Strongly semisimple MV-algebras and tangents

Leonardo Manuel Cabrer

Università degli Studi di Firenze Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" Marie Curie Intra-European Fellowship – FP7

ManyVal – 2013

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Einitaly gaparated

case

Key Remarks

Bouligand-Severi tangents
of higher dimension

Rationally outgoing tangent

Vain Result
Sketch of the proof

Syntactic vs Semantic Consequence

 L_{∞} logic. (Łukasiewicz, Tarski - 1930)

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

Bouligand-Severi tangents
of higher dimension

Rationally outgoing tangent

Main Result Sketch of the proof

Syntactic vs Semantic Consequence

 L_{∞} logic. (Łukasiewicz, Tarski - 1930)

Semantics

A valuation $v \colon \mathcal{FM} \to [0,1]$ (where \mathcal{FM} is the set of formulas on the language $\{\to,\neg\}$) is a map satisfying:

- $V(\alpha \to \beta) = \min\{(1 V(\alpha)) + V(\beta), 1\}$
- $\mathbf{v}(\neg \alpha) = \mathbf{1} \mathbf{v}(\alpha)$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tangents

Finitely generated case

Key Remarks Bouligand-Severi tangents of higher dimension

Main Result

Semantics

A valuation $v \colon \mathcal{FM} \to [0,1]$ (where \mathcal{FM} is the set of formulas on the language $\{\to,\neg\}$) is a map satisfying:

- $V(\alpha \to \beta) = \min\{(1 V(\alpha)) + V(\beta), 1\}$

Calculus

Axioms	Rules
$\alpha o (eta o lpha)$	$\alpha, \ \alpha \to \beta \vdash \beta$
$(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$	
$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha)$	
$(\neg \alpha \to \neg \beta) \to (\beta \to \alpha)$	

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated case

Rey Remarks

Bouligand-Severi tangents
of higher dimension

Rationally outgoing tanger

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

Syntactic Consequence

 $\Theta \vdash_{\not k_{\infty}} \varphi$ iff there exists an k_{∞} -proof of φ from Θ .

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

Syntactic Consequence

 $\Theta \vdash_{\mathbf{L}_{\infty}} \varphi$ iff there exists an \mathbf{L}_{∞} -proof of φ from Θ .

Semantic Consequence $\Theta \models_{\mbox{$\underline{L}$}_{\infty}} \varphi \mbox{ iff for each valuation } v\colon \mathcal{FM} \to [0,1]$ $v(\Theta) = \{1\} \mbox{ implies } v(\varphi) = 1.$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks
Bouligand-Severi tangents

Rationally outgoing to Main Result

Sketch of the proof

Syntactic vs Semantic Consequence

Soundness:

If
$$\Theta \vdash_{\mathbf{L}_{\infty}} \varphi$$
, then $\Theta \models_{\mathbf{L}_{\infty}} \varphi$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

Soundness:

If
$$\Theta \vdash_{\mathbf{L}_{\infty}} \varphi$$
, then $\Theta \models_{\mathbf{L}_{\infty}} \varphi$.

Finite Completeness (Hay-Wójcicki):

If
$$|\Theta| < \aleph_0$$
 and $\Theta \models_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c}$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

Bouligand-Severi tangents
of higher dimension

Main Result

Sketch of the proof

Syntactic vs Semantic Consequence

What if Θ is not finite?

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

boullyand-seven rai

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem

Given a set of formulas Θ , the following are equivalent:

► For each formula φ , $\Theta \vdash_{\underline{\ell}_{\infty}} \varphi$ iff $\Theta \models_{\underline{\ell}_{\infty}} \varphi$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

A circ Document

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem

Given a set of formulas Θ , the following are equivalent:

- ► For each formula φ , $\Theta \vdash_{\underline{\ell}_{\infty}} \varphi$ iff $\Theta \models_{\underline{\ell}_{\infty}} \varphi$.
- The MV-algebra presented by (Var(Θ), Θ) is semisimple (that is, its radical is {0}).

