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Standard Completeness

Completeness of axiomatic systems with respect
to algebras whose lattice reduct is the real interval |0, 1].




Standard Completeness

Completeness of axiomatic systems with respect
to algebras whose lattice reduct is the real interval |0, 1].

* |ntended semantics for Fuzzy logic (Hajek 1998)

° Conjunction interpreted as a continuous t-norm: and
Implication interpreted as its residuum
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Examples: standard complete logics

* UL : Logic of Left-continuous uninorms
* MTL: Logic of Left-continuous t-norms
* BL : Logic of Continuous t-norms

|
A proof theoretical approach to Standard completeness — p. 3/29



Introducing logics Hilbert-style

Logics are usually defined

* discarding axioms (enlarges the class of models)
* adding axioms (gives stronger logics)

from (Hiloert systems for) other logics.




Introducing logics Hilbert-style

Example : Hilbert system for F' L.

a— o (= B8) = ((B—7v) = (a—7))
(@ = (B—=7) = B—=(a—7) (- B) =) ¢ (a—= (B8—17))
(aAB) =« (aNB) =B
(= B)A(a—=7)) = (a—= (BAY)) a— (aVp)
B — (aVpB) (a=)ANB—=7) = (aVB) =)
a+—t— « a— 1 1=«
* P (adi) © 2P (up)

aAp 5




Introducing logics Hilbert-style

Example : Hilbert system for F' L.

o — « (= B) = ((B—=7) = (a—=17))
(= (B—=7) = (B—=(a—7)) ((a-B) =) < (= (B—7))
(@A B) =« (@A B) =B
(= B) A (a— 7)) = (a—= (BA7)) a— (aVpB)
B — (aVpB) (a=)ANB—=7) = (aVB) =)
a+—>t— o a— 1T 1 —«
o2 (ad) = 22F (mp)

UL=FLc+ ((aa— B)ANt)V((B— «a)At) (prelinearity)

MTL=UL + (f — a) A (o« — t) (weakening)
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Standard Completeness: algebraic approach

Given a logic L:

1. Algebraic semantics of L (L-algebras), completeness w.r.i.
countable, linearly ordered L-algebras (L-chains)

2. (Rational completeness): Embedding of countable
L-chains into a dense countable L-chain.

3. Dedekind-Mac Neille style completion




Standard Completeness: algebraic approach

Given a logic L:

1. Algebraic semantics of L (L-algebras), completeness w.r.i.
countable, linearly ordered L-algebras (L-chains)

2. (Rational completeness): Embedding of countable
L-chains into a dense countable L-chain.

3. Dedekind-Mac Neille style completion

e Step 1 and 3 well understood.

o Semilinear logics: Classes of (substructural) logics
complete w.r.t. chains.

* Step 2: problematic
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Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007)
Given a logic L:

1. Find a suitable hypersequent calculus H L
2. Add the density rule

(a—=p)V(p—B)Vy
(= B)Vry

(density)

(= L + (density) is rational complete)
and prove that this rule produces no new theorems
(Rational completeness)

3. Dedekind-Mac Neille style completion
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UL: state of the art

e Differently from MTL, few algebraic proofs of standard
completeness.

°© UL + o™ ! < o” (San Min Wang 2012)

* Proof-theoretical:
© (2007 Metcalfe, Montagna): UL, UL + a <> a - «




UL: state of the art

e Differently from MTL, few algebraic proofs of standard
completeness.

°© UL + o™ ! < o” (San Min Wang 2012)

* Proof-theoretical:
© (2007 Metcalfe, Montagna): UL, UL + a <> a - «

We show standard completeness for some axiomatic extensions
of UL, i.e.:

* UL+ (a— a-«)
* UL+ (a-a— «)

e UL +af = a™
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Our basic calculus F'L.: sequent calculus

= () —— (init) =y (f1)
I'=T (T) F,L:>A(L)
I's>a o dA=11 ' = II I' =
A =11 (Cut) t,F:>H<l) I‘:>f(f)
'=a I'=>p a;, ' = 11 I'= a;
A l
I'=aAnp (T) O{1/\O¢2,F:>H(/\) I' = a1 Vas (\/’I“)
a,'=11 [, I' =11 I'=a [B,A=1I a,'= 3
(V) (— 1) (=)
aV g, =11 I'a— B8,A =11 I'=sa—p
I'= « A:>B( ) a, 8, ' = 11 (D)
A= a-p " a- 8,1 =11
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Calculi for (semilinear) extensions of F'L,.?

