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Outline

Nilpotent Minimum logic (NM) was introduced in [EG01] as the logical counterpart
of the algebraic variety induced by Nilpotent Minimum t-norm

In this talk, we present a temporal like semantics for NM, in which the temporal flow
is given by any infinite totally ordered set, and the logic in every instant is given by
 Lukasiewicz three valued logic.

This work prosecute the research line in temporal semantics started in
[AGM08, ABM09] for BL and Gödel logics.

We conclude by presenting a completeness theorem.
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Syntax

Monoidal t-norm based logic (MTL) was introduced in [EG01]: it is based over
connectives &,∧,→,⊥ (the first three are binary, whilst the last one is 0-ary).

The notion of formula is defined inductively starting from the fact that all
propositional variables (we will denote their set with VAR) and ⊥ are formulas. The
set of all formulas will be called FORM.

Useful derived connectives are the following

¬ϕ :=ϕ→ ⊥(negation)

ϕ ∨ ψ :=((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)(disjunction)
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Syntax

(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))(A1)

(ϕ&ψ)→ ϕ(A2)

(ϕ&ψ)→ (ψ&ϕ)(A3)

(ϕ ∧ ψ)→ ϕ(A4)

(ϕ ∧ ψ)→ (ψ ∧ ϕ)(A5)

(ϕ&(ϕ→ ψ))→ (ψ ∧ ϕ)(A6)

(ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)(A7a)

((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))(A7b)

((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)(A8)

⊥ → ϕ(A9)

As inference rule we have modus ponens:

(MP)
ϕ ϕ→ ψ

ψ
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Syntax

Nilpotent Minimum Logic (NM), introduced in [EG01] is obtained from MTL by adding
the following axioms:

¬¬ϕ→ ϕ(involution)

¬(ϕ&ψ) ∨ ((ϕ ∧ ψ)→ (ϕ&ψ))(WNM)

The notions of theory, syntactic consequence, proof are defined as usual.
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Semantics

An MTL algebra is an algebraic structure 〈A, ∗,⇒,u,t, 0, 1〉 such that

1 〈A,u,t, 0, 1〉 is a bounded lattice with bottom 0 and top 1.

2 〈A, ∗, 1〉 is a commutative monoid.

3 〈∗,⇒〉 forms a residuated pair: z ∗ x ≤ y iff z ≤ x ⇒ y for all x , y , z ∈ A.

4 The following axiom hold, for all x , y ∈ A:

(Prelinearity) (x ⇒ y) t (y ⇒ x) = 1

A totally ordered MTL-algebra is called MTL-chain.

An NM-algebra is an MTL-algebra that satisfies the following equations:

∼∼ x = x

∼ (x ∗ y) t ((x u y)⇒ (x ∗ y)) = 1

Where ∼ x indicates x ⇒ 0.
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Semantics

As pointed in [Gis03], in each NM-chain it holds that:

x ∗ y =

{
0 if x ≤ n(y)

min(x , y) Otherwise.

x ⇒ y =

{
1 if x ≤ y

max(n(x), y) Otherwise.

Where n is a strong negation function, i.e. n : A→ A is an order-reversing mapping
(x ≤ y implies n(x) ≥ n(y)) such that n(0) = 1 and n(n(x)) = x , for each x ∈ A.
Observe that n(x) = x ⇒ 0, for each x ∈ A.

A negation fixpoint is an element x ∈ A such that n(x) = x : note that if exists then
it must be unique (otherwise n fails to be order-reversing).
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Nilpotent Minimum logic - completeness

Definition 1

Let A be an NM-algebra. Each map e : VAR → A extends uniquely to an A-assignment
ve : FORM → A in the usual inductive way

A formula ϕ is consequence of a theory (i.e. set of formulas) Γ in an NM-algebra A,
in symbols, Γ |=A ϕ, if for each A-assignment v , v(ψ) = 1 for all ψ ∈ Γ implies that
v(ϕ) = 1.

Let A be an NM-chain. We say that NM is strongly complete (respectively: finitely
strongly complete, complete) with respect to A if for every theory Γ (respectively,
for every finite theory Γ of formulas, for Γ = ∅) and for every formula ϕ we have

Γ `NM ϕ iff Γ |=A ϕ

Theorem 2

NM is finitely strongly complete w.r.t. every infinite NM-chain with negation fixpoint.
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Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.

n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where

the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.

n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where

0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM
}

.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where
0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.

n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM
}

.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where
0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM
}

.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where
0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM
}

.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where
0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM
}

.

