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Shifted variable metric methods:

We consider line-search iterative methods of the
form

x+ = x + t d, d = −Hg,

where H is a positive definite matrix. Step-length
t > 0 is chosen in such a way that

F+ − F ≤ ε1 t dTg,

dTg+ ≥ ε2 dTg

(the weak Wolfe conditions), where F = F (x),
g = ∇F (x) and 0 < ε1 < 1/2, ε1 < ε2 < 1.

Shifted variable metric methods use matrix H =
ζI +A, where ζ > 0 and A is positive semidefinite.
Starting from the zero matrix, they generate a
sequence of positive semidefinite matrices satisfying
the (modified) quasi-Newton condition A+y = %s̃,
where s = x+ − x, y = g+ − g and s̃ = s − ζ+y.
Here % is a correction parameter and ζ+ > 0 is a
shift parameter. Update

A+ = A + %
s̃s̃T

b̃
− AyyTA

ā

+
η

ā
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) (
ā
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is used, where ā = yTAy and b̃ = yT s̃.



Theorem 1. Let A be positive semidefinite and
η ≥ 0. If 0 < ζ+ < yTs/yTy, then A+ is positive
semidefinite.

Determination of the shift parameter:

Theorem 1 implies condition

ζ+ = µ b/â, 0 < µ < 1,

where b = yTs and â = yTy. If µ is too small,
then matrix H is unsuitable, especially in the first
n iterations, where A is singular. If µ is too large,
the stability is usually lost (numerical explosion).
Two basic choices:

• Constant choice. In this case 0 < µ < 1/2.
If µ → 1/2, then the shifted BFGS method
becomes unstable. Efficient choices lie in the
interval 0.20 ≤ µ ≤ 0.25, e.g., µ = 0.22.

• Variable choice. Using a theoretical investigation
of stability and global convergence, we have
obtained choice

µ =
√

1− ā/a
/(

1 +
√

1− b2/(â|s|2)
)

(the numerator assures the global convergence
and the denominator assures the stability).



Global convergence:

Assumption 1. The objective function f : Rn →
R is uniformly convex and has bounded second-
order derivatives, i.e.

0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤ G < ∞

for all x ∈ Rn, where λ(G(x)) and λ(G(x)) are the
lowest and the greatest eigenvalues of the Hessian
matrix G(x).

Assumption 2. Parameters %k and µk of the
shifted VM method are uniformly positive and
bounded, in the sense that

0 < % ≤ %k ≤ %,

0 < µ ≤ µk ≤ µ < 1,

for every k ≥ 1.

Theorem 2. Consider a shifted variable metric
method satisfying Assumption 2 with the line-
search fulfilling the weak Wolfe conditions. Let
the objective function satisfy Assumption 1. Then,
if 0 ≤ η ≤ 1 and µ2 ≤ 1− ā/a, one has

lim inf
k→∞

|gk| = 0.



Computational results:

The shifted variable metric methods were tested by
using a set of 92 relatively difficult test problems
with 50 and 200 variables (subroutine TEST28 in
www.cs.cas.cz/~luksan/test.html).

N - the number of variables

MET - the method used

SBFGS - shifted BFGS

SDFP - shifted DFP

BFGS - standard BFGS

DFP - standard DFP

NIT - the total number of iterations

NEV - the total number of function evaluations

NF - the number of failures for a given set

TIME - the total computational time

N MET NIT NEV NF TIME
50 SBFGS 11256 12178 - 1.03

SDFP 46010 48237 8 3.78
BFGS 14958 16474 1 1.26
DFP 79486 84215 35 6.66

200 SBFGS 30429 36080 1 25.11
SDFP 92799 100461 15 74.88
BFGS 36099 39991 2 27.21
DFP 146851 158979 32 113.75



Conclusions:

• The shifted VM methods are competitive with
the classic VM methods. They are more efficient
than standard implementations of the classic VM
methods. However, the classic VM methods can
be improved by a suitable scaling, which is not
true in the case of shifted VM methods.

• The shifted VM methods are not intended for
solving problems, which can be successfully
solved by the classic VM methods. However,
these methods are ideal as starting methods for
the shifted limited-memory VM methods, which
are based on the same idea.