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result
Sketch of the proof

L.M. Cabrer

Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem

Given a set of formulas Θ , the following are equivalent:

- ▶ For each formula φ , $\Theta \vdash_{\ell_m} \varphi$ iff $\Theta \models_{\ell_m} \varphi$.
- ▶ The MV-algebra presented by $(Var(\Theta), \Theta)$ is semisimple (that is, its radical is {0}).
- ▶ The MV-algebra presented by $(Var(\Theta), \Theta)$ belongs to $\mathbb{ISP}([0,1]_{\mathcal{MV}}).$

Syntactic vs Semantic Consequence

(Hay-Wójcicki):

If
$$|\Theta| < \aleph_0$$
, then $\Theta \models_{\underline{L}_{\infty}} \varphi$ iff $\Theta \vdash_{\underline{L}_{\infty}} \varphi$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

boullyanu-seven rang

Finitely generated case

Bouligand-Severi tangents of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

(Hay-Wójcicki):

If
$$|\Theta| < \aleph_0$$
, then $\Theta \models_{\mbox{$\rlap{L}_{\infty}$}} \varphi$ iff $\Theta \vdash_{\mbox{$\rlap{L}_{\infty}$}} \varphi$.

If Θ is a finite set of formulas, for each formula α :

$$\Theta \cup \{\alpha\} \models_{\mathbf{L}_{\infty}} \varphi \text{ iff } \Theta \cup \{\alpha\} \vdash_{\mathbf{L}_{\infty}} \varphi.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

What if Θ is not finite?

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Case Key Remarks

of higher dimension Rationally outgoing tang

Main Result
Sketch of the proof

Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem

For each Θ set of formulas, the following are equivalent:

• For every α, φ ,

$$\Theta \cup \{\alpha\} \vdash_{\mathbf{\ell}_{\infty}} \varphi \text{ iff } \Theta \cup \{\alpha\} \models_{\mathbf{\ell}_{\infty}} \varphi.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangent

Finitely generated case

Key Remarks
Bouligand-Severi tangents
of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Syntactic vs Semantic Consequence

What if Θ is not finite?

Theorem

For each Θ set of formulas, the following are equivalent:

• For every α, φ ,

$$\Theta \cup \{\alpha\} \vdash_{\boldsymbol{\ell}_{\infty}} \varphi \text{ iff } \Theta \cup \{\alpha\} \models_{\boldsymbol{\ell}_{\infty}} \varphi.$$

▶ The MV-algebra presented by $(Var(\Theta), \Theta)$ is strongly semisimple.

What if Θ is not finite?

Theorem

For each Θ set of formulas, the following are equivalent:

• For every α, φ ,

$$\Theta \cup \{\alpha\} \vdash_{\boldsymbol{\ell}_{\infty}} \varphi \text{ iff } \Theta \cup \{\alpha\} \models_{\boldsymbol{\ell}_{\infty}} \varphi.$$

▶ The MV-algebra presented by $(Var(\Theta), \Theta)$ is strongly semisimple.

An MV-algebra A is **strongly semisimple** if for every finitely generated ideal (filter) I, the MV-algebra A/I is semisimple.

Main Goal

To present a geometric description of finitely generated strongly semisimple MV-algebras.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks
Bouligand-Severi tangents
of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

To present a geometric description of finitely generated strongly semisimple MV-algebras.

More precisely, for each *n*-generated semisimple MV-algebra A there exists X a closed subset of $[0, 1]^n$, such that A is isomorphic to

 $\mathcal{M}(X) = \{f \mid_X | f : [0,1]^n \to [0,1] \text{ is a McNaughton map} \}.$

We will present necessary and sufficient conditions on the closed set $X \subseteq [0,1]^n$ for $A \cong \mathcal{M}(X)$ to be strongly semisimple.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tang