( reset ) September 6, 2013 9 / 19



Nilpotent Minimum logic - completeness

Here we list some examples of infinite NM-chains with negation fixpoint:

[0, 1]NM = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤R.
n(x) = 1− x , for each x ∈ [0, 1].

[0, 1]QNM = 〈[0, 1] ∩Q, ∗,⇒,min,max, 0, 1〉, where
the order is given by ≤Q.
n(x) = 1− x , for each x ∈ [0, 1] ∩ Q.

NM∞ = 〈{an}n∈Z ∪ {0, 1}, ∗,⇒,min,max, 0, 1〉, where
0 < an < 1 for all n ∈ Z; for all n,m ∈ Z, if n < m, then an < am.
n(0) = 1, n(1) = 0 and, for all m ∈ Z, n(am) = a0−m.

Concerning [0, 1]NM and [0, 1]QNM , we have a that:

Theorem 3 ([EG01, CEG+09])

NM enjoys the strong completeness with respect to A, with A ∈
{

[0, 1]NM , [0, 1]QNM

}
.

( reset ) September 6, 2013 9 / 19



Temporal semantics

A temporal flow is an arbitrary totally ordered infinite set 〈T ,≤〉: the elements of T
are called instants.

The logic associated to the single instant is based over three truth-values,
{

0, 1
2
, 1
}

,
ordered in the way that 0 < 1

2
< 1.

Over these three values we can define the semantics associated to a negation and an
implication operations:

¬3

0 1
1
2

1
2

1 0

→3 0 1
2

1
0 1 1 1
1
2

1
2

1 1
1 0 1

2
1

In the proposed semantics a temporal assignment (over a temporal flow 〈T ,≤〉) is a
function v : FORM × T →

{
0, 1

2
, 1
}

.

However, not arbitrary assignments are admitted: in our semantics v(ϕ, ·) must
behaves as follows:
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Temporal semantics
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Temporal semantics

Condition 2.1

We restrict to the following types of temporal assignments v : FORM × T →
{

0, 1
2
, 1
}

,
for every ϕ ∈ FORM:

1 v(ϕ, ·) is constant, to 0, 1
2

or 1.
In this case we say that, respectively v(ϕ, ·) ≈ 0, v(ϕ, ·) ≈ 1

2
, v(ϕ, ·) ≈ 1.

2 There is a t ∈ T , with t 6= min(T ) (if T has a minimum) such that

v(ϕ, t′) = 0 for every t′ ≥ t, and v(ϕ, t′′) =
1

2
, for every t′′ < t.

In this case we say that v(ϕ, ·) ≈ t0.

3 There is a t ∈ T , with t 6= min(T ) (if T has a minimum) such that

v(ϕ, t′) = 1 for every t′ ≥ t, and v(ϕ, t′′) =
1

2
, for every t′′ < t.

In this case we say that v(ϕ, ·) ≈ t1.
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Temporal semantics, a comparison with the case of Gödel logic
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Temporal semantics

Now we introduce the definition of temporal assignment (first on the variables, and then
we will extend it over formulas):

Definition 4

A temporal assignment over variables (associated to a temporal flow 〈T ,≤〉) is a function
v : VAR × T →

{
0, 1

2
, 1
}

such that one of the following holds, for every x ∈ VAR:

v(x , ·) is constant.

There is a t ∈ T , with t 6= min(T ) (if T has a minimum) such that

v(ϕ, t′) = 0 for every t′ ≥ t, and v(ϕ, t′′) =
1

2
, for every t′′ < t.

There is a t ∈ T , with t 6= min(T ) (if T has a minimum) such that

v(ϕ, t′) = 1 for every t′ ≥ t, and v(ϕ, t′′) =
1

2
, for every t′′ < t.
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Temporal semantics

We now extend our notion of temporal assignments to the formulas of Nilpotent
Minimum logic.

Remark 2.1

We will consider only →,¬, as connectives. This is because, as pointed out in [EGCN03],
in Nilpotent Minimum logic the disjunction ∨ is definable from ¬,→.
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Temporal semantics

Definition 5

Let v be a temporal assignment over variables, associated to some temporal flow T . Its
extension v ′ : FORM × T →

{
0, 1

2
, 1
}

to formulas is defined, inductively, in the
following way, for every ϕ ∈ FORM, and t ∈ T :

v ′(ϕ, t) :=


v(x , t) if ϕ = x

0 if ϕ = ⊥
¬3v

′(ψ, t) if ϕ = ¬ψ
v ′d(ψ → χ, t) if ϕ = ψ → χ.