Variable metric methods with reduced Hessians
(Gill + Leonard (2003)):

Let Sk = [sk−m, . . . , sk−1] and Zk be a matrix
whose columns form an orthonormal basis in the
subspace generated by columns of Sk. The variable
metric methods with reduced Hessians determine
the direction vector from the reduced system

dk = Zkd̃k, ZT
k BkZkd̃k = −g̃k, g̃k = ZT

k gk.

The reduced Hessian ZT
k BkZk is updated by using

differences s̃k = tkd̃k and ỹk = ZT
k (gk+1 − gk).

In the next iteration, Zk and also the updated
ZT

k BkZk are changed to correspond to Sk+1.



Limited-memory variable metric methods:

We set xk+1 = xk − tkdk = xk − tkH
k
kgk, where

Hk
k−m = γkI (usually γk = bk−1/ak−1) and

Hk
j+1 = γk

j V T
j Hk

j Vj +
ρj

bj
sjs

T
j , Vj = I − 1

bj
yjs

T
j

for i − n ≤ j ≤ i − 1. Again sj = xj+1 − xj,
yj = gj+1 − gj, aj = yT

j Hjyj, bj = yT
j sj and ρj

are correction parameters.

Strang recurrences (Nocedal (1980)):

Backward recurrence uk = −gk and

σj = sT
j uj+1/bj,

uj = uj+1 − σjyj,

for k−1 ≥ j ≥ k−m. Forward recurrence vk−m =
(bk−1/ak−1)uk−m and

vi−m = (bi−1/ai−1)ui−m,

vj+1 = vj + (ρjσj − yT
j vj/bj)sj,

for k − m ≤ j ≤ k − 1. Finally we set dk = vk.
Note that 2m vectors sj, yj, k −m ≤ j ≤ k − 1
are used.



The compact matrix form (Byrd + Nocedal +
Schnabel (1990)):

Hk
k = γkI − [Sk, γkYk]Mk[Sk, γkYk]T .

Here Sk = [sk−m, . . . , sk−1], Yk = [yk−m, . . . , yk−1],
and

Mk =
[

(R−1
k )T (Ck + γkY

T
k Yk)R−1

k −(R−1
k )T

−R−1
k 0

]
,

where Ck is a diagonal matrix containing the
diagonal part of ST

k Yk, and Rk is an upper
triangular matrix containing the upper triangular
part of ST

k Yk. Again 2m vectors sj, yj, k −m ≤
j ≤ k − 1 are used.

• Limited-memory VM methods are globally
convergent for uniformly convex functions with
bounded second-order derivatives.

• Limited-memory VM methods find the minimum
of a convex quadratic function after at most n
steps (quadratic termination) if the line-search
is perfect.

• The method based on the Strang recurrences is
more stable. The method with compact matrices
can be used for inverse updates (Bk = H−1

k

instead of Hk).



Shifted limited-memory variable metric
methods (L + V (2004)):

We suppose that x+ = x − tHg where H = ζI +
A = ζI + UUT and where n × m matrix U is
updated by formula U+ = V U with a low rank
matrix V chosen in such a way that the (modified)
quasi-Newton condition A+y = U+UT

+y = ρs̃ is
satisfied. This condition can be replaced by

UT
+y = z, U+z = %s̃, zTz = %b̃. (∗)

Theorem 3. Let T be a symmetric positive definite
matrix and z ∈ Rm. Denote U a set of n × m
matrices. Then the unique solution to

min{yTTy ‖T−1/2(U+ − U)‖2F : U+ ∈ U}

s.t. (∗) is

U+ = U − Ty

yTTy
yTU + (%s̃− Uz +

yTUz

yTTy
Ty)

zT

zTz

(Ty and z are parameters defining a class of shifted
limited-memory variable metric methods).



VAR1 - Rank 1 variationally derived method

We assume that Ty and ρs̃ − Uz are linearly
dependent and set

z = ϑUTBs, ϑ = ±
√

%b̃/c̄. (∗)

Then

U+ = U − %s̃− ϑABs

%b̃− ϑb̄
(y − ϑBs)T

U,

which gives the best results for the choice
sgn(ϑb̄) = −1.

VAR2 - Rank 2 variationally derived method

With z given by (∗) and with the simple choice
Ty = s̃, we obtain

U+ = U − s̃

b̃
yTU +

(
%
s̃

ϑ
−ABs +

b̄

b̃
s̃

)
sTBU

c̄
.