(Ciabattoni, Galatos, Terui 2008).
A s Sets Py, N, of formulas defined by:

7;3 /\/3 Po, No := Atomic formulas

T >< T Pn+1 = Nn | 73n—l—l ‘Pn—H | 7Dn—l—l \/Pn—H | 1 | 1
Nn—l—l = Pn ‘ Pn—l—l _>Nn—}—1 ‘Nn—i—l /\Nn—|—1 ‘ 0 ’ T

T >< T Examples:

* To the class N, belong :
T >< T a—a-a a-0—
Py —— N * To the class P3 belong :

—aV-—a  ((a—= BA)V((B — a)At)
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Calculi for (semilinear) extensions of F'L,.?

Algorithm to convert axioms into “good” rules,
preserving cut-elimination.

T >< T * Axioms in Ny = Sequent structural

P No rules
X >< T * Axioms in (subclass of ) P3 =
P, N Hypersequent structural rules
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Hypersequent calculus AU L for U L

(Avron '89): Hypersequent

where forall: =1,...n, I'; = II; Is an ordinary sequent
| is intended to denote a meta-level disjunction.




Hypersequent calculus AU L for U L

Embedd sequent rules for F' L. into hypersequents

(tr)

G|l=t

GI'=T

GI'=a Gla,A=1I

(T)

GII',A =11

GI'=a GI'=2p

GIl'=anp

Gla,I' =11 G|, =1I

GlaVv g, ' =11

GI'=a GA=5

Gla = «

GII', L= A

GII'=11
G|t, T = II

G\ai,l“ = 11
Glagr AN ag, ' = 11

GI'=a G|B,A=

(L

(t

(init)

)

)

(A)

I1

GI''A=a-p

GII'a — B, A =11

Gla, 8, = 11
Gla -8, = 11

(-1)

(= 1)

(f1)

Glf =
G|II' = (7)
Gr=7 "
G‘F = O
(Vr)
G|F = a1 V a9
Gla,T'=
(=)
GIl'=a—p




Hypersequent calculus AU L for U L

We add:

* Suitable rules to manipulate the additional layer of
structure.

GIT=all =«

G
G|T =« (ec)

G|T'=«a

(ew)




Hypersequent calculus AU L for U L

We add:
* Suitable rules to manipulate the additional layer of
structure.
G GIT=all =«
G!F#a(ew) G|T =« (ec)

* A hypersequent structural rule corresponding to
prelinearity :

(= B)At)V ((B— a) At)
The axiom is in class Ps, using the algorithm we get:

G‘Fl,Al = 11 G‘F27A2:>H2
G]Fl,F2:>H1\A1,A2:>H2

(com)
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Correspondence axioms - rules

Class Axiom Rule
G|Il= WV : G| = (wr)
w wr
No | (= A(f—a) G|la= ¥ G| = «
G111\ = W (©
c
a— oo G1|II,T = ¥
Gl‘H,F1:>\If Gl‘H,F2:>\I/
(mgl)
Q- — G1|II,T1, T2, = W
GILT? =¥ ... G|I,LT} =¥
k (knot?)
a® — a” G1|H,F1,...Fk=>\lf
G|ILT = v
(em)
P2 aV GII'= [[I= W
GlFl,F2:>
(lq)
Ps —a Voo G|y = |2 =
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Correspondence axioms - rules

Class Axiom Rule
G|Il=WV G| = (wr)
wr
N (@ =) A(f— ) Glla=V G| = a
G1|IL T, = ¥
a— oo G1|II,T = ¥
Gl‘H,F1:>\If Gl‘H,F2:>\If
(mgl)
- — G1|II,T1, T2, = W
G|ILTT = ¥ G1|IL T} = W
k (knot?)
a® — a” G1|H,F1,...Fk=>\lf

* We will focus on extensions of U L with axioms in Ny —
Extensions of HU L with sequent structural rules.
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Recall: Standard Completeness via prootf theory

Given a logic L:

1. | A suitable hypersequent calculus HL

2. Density elimination
3. Dedekind-Mac Neille style completion
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Density elimination