Where ψ, χ ∈ FORM, x ∈ VAR and

v ′d(ψ → χ, t) :=


v ′(ψ, t)→3 v ′(χ, t) if v ′(ψ, t)→3 v ′(χ, t) = v ′(ψ, t′)→3 v ′(χ, t′),

for every t′ ≥ t
1
2

otherwise.
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Temporal semantics

Essentially, we are applying the “three-valued” operations in a “pointwise” way, that
is instant by instant

The function vd associates to an assignment v its “definitive behavior”: this
function is necessary to restrict ourself on the assignments of Condition 2.1, as the
following proposition shows.

Lemma 6

The temporal assignments previously defined satisfy Condition 2.1.

Definition 7 (consequence)

Let 〈T ,≤〉 be a temporal assignment, Γ a theory, and ϕ a formula. With

Γ |=T ϕ

we mean that for every temporal assignment w such that w(ψ, t) = 1, for every
ψ ∈ Γ, t ∈ T it holds that w(ϕ, t) = 1, for every t ∈ T .
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Completeness

Theorem 8 (Completeness theorem)

Let 〈T ,≤〉 be a temporal flow. Then for each formula ϕ and finite theory Γ

Γ `NM ϕ iff Γ |=T ϕ.

Example 2.1

Let 〈T ,≤〉 = 〈N,≥N〉: it follows that AT ' NM∞. We have that, for each formula ϕ
and each finite theory Γ:

Γ `NM ϕ iff Γ |=AT ϕ.

Consider now 〈T ,≤〉 ∈ {〈R,≤R〉 , 〈Q,≤Q〉}: it follows that AT ' [0, 1]NM or
AT ' [0, 1]QNM . It can be show that for each formula ϕ and theory Γ:

Γ `NM ϕ iff Γ |=T ϕ.
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Completeness proof, main concepts

The basic idea is to show that every temporal flow 〈T ,≤〉 can induce an algebraic
structure 〈T ′,≤′〉 that is isomorphic to an infinite NM-chain with negation fixpoint.

Viceversa, from the lattice reduct of an NM-chain with negation fixpoint A, we can
obtain an algebraic structure of the form 〈T ′,≤′〉, isomorphic to A associated to
some temporal flow 〈T ,≤〉.
The main point is that we can find a bijection between the assignments over 〈T ,≤〉
and 〈T ′,≤′〉, preserving the validity. That is, for every theory Γ, and formula ϕ

Γ |=〈T ,≤〉 ϕ iff Γ |=〈T ′,≤′〉 ϕ.

Since NM enjoys the finite strong completeness w.r.t. every NM-chain with negation
fixpoint, we obtain the completeness theorem w.r.t. our temporal semantics.

The fact that NM enjoys the strong completeness w.r.t. the temporal flows 〈R,≤R〉
and 〈Q,≤Q〉 is essentially due to the strong completeness theorem of NM w.r.t.
[0, 1]NM, and [0, 1]QNM.
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Nilpotent Minimum logic - assignment

Definition 9

Let A be an NM-algebra. Each map e : VAR → A extends uniquely to an A-assignment
ve : FORM → A, by the following inductive prescriptions:

ve(⊥) = 0

ve(ϕ→ ψ) = ve(ϕ)⇒ ve(ψ)

ve(ϕ&ψ) = ve(ϕ) ∗ ve(ψ)

ve(ϕ ∧ ψ) = ve(ϕ) u ve(ψ)

back
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Completeness

Let A be an NM-chain. We say that NM is strongly complete (respectively: finitely
strongly complete, complete) with respect to A if for every theory Γ (respectively, for
every finite theory Γ of formulas, for Γ = ∅) and for every formula ϕ we have

Γ `NM ϕ iff Γ |=A ϕ

Theorem 10 ([EG01, Gis03])

Let A be an infinite NM-chain with negation fixpoint. Then NM is complete w.r.t. A.

This result can be improved:

Theorem 11

Let A be an infinite NM-chain with negation fixpoint. Then NM is finitely strongly
complete w.r.t. A.
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Completeness, some ingredients

back

Note that, by analyzing the question from a different perspective, a temporal assignment
is a function that associates to every formula a certain sequence (indexed by the instants
of time) of truth-values:

Definition 12

Given a temporal assignment v (over a temporal flow 〈T ,≤〉), one can define a function

·v from the set of formulas into the set of sequences of
{

0, 1
2
, 1
}T

by

ϕv := v(ϕ, ·).

We set TT = {ϕv : ϕ is a formula and v is a temporal assignment over 〈T ,≤〉}.