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result

Sketch of the proof

Syntactic vs Semantic Consequence

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Ta

Finitely generated

Key Remark

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tang

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result Sketch of the proof

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tan

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tanger

Main Result
Sketch of the proof

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

- (i) $x_i \neq x$ for all i,
- (ii) $\lim_{i\to\infty} x_i = x$,

2-generated case

Finitely generated

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result
Sketch of the proof

Other Results

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

- (i) $x_i \neq x$ for all i,
- (ii) $\lim_{i\to\infty} x_i = x$,
- (iii) $\lim_{i\to\infty} (x_i-x)/||x_i-x||=u$,

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

- (i) $x_i \neq x$ for all i,
- (ii) $\lim_{i\to\infty} x_i = x$,
- (iii) $\lim_{i\to\infty} (x_i-x)/||x_i-x||=u$,
- (iv) $\operatorname{conv}(x, x + \lambda u) \cap X = \{x\},\$

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, a sequence $x_0, x_1, \ldots \in X$, a unit vector $u \in \mathbb{R}^2$, and a real number $\lambda > 0$ such that

- (i) $x_i \neq x$ for all i,
- (ii) $\lim_{i\to\infty} x_i = x$,
- (iii) $\lim_{i\to\infty} (x_i-x)/||x_i-x||=u$,
- (iv) $\operatorname{conv}(x, x + \lambda u) \cap X = \{x\}$, and
- (v) the coordinates of x and $x + \lambda u$ are rational.

$$X = \{(x, y) \in \mathbb{R}^2 \mid (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{4} \}$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tan

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proo

Stronaly

semisimple MV-algebras

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

A Bouligand-Severi tangent of X at x is a unit vector $u \in \mathbb{R}^n$ such that X contains a sequence x_1, x_2, \ldots with the following properties:

- (i) $x_i \neq x$ for all i;
- (ii) $\lim_{i\to\infty} x_i = x$; and
- (iii) $\lim_{i\to\infty} (x_i x)/||x_i x|| = u$.

Bouligand-Severi Tangents

Other Results

Definition (Bouligand, Severi)

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

A Bouligand-Severi tangent of X at x is a unit vector $u \in \mathbb{R}^n$ such that X contains a sequence x_1, x_2, \ldots with the following properties:

- (i) $x_i \neq x$ for all i;
- (ii) $\lim_{i\to\infty} x_i = x$; and
- (iii) $\lim_{i\to\infty} (x_i-x)/||x_i-x||=u$.

The tangent u is said to be **outgoing** if there exists $\lambda > 0$ such that

$$\operatorname{conv}(x, x + \lambda u) \cap X = \{x\}.$$

Finitely generated case

Key Remarks

Importance of the 2-generated case:

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

z-generated ca

Bouligand-Severi Tar

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension
Rationally outgoing tangen

Main Result
Sketch of the proof

Finitely generated case

Key Remarks

Importance of the 2-generated case:

An MV-algebra *A* is strongly semisimple iff every 2-generated subalgebra of *A* is strongly semisimple.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Key Remarks

Bouligand-Severi tangents of higher dimension
Rationally outgoing tangent

Main Result
Sketch of the proof

An MV-algebra *A* is strongly semisimple iff every 2-generated subalgebra of *A* is strongly semisimple.

We need

- n-dimensional generalisation of Bouligand-Severi tangents.
- the right definition of "rational" outgoingness.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Bationally outgoing tangent

Main Result

Finitely generated case

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

z-generated case

Douligatio-Govern rai

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result

Finitely generated case

Bouligand-Severi tangents of higher dimension

Let $\gamma \colon [a,b] \to \mathbb{R}^n$ be a \mathbb{C}^k $(k \le n)$ function such that for all a < t < b, the k-tuple of vectors

$$(\gamma'(t), \gamma''(t), \ldots, \gamma^{(k)}(t))$$

forms a linear independent set in \mathbb{R}^n .