* Density rule in hypersequent calculus :
G| A=p|X,p=A
G|AY = A

where p does not occur in the conclusion (eigenvariable).
Similar to cut elimination

(density)

Gl A=a G|Y,a=A
G|IAY=A

(cut)

* Proof by induction on the length of derivations




Density elimination

(Ciabattoni, Metcalfe TCS 2008)
Given a density-free derivation, ending in

- d
G| A=p|X,p=A
G|IANY=A

(density)




Density elimination

(Ciabattoni, Metcalfe TCS 2008)

- d
GIALY=AX A=A
G|IANY= A

(EC)

* Asymmetric substitution: p is replaced
° With ¥ = A when occurring on the right
° With A when occurring on the left

* Problem: An axiom p = p would be converted into
A, > = A...not an axiom anymore!
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* Theorem.(Ciabattoni, Metcalfe 2008) Each calculus
extending HU L with premise-balanced rules admits
density elimination.

° |dea: substitute components
Ipf=p—I A=t

(The axiom p = p becomes the axiom =- t).




* Theorem.(Ciabattoni, Metcalfe 2008) Each calculus
extending HU L with premise-balanced rules admits
density elimination.

Premise-balanced rules are rules which do not change the
number of metavariables occurrences...none of the structural

rules we consider are such

Class Axiom Rule
G111, ' = ¥
(c)
Na a— oo G1|II,T = ¥
G1|H,F1 = v G1|H,F2 = v
(mgl)
a-a— G1|II,T'1, T, = W
GILTT =¥ ... GILT} =¥
N (knot?)
a® — a” G1|H,F1,...Fk:>\11
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Example

* |dea: substitute components

Ipf=p—IL A=




Example

* |dea: substitute components
Ipf=p—IL A=
Consider the application of a non balanced rule:

IpP=p I,p°=p
I1,p* = p

(knot3)

Can we get:

A=t ILLA’>=1t ,
IILA=t '

|
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A first result

* We find a class of nonbalanced structural rules for which
density elimination works with the same substitution.

° Includes (knot}) for n, k # 1.




A first result

* We find a class of nonbalanced structural rules for which
density elimination works with the same substitution.

° Includes (knot}) for n, k # 1.

I,p°=p ILp°=p
I1,p* = p

(knots)

can be restructured into a derivation

I A2=t T A=t

H,A.:>t
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Contraction and mingle

* The method does not work for rules of kind (knot?}) and

(knot}). In HUL all these rules turn out to be equivalent to
contraction and mingle, respectively.




Contraction and mingle

* The method does not work for rules of kind (knot?}) and

(knot}). In HUL all these rules turn out to be equivalent to
contraction and mingle, respectively.

We can show anyway that HUL + (¢) and HU L + (mgl) admit
density elimination.

GILT T =¥
G LT =®

G1|H,F1 =2/ G1|H,F2 =2/
G, Ty, = W

(mgl)
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A new approach: Proof by cases

Consider a density-free derivation, ending in

- d
G| A=p|X,p=A




A new approach: Proof by cases

We instantiate p with ¢, obtaining

- d
GlA=t|X,t= A




A new approach: Proof by cases

- d’
GlA=t|X,t= A

We find density free proofs of:

GIA=t G‘Z’LfiA
- dy  d2
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A new approach: Proof by cases

- d’
GlA=t|X,t= A

We find density free proofs of:

GIA = ¢ G\E,% = A
- dy  d2
: . - d
Finally combining : :
GIA=tX,t= A
- da
GIAY =AY t= A
- da
GIAL,YX = AAY = A
(EC)

GIAY = A

A proof theoretical approach to Standard completeness — p. 20/29



Recall: Standard Completeness via prootf theory

Given a logic L:

1. | A suitable hypersequent calculus HL

2. | Density elimination

3. Dedekind-Mac Neille style completion
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Step 3: closure under order-theoretic completions

A + (Ciabattoni, Terui, Galatos 2011) Axioms on
FL < equations over residuated lattices

* A subclass of equations in class N5 are
T >< T preserved by Dedekind-MacNeille
P, No completion. All the axioms we
x >< T considered are in this class.
P, N, * A subclass of equations in class P5 are
preserved by Dedekind-MacNeille
T >< T completion, when applied to subdirectly