The efficiency of both these methods significantly
depends on the value of the correction parameter
%. Very good results were obtained with choices
% = ν, % = ε, % =

√
νε and % = ζ/(ζ + ζ+), where

ν = µ/(1 − µ), µ is a relative shift parameter and
ε =

√
1− ā/a is the damping factor of µ.



Global convergence:

Theorem 4. Consider a shifted variable metric
method VAR1 or VAR2 satisfying Assumption 2
and inequality µ2 ≤ ζâ/a together with the line
search fulfilling the weak Wolfe conditions. Let the
objective function satisfy Assumption 1. Then if

ϑk = −sgn b̄k min
(

C,
√

%kb̃k/c̄k

)

for some C > 0 and all k ∈ N , one has

lim inf
k→∞

|gk| = 0

(the VAR2 method allows the value C = ∞)

General formulas:

U+ =
s̃zT

b̃
+

(
I − TyyT

yTTy

)
U

(
I − zzT

zTz

)

U+U
T
+ = ρ

s̃s̃T

b̃
+

(
I − TyyT

yTTy

)

U

(
I − zzT

zTz

)
U

T

(
I − yyTT

yTTy

)

Usually Ty = s̃. This choice gives the (full) shifted
BFGS method if z = 0.



Computational results:

The shifted limited-memory variable metric
methods were tested by using a set of 22 test
problems with 1000 and 5000 variables (subroutine
TEST14 in www.cs.cas.cz/~luksan/test.html).
Always 10 vectors (or pairs) were stored for
N = 1000 and 5 vectors (or pairs) were stored
for N = 5000.

N - the number of variables

MET - the method used

VAR1 - Rank 1 variationally derived method

VAR2 - Rank 2 variationally derived method

LBFGSS - Limited-memory BFGS method with
Strang recurrences

LBFGSC - Limited-memory BFGS method with
compact matrices

LBFGSR - Limited-memory BFGS method with
reduced Hessians

NIT - the total number of iterations

NEV - the total number of function evaluations

NF - the number of failures for a given set

TIME - the total computational time



N Method NIT NEV NF TIME
1000 VAR1 19317 19680 - 13.86

VAR2 18227 18546 - 13.76
LBFGSS 20427 21456 - 15.17
LBFGSC 20555 26003 1 16.55
LBFGSR 22385 33181 - 24.09

CG 20520 41049 - 17.91
5000 VAR1 94801 97858 - 8:02.1

VAR2 85662 87483 - 7:22.6
LBFGSS 108315 111456 2 9:33.8
LBFGSC 102313 105828 1 10:32.6
LBFGSR 98046 154931 - 10:41.4

CG 69805 168471 1 6:45.3

Conclusions:

• Methods VAR1 and VAR2 are very efficient,
competitive with the LBFGSS method for well-
conditioned problems. The LBFGSS method
can be better than VAR1 and VAR2 for ill-
conditioned problems.

• Shifted limited-memory VM methods are still
under development. Our limited computational
experience indicates that they could be improved
using more suitable choice of parameters. The
theory is not yet finished.



Nonsmooth optimization:

We assume that objective function f : Rn → R
is locally Lipschitz and we are able to compute
a subgradient g ∈ ∂f(x) at any point x ∈ Rn.
Since a locally Lipschitz function is differentiable
almost everywhere by the Rademacher theorem,
then usually g = ∇f(x). A special feature of the
nonsmooth problems is the fact that the gradient
∇f(x) changes discontinuously and is not small
in the neighborhood of a local extremum. Thus
the standard optimization methods cannot be used
efficiently.

Bundle methods:

Values f(xk), g(xk) ∈ ∂f(xk) at single point xk

do not suffice for describing the local properties
of the nonsmooth objective function. A bundle of
values f j = f(yj), gj ∈ ∂f(yj) obtained at trial
points yj, j ∈ Jk ⊂ {1, . . . , k}, gives much better
information.



Piecewise linear function:

We define a piecewise linear function

fk
L(x) = max

j∈Jk

{f j + (x− yj)Tgj}

= max
j∈Jk

{f(xk) + (x− xk)Tgj − αk
j},

where αk
j = f(xk)−fk

j , are linearization errors and

fk
j = f j +(xk−xj)Tgj. This function is majorized

by the objective function and αk
j ≥ 0, j ∈ Jk, in

the convex case.