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

boullyanu-seven rai

case

Key Remarks

Bouligand-Severi tangents of higher dimension

Bationally outgoing tangent

Main Result
Sketch of the proof

Let $\gamma \colon [a,b] \to \mathbb{R}^n$ be a \mathbb{C}^k $(k \le n)$ function such that for all a < t < b, the k-tuple of vectors

$$(\gamma'(t), \gamma''(t), \ldots, \gamma^{(k)}(t))$$

forms a linear independent set in \mathbb{R}^n . The Gram-Schmidt orthonormalization process yields an orthonormal k-tuple

$$(v_1(t),\ldots,v_k(t)),$$

called the **Frenet** k-frame of γ at $\gamma(t)$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction
Syntactic vs Semantic

2-generated case

Finitely generated

Case
Key Remarks
Bouligand-Severi tangents

of higher dimension
Rationally outgoing tange

Main Result
Sketch of the proof

Bouligand-Severi tangents of higher dimension

Definition

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at X if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

 $\blacktriangleright \lim_{i\to\infty} x_i = x;$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semant Consequence

z-generated cas

case

Key Remarks

Bouligand-Severi tangents of higher dimension

Bationally outgoing tangent

Main Result
Sketch of the proof

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at X if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

- $\blacktriangleright \lim_{i\to\infty} x_i = x;$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Key Remarks

Bouligand-Severi tangents of higher dimension
Rationally outgoing tangent

Main Result Sketch of the proof

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

$$\blacktriangleright \lim_{i\to\infty} x_i = x;$$

• 1
$$\lim_{i\to\infty} (x_i - x)/||x_i - x|| = u_1$$
,

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Einitaly gaparated

case

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result
Sketch of the proof

A k-tuple $u = (u_1, \ldots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at X if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

$$\blacktriangleright \lim_{i\to\infty} x_i = x;$$

1
$$\lim_{i\to\infty} (x_i-x)/||x_i-x||=u_1$$
,

$$2 \lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1}(x_i - x)||} = u_2,$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semanti Consequence

2-generated case

Finitely generated

case

Key Remarks Bouligand-Severi tangents

of higher dimension

Rationally outgoing tangen

Main Result
Sketch of the proof

A k-tuple $u = (u_1, \dots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

$$\blacktriangleright \lim_{i\to\infty} x_i = x;$$

• 1
$$\lim_{i\to\infty} (x_i - x)/||x_i - x|| = u_1$$
,

$$2 \lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1}(x_i - x)||} = u_2,$$

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Bouligand-Severi tangents of higher dimension

A k-tuple $u = (u_1, \dots, u_k)$ of pairwise orthogonal unit vectors in \mathbb{R}^n is said to be a k-tangent of X at x if: there is a sequence of points $x_1, x_2, \ldots \in X$ such that

$$\blacktriangleright \lim_{i\to\infty} x_i = x;$$

• 1
$$\lim_{i\to\infty} (x_i - x)/||x_i - x|| = u_1$$
,

$$2 \lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1}(x_i - x)||} = u_2,$$

$$k \lim_{i \to \infty} \frac{x_i - x - p_{\mathbb{R}u_1 + \dots + \mathbb{R}u_{k-1}}(x_i - x)}{||x_i - x - p_{\mathbb{R}u_1 + \dots + \mathbb{R}u_{k-1}}(x_i - x)||} = u_k.$$

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Bouligand-Severi tangents

of higher dimension

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouilgand-Severi Tar

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result
Sketch of the proo

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligano-Seven ran

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

boullyanu-seven rang

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result
Sketch of the proof

Bouligand-Severi tangents of higher dimension

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

boullyanu-seven rai

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result
Sketch of the proof

Theorem (LMC, Mundici)

Suppose $\gamma \colon [a,b] \to \mathbb{R}^n$ is a \mathbb{C}^{k+1} function and $a < t_0 < b$ is such that $\gamma'(t_0), \gamma''(t_0), \ldots, \gamma^{(k)}(t_0)$ are linearly independent and let $v = (v_1, \ldots, v_k)$ be its Frenet k-frame at $\gamma(t_0)$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Theorem (LMC, Mundici)

Suppose $\gamma \colon [a,b] \to \mathbb{R}^n$ is a \mathbb{C}^{k+1} function and $a < t_0 < b$ is such that $\gamma'(t_0), \gamma''(t_0), \ldots, \gamma^{(k)}(t_0)$ are linearly independent and let $v = (v_1, \ldots, v_k)$ be its Frenet k-frame at $\gamma(t_0)$.