Py —— N irreducible algebras
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Standard completeness for extensions of U L

* Standard completeness for extensions of U L with axioms
belonging to a subclass of N5. In particular:
o UL + of — o" standard complete, for any n, k

(includes mingle and contraction axioms). (Baldi 2013
- submitted for publication), (2013 Baldi, Ciabattoni -

work in progress )
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Standard completeness for extensions of MI'L

* MTL=UL+ (f —»a)A(a—1)
* Hypersequent calculus HMTL = HUL + (wl) + (wr)




Standard completeness for extensions of MI'L

* Density Elimination holds for H MT L. extended with any
structural sequent rule

° Any axiomatic extension of MT L with axioms within
N5 is standard complete ( 2008 Ciabattoni, Metcalfe).

* Density elimination holds for extensions of HMT L with
structural hypersequent rules which do not “mix too much”
the components (convergent rules)

° Any axiomatic extension of MT'L with axioms within a
subclass of P53 is standard complete (2012 Baldi,
Ciabattoni, Spendier) .
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Examples of convergent rules

* Axioms in P3; extending MTL
° (wnm) :

~(a-B)V(aAB) = (a-B)
° (lq) :

(Y \/ (Y




Examples of convergent rules

* Axioms in P3; extending MTL
° (wnm) :

~(a-B)V(aAB) = (a-B)
° (lq) :

(Y \/ (Y
* Corresponding convergent rules

G|F27F17A1:>H1 G|F17F37A1:>H1
G’F17F17A1:>H1 G‘F27F37A1:>H1

© G‘F27F3:>|F1,A1:>H1

(wnm)

G\Fl,F2:>
- G|F1:> |F2:>

(la)
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Our results

* Standard completeness for extensions of U L with axioms
belonging to a subclass of 5. In particular:

o UL + o — o™ standard complete, for any n, k
(includes mingle and contraction axioms). (Baldi 2013
- submitted for publication), (2013 Baldi, Ciabattoni -
work in progress )

* Standard completeness for extensions MT'L:

° Any axiomatic extension of M7T' L with axioms within a
subclass of P3 is standard complete (2012 Baldi,
Ciabattoni, Spendier) .
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Work 1n progress

* A general characterization of density elimination, hence
standard completeness, for:

o Extensions of MT'L with axioms up to the class Ps in
the substructural hierarchy.

o Extensions of UL with axioms up to the class A5 in the
substructural hierarchy.

o Extension of noncommutative variants of MT'L and
UL.

° Logics with involutive negation. Long standing open
problem: IU L

* Treatment of axioms beyond the class Ps (Display
calculus?)
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Appendix A: A class of structural rules

Let HL be HU L extended with any structural sequent rule

Gl‘Hl,\Ifl == Al ...Hl,\lfm — Al

Gl‘Hl,Fl,...ijAl (T)

H L. admits density elimination if () satisfies the following:

° Each ¥, is a multiset {I';,, ..., T, } with 4y ...4,, varying
over {1,...k}

* Either the minimum among the n; is bigger than k or the
maximum is smaller than &

° For any I'; there is at least one ¥; where I'; does not
appeatr.

* For any I'; there is at least one ¥; where I'; appears more

then once .
|
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Appendix B: Convergent rules

Definition. Let () be a hypersequent structural rule with G|S;, i € {1,..m} premises,
C1|...|Cq conclusion.

(0-pivot) G|S; is a 0-pivotif thereisan s € {1,...,q} such that R(S;) = R(Cs) and
metavariables in L(S;) are contained in L(C5).

(n-pivot) G|S; is an n-pivot for G|S; with respect to [Ag /1, [keq1,...,n1» With Ty € L(S;)
and A, € L(S,), if the following conditions hold:
© @|S; is a0-pivot
° R(Si) = R(S;),
© L(Sj) = L(Sil* /vy lieqr..my )>
© lfn > 1, G|S;isa(n — 1)-pivot for n premises G|S;,,p = 1,...,n, with
respect to [2F /1, Jke(1,....n1\{p}-

Definition. A completed hypersequent rule (r) is convergent if for each premise G|S;
one of the following conditions holds:

® R(S;) =0,
® @G|S; is a 0-pivot
® there is a premise G|S; which is an n-pivot for G|S;, with n > 0.
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