Subgradient locality measures:

To guarantee nonnegativity of numbers αk
j , j ∈ Jk,

in the nonconvex case, the subgradient locality
measures

αk
j = max

{|f(xk)− fk
j |, γ(sk

j )
ν
}

,

where γ > 0, ν ≥ 1, fk
j = fj(xk) and

sk
j = ‖xj − yj‖+

k−1∑

i=j

‖xi+1 − xi‖

are used instead of linearization errors.



Aggregation:

Since we can only work with limited-size bundles
where |Jk| ≤ m, the set Jk is usually determined
in such a way that Jk = {1, . . . , k} for k ≤ m,
and Jk+1 = Jk ∪ {k + 1}\{k + 1−m} for k ≥ m.
One possibility guaranteeing global convergence is
an additional use of transformed aggregate values
fk

a , gk
a, sk

a and

αk
a = max

{|f(xk)− fk
a |, γ(sk

a)
ν
}

,

which accumulate information from the previous
iterations. These values represent a linear function,
which is added to the definition of the piecewise
linear function.

Piecewise quadratic function:

Direction vector dk ∈ Rn is usually obtained as a
minimum of the piecewise quadratic function

fk
Q(x) =

1
2
(x− xk)TGk(x− xk)

+ max{fk
L(x), f(xk) + (x− xk)Tgk

a − αk
a},

where (1/2)(x−xk)TGk(x−xk) is the regularizing
term with symmetric positive definite matrix Gk.
This term restricts the size of the direction vector
(in the same way as in the trust region methods).



Primal QP subproblem:

Minimization of the above piecewise quadratic
function is equivalent to the solution of the
following QP subproblem: Minimize

1
2
dTGkd + v

subject to

−αk
j + dTgj ≤ v, j ∈ Jk, −αk

a + dTgk
a ≤ v

(v is an extra variable). The solution of the primal
QP subproblem can be expressed in the form

dk = −(Gk)−1g̃k
a,

vk = −(dk)TGkdk − α̃k
a,

where

g̃k
a =

∑
j∈Jk

λk
jg

j + λk
ag

k
a,

(α̃k
a, f̃

k
a , s̃k

a) =
∑

j∈Jk

λk
j (α

k
j , f

k
j , sk

j ) + λk
a(α

k
a, f

k
a , sk

a).

Here λk
j , j ∈ Jk, λk

a, are Lagrange multipliers of
the primal QP subproblem.



Dual QP subproblem:

Lagrange multipliers λk
j , j ∈ Jk, λk

a, are solutions
of the dual QP problem: Minimize

1
2


 ∑

j∈Jk

λjg
j + λag

k
a




T

(Gk)−1


 ∑

j∈Jk

λjg
j + λag

k
a




+
∑

j∈Jk

λjα
k
j + λaα

k
a

subject to

λj ≥ 0, j ∈ Jk, λa ≥ 0,∑
j∈Jk

λj + λa = 1.

The minimum value of the dual function is

wk =
1
2
(g̃k

a)T (Gk)−1g̃k
a + α̃k

a

= −vk − 1
2
(g̃k

a)T (Gk)−1g̃k
a.



Nonsmooth line search:

It is not possible to simply set xk+1 = xk + dk.
To guarantee the global convergence, we use a line
search procedure which generates two points

xk+1 = xk + tkLdk,

yk+1 = xk + tkRdk,

where 0 ≤ tkL ≤ tkR ≤ 1 are stepsizes, in such a
way that exactly one of the two possibilities, the
descent step or the zero step, occurs. The descent
step implies the conditions

tkR = tkL > 0, f(xk + tkLdk) ≤ f(xk)− εLtkLwk,

while the zero step implies the conditions

tkR > tkL = 0, (dk)Tg(xk+tkRdk) ≥ αk+1−εRwk

with

αk+1 = max
{|f(xk)− f(xk + tkRdk)

+ tkR(dk)Tg(xk + tkRdk)|, γ|tkRdk|ν} .

Here 0 < εL < 1/2 and εL < εR < 1.



Bundle update:

Having point xk+1 determined, it is necessary to
transform all values. One has

fk+1
j = fk

j + (xk+1 − xk)Tgj, j ∈ Jk

fk+1
a = f̃k

a + (xk+1 − xk)T g̃k
a

fk+1
k+1 = fk+1 + (xk+1 − yk+1)gk+1

gk+1
a = g̃k

a

sk+1
j = sk

j + ‖xk+1 − xk‖, j ∈ Jk

sk+1
a = s̃k

a + ‖xk+1 − xk‖
sk+1

k+1 = ‖xk+1 − yk+1‖

Quadratic function update:

We assume that matrices Gk are uniformly positive
definite and uniformly bounded and that Gk+1−Gk

is positive semidefinite after every zero step. The
proximal bundle method uses matrices Gk = σkI.