Then the set $\gamma([t_0 - \epsilon, t_0 + \epsilon]) \subseteq \mathbb{R}^n$ has exactly two k-tangents at $\gamma(t_0)$,

$$v \text{ and } (-v_1, v_2, -v_3, \ldots).$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated case

Key Remarks Bouligand-Severi tangents

of higher dimension
Rationally outgoing tangen

Main Result
Sketch of the proof

Rationally outgoing tangent

Theorem (Busaniche, Mundici)

Let $X \subseteq [0,1]^2$ be a closed set. The MV-algebra $\mathcal{M}(X)$ is not strongly semisimple iff there exist a point $x \in X$, and a unit vector $u \in \mathbb{R}^2$ such that

- (i) u is a Bouligand-Severi tangent of X at x; and
- (ii) there exists a real number $\lambda > 0$

$$\operatorname{conv}(x, x + \lambda u) \cap X = \{x\}$$

and the coordinates of x and $x + \lambda u$ are rational.

A tangent *u* outgoing if there is a and a rational simplex *S*, such that

$$conv(x, x + \lambda u)$$

of
$$X \subseteq \mathbb{R}^n$$
 at x is rationally $\lambda \in \mathbb{R}_{>0}$,

$$)=S$$

and

$$\{x\} = S \cap X$$
.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

?-generated case

Finitely generated

Key Remarks
Bouligand-Severi tangents
of higher dimension
Rationally outgoing tangent

Main Result

Sketch of the proof

A k-tangent $u=(u_1,\ldots,u_k)$ of $X\subseteq\mathbb{R}^n$ at x is rationally outgoing if there is a $\lambda\in\mathbb{R}_{>0}$, and a rational simplex S, such that

$$conv(x, x + \lambda u)$$

$$)=\mathcal{S}$$

and

$$\{x\} = S \cap X.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

Boullgand-Seven range

Finitely generated case

Bouligand-Severi tangents of higher dimension

Rationally outgoing tangent

Main Result

Sketch of the proof

A k-tangent $u = (u_1, \dots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is rationally **outgoing** if there is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{R}_{>0}^k$, and a rational simplex S, such that

$$conv(x, x + \lambda u)$$

)=S

and

$$\{x\} = S \cap X$$
.

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Rationally outgoing tangent

A k-tangent $u=(u_1,\ldots,u_k)$ of $X\subseteq\mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda=(\lambda_1,\ldots,\lambda_k)\in\mathbb{R}_{>0}^k$, and a rational simplex S, such that

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) = S$$

and

$$\{x\} = S \cap X.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Einitaly ganaratad

case

Bouligand-Severi tangents of higher dimension

Rationally outgoing tangent

Main Result

Other Results

A k-tangent $u = (u_1, \dots, u_k)$ of $X \subseteq \mathbb{R}^n$ at x is rationally **outgoing** if there is a *k*-tuple $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{R}_{\geq 0}^k$. and a rational simplex S, such that

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \subseteq S$$

and

$$\{x\} = S \cap X.$$

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Rationally outgoing tangent

A k-tangent $u=(u_1,\ldots,u_k)$ of $X\subseteq\mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda=(\lambda_1,\ldots,\lambda_k)\in\mathbb{R}_{>0}{}^k$, and a rational simplex S, together with a face $F\subseteq S$ such that

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \subseteq S$$

and

$$\{x\} = S \cap X.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tan

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result

Other Deculte

A k-tangent $u=(u_1,\ldots,u_k)$ of $X\subseteq\mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda=(\lambda_1,\ldots,\lambda_k)\in\mathbb{R}_{>0}{}^k$, and a rational simplex S, together with a face $F\subseteq S$ such that