Since we are interested in the definitive behavior of a temporal assignment, we now
define an operator that “capture” the behavior of an assignment.
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Completeness

Definition 13

Let ϕ, v be a formula and a temporal assignment over a temporal flow 〈T ,≤〉, and let
T ′ = T ∪ {−∞}. The definitive behavior operator d : TT → T ′ ×

{
0, 1

2
, 1
}

is defined as
follows:

d(ϕv ) = 〈−∞, 1〉 if ϕv ≈ 1.

d(ϕv ) = 〈−∞, 0〉 if ϕv ≈ 0.

d(ϕv ) =
〈
−∞, 1

2

〉
if ϕv ≈ 1

2
.

d(ϕv ) = 〈t, 1〉 if ϕv ≈ t1.

d(ϕv ) = 〈t, 0〉 if ϕv ≈ t0.

The fact that d is a well defined map is assured by Theorem 6.

Remark 4.1

The first component of the pairs 〈t, i〉 indicates the instant of time in which the function
ϕv assumes the “stable” value: this last one (0, 1

2
or 1) is specified in the second

component. This justify the fact that 〈−∞, i〉 indicates that the function assumes always
the value i .
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Definition 14

Let T ′ = T ∪ {−∞}. We define a total order relation ≤T ′′ , over
T ′′ = T ′ × {0, 1} ∪

{〈
−∞, 1

2

〉}
, as follows:

for each t, t′ ∈ T , with t < t′,
〈−∞, 0〉 <T ′′ 〈t, 0〉 <T ′′ 〈t′, 0〉 <T ′′

〈
−∞, 1

2

〉
<T ′′ 〈t′, 1〉 <T ′′ 〈t, 1〉 <T ′′ 〈−∞, 1〉.

Now:
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Definition 15

For each temporal assignment v (over a temporal flow 〈T ,≤〉) the function
sv : FORM → T ′′ has the following behavior:

sv (xi ) = d(xv
i ).

sv (⊥) = 〈−∞, 0〉.
If sv (ϕ) = 〈a, n〉 and sv (ψ) = 〈b, n′〉, then

sv (¬ϕ) = 〈a, 1− n〉

sv (ϕ→ ψ) =

{
〈−∞, 1〉 If 〈a, n〉 ≤T ′′ 〈b, n′〉
sv (¬ϕ) g sv (ψ) Otherwise

Where g denotes the maximum over ≤T ′′ .

It is immediate to check that
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Proposition 4.1

For each formula ϕ, and temporal assignment v it holds that:

sv (¬¬ϕ) = sv (ϕ).

The following theorem shows that Theorem 5 and Theorem 15 are equivalent, from the
point of view of the “definitive behavior” of an assignment.

Theorem 16

Let v be a temporal assignment. For every formula ϕ it holds that

sv (ϕ) = d(ϕv ).
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In this section we show that the temporal semantics previously introduced is complete
w.r.t. the logic NM.

Proposition 5.1

Given a temporal flow 〈T ,≤〉 there is an NM-chain AT , with negation fixpoint
〈
−∞, 1

2

〉
,

whose lattice reduct is 〈T ′′,≤T ′′〉.

Proposition 5.2

Let 〈T ,≤〉 be a temporal flow and ϕ be a formula. For every temporal assignment v
there is an AT -assignment v ′ such that sv (ϕ) = v ′(ϕ); conversely, for every
AT -assignment w there is a temporal assignment w ′ over 〈T ,≤〉 such that

sw
′
(ϕ) = w(ϕ).
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Theorem 17

Let 〈T ,≤〉 be a temporal flow. Then, for every formula ϕ and theory Γ it holds that

Γ |=T ϕ iff Γ |=AT ϕ,

where Γ |=T ϕ means that for every temporal assignment v such that sv (ψ) = 〈−∞, 1〉
for every ψ ∈ Γ, it holds that sv (ϕ) = 〈−∞, 1〉.

We finally obtain

Theorem 18 (Completeness theorem)

Let 〈T ,≤〉 be a temporal flow. Then for each formula ϕ and finite theory Γ

Γ `NM ϕ iff Γ |=T ϕ.

Now we conclude by giving some examples of temporal flows connected to interesting
NM-chains:
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Example 5.1

Let 〈T ,≤〉 = 〈N,≥N〉: it follows that AT ' NM∞. Thanks to ?? we have that, for each
formula ϕ and each finite theory Γ:

Γ `NM ϕ iff Γ |=AT ϕ.

Consider now 〈T ,≤〉 ∈ {〈R,≤R〉 , 〈Q,≤Q〉}: it follows that AT ' [0, 1]NM or
AT ' [0, 1]QNM . From Theorems 3 and 17, and with an argument similar to the one given
in the proof of ?? we have that for each formula ϕ and theory Γ:

Γ `NM ϕ iff Γ |=T ϕ.
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