Global convergence:

One can prove that the number of consecutive zero
steps is finite and that every cluster point of the
sequence {xk} is a stationary point of the objective
function. This follows from the fact that the norms
of aggregate subgradients tends to zero implying
0 ∈ ∂f(xk), if the number of consecutive zero
steps is infinite. An infinite sequence of the descent
steps can be investigated by the standard way.



Variable metric methods for nonsmooth
problems:

• Standard bundle methods require relatively large
bundles (m ∼ n). Thus we need to solve
quadratic programming subproblems with a
relatively large number of constraints.

• Standard variable metric methods successfully
solve many nonsmooth problems. Nonsmooth
variable metric methods combine good
properties of standard variable metric methods
and standard bundle methods.

Basic ideas:

• Variable metric (BFGS) updates are applied to
matrix Hk = (Gk)−1 after descent steps, which
allows us to decrease the bundle dimension
significantly. Only three subgradients (old, new
and aggregate) are used in every step.

• Variable metric (rank-1) norm-decreasing up-
dates are used after zero steps. This together
with the line search described above guarantees
the global convergence.

• The direction vector and aggregate values are
obtained by solving a simple QP subproblem
containing only three constraints.



Initiation of aggregate values:

In the first iteration or after a descent step, we set
g̃k = gk, α̃k = 0 and m = k.

Direction vector:

The direction vector is determined by formula
dk = −Hkg̃k. At the same time, we set
wk = (1/2)(g̃k)THkg̃k + α̃k. If wk is sufficiently
small, then an approximate solution is found.

Quadratic programming subproblem:

The quadratic programming subproblem reduces to
the minimization of the function

1
2

∥∥∥(Hk)1/2(λ1g
k + λ2g

k+1 + λ3g̃
k)

∥∥∥
2

+λ2α
k+1 + λ3α̃

k,

where

λi ≥ 0, i ∈ {1, 2, 3}, λ1 + λ2 + λ3 = 1.

The optimal values λk
i ≥ 0, i ∈ {1, 2, 3} can be

computed in a simple way.



Aggregation:

The resulting aggregate subgradient and aggregate
subgradient locality measure are given as

g̃k+1 = λk
1g

k + λk
2g

k+1 + λk
3g̃

k,

α̃k+1 = λk
2α

k+1 + λk
3α̃

k.

BFGS update after a descent step:

Let uk = gk+1 − gk. If (uk)Tdk > 0, we set

Hk+1 = Hk +
(

tkL +
(uk)THkuk

(uk)Tdk

)
dk(dk)T

(uk)Tdk

−Hkuk(dk)T + dk(uk)THk

(uk)Tdk
,

otherwise we set Hk+1 = Hk.

Rank-1 update after a zero step:

Let vk = Hkuk− tkRdk. If vT
k g̃k < 0 (which implies

(uk)Tvk > 0), we set

Hk+1 = Hk − vk(vk)T/(uk)Tvk,

otherwise we set Hk+1 = Hk. Then g̃T
k Hk+1g̃k ≤

g̃T
k Hkg̃k after the zero step, which is necessary for

the global convergence.



Global convergence:

A complete description of nonsmooth variable
metric algorithm is given in V + L: JOTA 111
(2001) 407-430. The following result was proved
for this algorithm.

Theorem 5. Assume function F : Rn → R is
locally Lipschitz and the level set {x ∈ Rn : f(x) ≤
f(x1)} is bounded. Then every cluster point of
{xk} is stationary for f .

Computational experiments:

We give a numerical comparison of two methods
for nonsmooth optimization:

• PBM - Proximal bundle method.

• NVM - Nonsmooth variable metric method.

These methods were tested by using a set of 25
dense nonsmooth test problems (subroutine TEST19
in www.cs.cas.cz/~luksan/test.html). The
test results are given in the following table, where
NI is the number of iterations, NE is the number of
function evaluations and F is the minimum function
value. The last row contains the summary values
and the total computational time (in seconds).