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \subseteq S,$$

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \not\subseteq F$$

and

$$\{x\} = S \cap X$$
.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

case

Bouligand-Severi tangents of higher dimension

Rationally outgoing tangent

Main Result

Other Describe

A k-tangent $u=(u_1,\ldots,u_k)$ of $X\subseteq\mathbb{R}^n$ at x is rationally outgoing if there is a k-tuple $\lambda=(\lambda_1,\ldots,\lambda_k)\in\mathbb{R}_{>0}{}^k$, and a rational simplex S, together with a face $F\subseteq S$ such that

$$\operatorname{conv}(x,x+\lambda_1u_1,\ldots,x+\lambda_1u_1+\cdots+\lambda_ku_k)\subseteq\mathcal{S},$$

$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \not\subseteq F$$

and

$$F \cap X = S \cap X$$
.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Tipitalu wanayata

case

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result
Sketch of the proof

For any closed $X \subseteq [0,1]^n$ the following conditions are equivalent:

- (i) The MV-algebra $\mathcal{M}(X)$ is strongly semisimple.
- (ii) For no k = 1, ..., n 1, X has a rationally outgoing k-tangent.

Let u be a rationally outgoing k-tangent of X at x and let S be a rational k-simplex together with a proper face $F \subseteq S$ and reals $\lambda_1, \ldots, \lambda_k \in \mathbb{R}^k_{>0}$ such that

(a)
$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \subseteq S$$
,

(b)
$$\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \not\subseteq F$$
, and

(c)
$$S \cap X = F \cap X$$
.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Dodligano-Geven range

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result

Sketch of the proof

- (a) $\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \subseteq S$,
- (b) $\operatorname{conv}(x, x + \lambda_1 u_1, \dots, x + \lambda_1 u_1 + \dots + \lambda_k u_k) \not\subseteq F$, and
- (c) $S \cap X = F \cap X$.

Let $f, g \in \mathcal{M}([0,1]^n)$ be maps such that

$$f(v) = 0$$
 iff $v \in F$ and $g(v) = 0$ iff $v \in S$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

minima to a management

Finitely generated case

Key Remarks

Bouligand-Severi tange
of higher dimension

of higher dimension

Rationally outgoing tangent

Main Result

Sketch of the proof

(c) proves that $f \upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g \upharpoonright_X$ does.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated case

rinitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tanger

Main Result

Sketch of the proof

(c) proves that $f \upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g \upharpoonright_X$ does.

(a) and (b) imply that $f \upharpoonright_X$ does not belong to the ideal generated by $g \upharpoonright_X$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated

Case Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangent

Main Result

Sketch of the proof

Sketch of the proof

Main Result

(i)⇒(ii)

Lemma

Let $P \subseteq [0,1]^n$ be a polyhedron such that $X \subseteq P$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated cas

Bouligand-Severi Tan

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proof

Let $P \subseteq [0,1]^n$ be a polyhedron such that $X \subseteq P$. Since (u_1, \ldots, u_l) is a k-tangent of X at x,

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tang

Finitely generated case

Case Kou Romarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proof

Let $P \subseteq [0,1]^n$ be a polyhedron such that $X \subseteq P$. Since (u_1,\ldots,u_l) is a k-tangent of X at x, there exist $\delta_1,\ldots,\delta_k \in \mathbb{R}_{>0}$ with

$$\operatorname{conv}(x, x + \delta_1 u_1, \dots, x + \delta_1 u_1 + \dots + \delta_k u_k) \subseteq P.$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

case

Rey Remarks

Bouligand-Severi tangents
of higher dimension

Rationally outgoing tangen

Main Result

Sketch of the proof

Let $f,g\in\mathcal{M}([0,1]^n)$ be such that $f\upharpoonright_X$ does not belong to the ideal generated by $g\upharpoonright_X$ and that $f\upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g\upharpoonright_X$ does.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

z-generated ca

Bouligand-Seven Ta

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

/lain Result

Sketch of the proof

Let $f, g \in \mathcal{M}([0,1]^n)$ be such that $f \upharpoonright_X$ does not belong to the ideal generated by $g \upharpoonright_X$ and that $f \upharpoonright_X$ belongs to a maximal ideal of $\mathcal{M}(X)$ iff $g \upharpoonright_X$ does.

