \) has a rationally outgoing 1-tangent.
Main Result

(ii) ⇒ (i)

Lemma

If $\rho : [0, 1]^n \to [0, 1]^2$ is a map defined by

$$\rho(v) = (f(v), g(v))$$

for $f, g \in \mathcal{M}([0, 1]^n)$
Main Result
(ii)⇒(i)

Lemma
If \(\rho: [0, 1]^n \to [0, 1]^2 \) is a map defined by
\[
\rho(v) = (f(v), g(v))
\]
for \(f, g \in \mathcal{M}([0, 1]^n) \) and \(\rho(X) \) has a rationally outgoing 1-tangent,
Main Result

(ii) \Rightarrow (i)

Lemma

If $\rho : [0, 1]^n \to [0, 1]^2$ is a map defined by

$$\rho(v) = (f(v), g(v))$$

for $f, g \in \mathcal{M}([0, 1]^n)$ and $\rho(X)$ has a rationally outgoing 1-tangent, then for some $k \in \{1, \ldots, n - 1\}$, X has a rationally outgoing k-tangent.
Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction
Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated case
Key Remarks
Bouligand-Severi tangents of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

Other Results

Other Results

Byproduct: Extension of the definition of Frenet frames to closed sets.

Geometric description of prime filters of a finitely generated semisimple MV-algebra.

Strongly semisimple Riesz spaces.
Other Results

- Byproduct: Extension of the definition of Frenet frames to closed sets.
Other Results

- Byproduct: Extension of the definition of Frenet frames to closed sets.
- Geometric description of prime filters of a finitely generated semisimple MV-algebra.
Other Results

- Byproduct: Extension of the definition of Frenet frames to closed sets.
- Geometric description of prime filters of a finitely generated semisimple MV-algebra.
- Strongly semisimple Riesz spaces.
Strongly semisimple MV-algebras and tangents

Thank you for your attention!

l.cabrer@disia.unifi.it