P NI NE PB - F NI NE NVM - F

1 42 45 .38117064D-06 34 34 .27598807D-10
2 18 20 .46154993D-08 15 16 .94894120D-10
3 31 33 1.9522245 17 17 1.9522247
4 14 16 2.0000000 17 17 2.0000000
5 17 19 -3.0000000 20 20 -2.9999996
6 13 15 7.2000014 19 19 7.2000000
7 11 12 -1.4142135 10 10 -1.4142133
8 66 68 -.99999940 55 59 -.99999247
9 13 15 -1.0000000 37 37 -.99999979

10 43 46 -7.9999999 14 14 -7.9999998
11 43 45 -43.999999 38 38 -43.999999
12 27 29 22.600162 40 40 22.600162
13 60 62 -32.348678 52 53 -32.348678
14 154 155 -2.9196975 32 32 -2.9197003
15 92 93 .55981566 81 83 .55981553
16 74 75 -.84140828 89 89 -.84140570
17 160 162 9.7857723 241 241 9.7858732
18 128 143 16.703861 88 89 16.703838
19 150 151 .16712381D-06 123 123 .14683215D-05
20 39 40 .12440972D-12 23 23 .00000000
21 245 251 -638530.48 357 359 -638564.91
22 52 53 .11665945D-11 358 360 .41534959D-05
23 19 20 .51313988D-08 65 66 .32729678D-05
24 27 28 .23412735D-07 67 67 .94570857D-06
25 428 450 32.349182 313 315 32.349159

Σ 1966 2046 TIME = 1.48 2205 2221 TIME = 0.93



Variable metric methods for large-scale
nonsmooth problems:

Standard variable metric updates are replaced by
special variable metric updates. But the condition
(g̃k)THk+1g̃k ≤ (g̃k)THkg̃k has to be satisfied
after the zero step.

Criterion (1/2)(g̃k)THkg̃k+α̃k ≤ ε frequently leads
to a premature termination. Therefore criterion
(1/2)(g̃k)T g̃k + α̃k ≤ 103 ε should be satisfied
simultaneously.

• Limited-memory variable metric methods in the
compact form for general nonsmooth problems
(Haarala + Miettinen + Mäkelä (to appear)).

• Shifted limited-memory variable metric methods
for general nonsmooth problems.

• Partitioned variable metric methods for partially
separable nonsmooth problems.

• Special methods for partially separable minimax
problems.

Shifted limited-memory VM methods:

We have tested a simple strategy. The shifted
limited-memory VM update is applied after every
descent step. It is also used after the zero step if
(g̃k)THk+1g̃k ≤ (g̃k)THkg̃k. In the opposite case,
matrix Hk is kept unchanged.



Partially separable nonsmooth problems:

F (x) =
m∑

i=1

fi(x)

where fi(x), 1 ≤ i ≤ m, are nonsmooth functions
depending on a small number of variables (ni - say)
(m is usually large). A typical example is

F (x) =
m∑

i=1

|fi(x)|

(sum of absolute values). Packed quantities f̂i :
Rni → R, x̂i ∈ Rni, ĝi ∈ Rni (gradients), Ĝi ∈
Rni×ni (Hessian matrices). Packed quasi-Newton
conditions B̂k+1

i ŝk
i = ŷk

i , where ŝk
i = x̂k+1

i −x̂k
i and

ŷk
i = ĝk+1

i − ĝk
i ⇒ packed quasi-Newton updates.

Direction vector:

Bksk = −g̃k, Bk =
m∑

i=1

Bk
i , g̃k =

m∑

i=1

g̃k
i .

Here Bk is a large sparse matrix. We use a sparse
Choleski (or Gill-Murray) decomposition Bk =
LkDk(Lk)T . Furthermore, wk = −(1/2)(sk)T g̃k +
α̃k.



Quadratic programming subproblem:

Matrix Hk is replaced by sparse Choleski (or Gill-
Murray) decomposition Bk = LkDk(Lk)T . Matrix
multiplications are replaced by solutions of systems
with triangular matrices (back elimination). Thus
we obtain Lagrange multipliers λ1, λ2, λ3. The
aggregate subgradients are obtained by the formula

g̃k+1
i = λk

1g
k
i + λk

2g
k+1
i + λk

3g̃
k
i , 1 ≤ i ≤ m

BFGS update after a descent step:

For 1 ≤ i ≤ m, we set

B̂
k+1
i = B̂

k
i +

ŷk
i (ŷ

k
i )