Let the map $\eta: X \to [0,1]^2$ be defined by

$$\eta = (f \upharpoonright_X, g \upharpoonright_X).$$

Stronaly semisimple MV-algebras and tangents

L.M. Cabrer

Sketch of the proof

Let the map $\eta \colon X \to [0,1]^2$ be defined by

$$\eta = (f \upharpoonright_X, g \upharpoonright_X).$$

Then $\mathcal{M}(\eta(X))$ is isomorphic to the subalgebra of $\mathcal{M}(X)$ generated by $g \upharpoonright_X$ and $f \upharpoonright_X$.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Key Remarks

Bouligand-Severi tangents
of higher dimension

Main Result

Sketch of the proof

Let the map $\eta \colon X \to [0,1]^2$ be defined by

$$\eta = (f \upharpoonright_X, g \upharpoonright_X).$$

Then $\mathcal{M}(\eta(X))$ is isomorphic to the subalgebra of $\mathcal{M}(X)$ generated by $g \upharpoonright_X$ and $f \upharpoonright_X$. Then $\eta(X)$ has a rationally outgoing 1-tangent.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semanti Consequence

2-generated case
Bouligand-Severi Tangents

Finitely generated

Key Remarks

Bouligand-Severi tangents of higher dimension

Main Result

Sketch of the proof

If $\rho \colon [0,1]^n \to [0,1]^2$ is a map defined by

$$\rho(v) = (f(v), g(v))$$

for
$$f,g\in\mathcal{M}([0,1]^n)$$

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Bouligand-Severi Tang

Finitely generated case

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proof

If $\rho \colon [0,1]^n \to [0,1]^2$ is a map defined by

$$\rho(v) = (f(v), g(v))$$

for $f, g \in \mathcal{M}([0,1]^n)$ and $\rho(X)$ has a rationally outgoing 1-tangent,

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Einitoly gonorated

case

Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result
Sketch of the proof

Sketch of the proof

If $\rho \colon [0,1]^n \to [0,1]^2$ is a map defined by

$$\rho(v) = (f(v), g(v))$$

for $f, g \in \mathcal{M}([0,1]^n)$ and $\rho(X)$ has a rationally outgoing 1-tangent, then for some $k \in \{1, \ldots, n-1\}$, X has a rationally outgoing k-tangent.

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated case

Finitely generated

Case Key Remarks

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proof

Sketch of the proof

Other Results

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semanti Consequence

2-generateu

Bouligand-Severi Ta

Finitely generated

Key Reman

Bouligand-Severi tangents of higher dimension Rationally outgoing tangen

Main Result

Sketch of the proof

Other Results

 Byproduct: Extension of the definition of Frenet frames to closed sets. Strongly semisimple MV-algebras and tangents

L.M. Cabrer

Introduction

Syntactic vs Semantic Consequence

2-generated cas

Finitely generated

case

Bouligand-Severi tangents of higher dimension

Main Result

- Byproduct: Extension of the definition of Frenet frames to closed sets.
- Geometric description of prime filters of a finitely generated semisimple MV-algebra.

Syntactic vs Semantic Consequence

Bouligand-Severi Tangents

Finitely generated case

Key Remarks
Bouligand-Severi tangents

Rationally outgoing

Main Result

Sketch of the proof

- Byproduct: Extension of the definition of Frenet frames to closed sets.
- Geometric description of prime filters of a finitely generated semisimple MV-algebra.
- Strongly semisimple Riesz spaces.

Strongly semisimple MV-algebras and tangents

Thank you for your attention!

Strongly semisimple MV-algebras and tangents

L.M. Cabrer

ntroduction

Syntactic vs Semantic Consequence

2-generated cas

Bouligand-Severi Tani

case

Key Remarks

Bouligand-Severi tangents
of higher dimension

Main Result

Sketch of the proof

Other Results

I.cabrer@disia.unifi.it