T

(ŝk
i )

T ŷk
i

− B̂k
i ŝk

i (B̂
k
i ŝk

i )
T

(ŝk
i )

T B̂k
i ŝk

i

, (ŝ
k
i )

T
ŷ

k
i > 0

B̂
k+1
i = B̂

k
i , (ŝ

k
i )

T
ŷ

k
i ≤ 0

Rank-1 update after a zero step:

For 1 ≤ i ≤ m, we set v̂k
i = ŷk

i − B̂k
i ŝk

i and

B̂
k+1
i = B̂

k
i +

v̂k
i (v̂

k
i )

T

(ŝk
i )

T v̂k
i

, (ŝ
k
i )

T
v̂

k
i > 0

B̂
k+1
i = B̂

k
i , (ŝ

k
i )

T
v̂

k
i ≤ 0



Computational experiments:

We give a numerical comparison of four methods:

• PBM - Proximal bundle method.

• NVM - Nonsmooth variable metric method.

• SNVM - Shifted limited-memory nonsmooth
variable metric method.

• PNVM - Partitioned nonsmooth variable metric
method.

These methods were tested by using the
set of 22 partially separable nonsmooth test
problems (sums of absolute values) with 50,
500 and 1000 variables (subroutine TEST15 in
www.cs.cas.cz/~luksan/test.html).

N MET NIT NEV NF TIME
50 PBM 55960 56854 3 29.61

NVM 28325 28405 - 4.06
SNVM 42243 42326 - 4.50
PNVM 13421 13557 - 2.53

500 NVM 91832 91973 2 1281.74
SNVM 88389 88409 3 119.91
PNVM 15294 15369 - 32.74

1000 PNVM 14951 14976 - 166.13



Partially separable minimax problems:

F (x) = max
1≤i≤m

fi(x)

where fi(x), 1 ≤ i ≤ m, are nonsmooth functions
depending on a small number of variables (ni -say)
(m is usually large).

• Let F (x) = fi(x) for some 1 ≤ i ≤ m. Then
any subgradient of fi(x) is a subgradient of
F (x).

• At an arbitrary point x ∈ Rn, we can easily found
a sparse subgradient g(x) = gi(x) containing
only ni nonzero elements.

• Quadratic programming subproblem

1
2
dTGkd + v

subject to

−αk
j + dTgj ≤ v, j ∈ Jk, −αk

a + dTgk
a ≤ v

has sparse constraints. If Gk = σkI, we obtain
a sparse quadratic programming subproblem.
Thus having an efficient sparse QP solver, we
can use the proximal bundle method.



Nonlinear programming methods:

Let
F (x) = max

1≤i≤m
|fi(x)|

where fi(x), 1 ≤ i ≤ m, are smooth functions
depending on a small number of variables. Then
minimization of F is equivalent to the sparse
nonlinear programming problem with n+1 variables
x ∈ Rn, z ∈ R: Minimize z subject to

−z ≤ fi(x) ≤ z, 1 ≤ i ≤ m

This problem can be solved by methods utilizing
sparsity (SQP, interior point, nonsmooth equation).

• Choosing a suitable initial value of z we obtain
a feasible starting point.

• Function F (x) is an ideal merit function for the
above problem.



Hybrid methods for large-scale nonlinear least
squares:

F (x) = fT (x)f(x) =
m∑

i=1

f2
i (x)

where fi(x), 1 ≤ i ≤ m, are smooth functions
depending on a small number of variables (ni -
say) (m is usually large). Jacobian matrix
J(x) = [Jij(x)] = [∂fi(x)/∂xj]. Gradient g(x) =
JT (x)f(x). Hessian matrix

G(x) = JT (x)J(x) +
m∑

i=1

fi(x)Gi(x)

(Gi(x) are Hessian matrices of fi(x), 1 ≤ i ≤ m.
Gauss-Newton matrix JT (x)J(x). Second-order
matrix C(x) = G(x) − JT (x)J(x). We assume
that matrices J(x), C(x) and G(x) are sparse.

Gauss-Newton method:

The Hessian matrix G is replaced by JTJ . Matrix
JTJ is frequently ill-conditioned (even singular) ⇒
trust - region realization. If the minimum value
F (x∗) is large (large residual problem), the Gauss-
Newton method can be inefficient.



Theorem 5. Let Fk → F ∗ = 0 Q-superlinearly.
Then (Fk − Fk+1)/Fk → 1. Let Fk → F ∗ > 0.
Then (Fk − Fk+1)/Fk → 0.

Philosophy of hybrid methods: The direction
vector is obtained by the trust-region strategy
using the quadratic model (1/2)dTBd + fTJd
and the constraint ‖d‖ ≤ ∆. If F − F+ > ϑF ,
then B+ = JT

+J+ (Gauss-Newton method). If
F − F+ ≤ ϑF , then B+ = JT

+J+ + C+, where
C+ is an approximation of the second order term.
Usually ϑ ≈ 10−4

Gauss-Newton method with the Newton
corrections:

In the first iteration we use matrix B = JTJ . In
the subsequent iterations, we set

B+ = JT
+J+ , F − F+ > ϑF

B+ = JT
+J+ +

m∑

k=1

f+
k G+

k , F − F+ ≤ ϑF

where J+ = J(x+) and f+
k = fk(x+), G+

k =
Gk(x+), 1 ≤ k ≤ m, (Gk(x+) is a difference
approximation of the Hessian matrix of fk(x+)).



Gauss-Newton method with the Marwil
corrections:

In the first iteration we use matrix B = JTJ . In
the subsequent iterations, we set

B+ = JT
+J+ , F − F+ > ϑF

B+ = PSPQG(JT
+J+) , F − F+ ≤ ϑF

where
PSW = (W + WT )/2

for a given square matrix W and

PQGB = PG(B + usT )

Here u ∈ Rn solves linear system Du = y − Bs
with diagonal matrix D such that

Dii =
∑

Bij 6=0

s2
j

and

(PGW )ij = Wij, Bij 6= 0

(PGW )ij = 0, Bij = 0

(gangster operator).



Computational experiments:

We give a numerical comparison of five methods:

• GN - Gauss-Newton method.

• GNN - Gauss-Newton method with the Newton
corrections.

• GNM - Gauss-Newton method with the Marwil
corrections.

• DN - Discrete Newton method.

• PVM - Partitioned variable metric method.

These methods were implemented using various
step-length (SL) strategies

• MS - Optimum locally constrained step of Moré
and Sorensen.

• DL - The dog-leg strategy of Powell.

• LS - Standard line-search.

These algorithms were tested by using a set
of 52 sparse least-squares test problems with
1000 variables (subroutines TEST15 and TEST18
in www.cs.cas.cz/~luksan/test.html). The
results are given in the following Table, where NIT
is the total number of iterations, NEV is the total
number of function evaluations, NF is the number
of failures and TIME is the total computational time
(in seconds).



SL MET NIT NEV NF TIME
MS GN 8542 8929 1 72.00

GNN 5499 5801 - 51.94
GNM 6434 6801 - 62.88
DN 7804 52398 1 202.07

DL GN 9244 9602 - 38.84
GNN 7767 8216 - 35.68
GNM 6851 7029 - 25.87
DN 10326 91181 - 171.98

LS PVM 12093 16285 1 99.17

Large-scale trust-region subproblems:

Let

Q(d) =
1
2
dTBd + gTd

We seek d ∈ Rn in such a way that ‖d‖ ≤ ∆
(Euclidean norm), ‖d‖ < ∆ ⇒ ‖Bd + g‖ ≤ ω‖g‖
with 0 ≤ ω < 1 and

−Q(d) ≥ σ‖g‖min
(

∆,
‖g‖
‖B‖

)

with 0 < σ ≤ 1/2. We assume that matrix B is
sparse.



Basic methods for sparse trust-region
subproblems:

• Optimum locally constrained step. Vector d ∈
Rn minimizes Q(d) over a trust-region defined
by constraint ‖d‖ ≤ ∆. Necessary and sufficient
conditions: (B + λI)d = −g, λ ≥ 0, B + λI
positive semidefinite, ‖d‖ ≤ ∆, λ(∆−‖d‖) = 0.
We solve nonlinear equation 1/‖d(λ)‖ = 1/∆
with (B +λI)d(λ) = −g by the Newton method
using sparse Choleski decomposition of B + λI
(Moré + Sorensen (1983)). This method is
very robust but requires 2-3 sparse Choleski
decompositions per iteration.

• Application of the conjugate gradient method.
If a negative curvature is indicated or the trust-
region is left, we stop on the boundary of the
trust-region (Steihaug (1983), Toint (1981)).
This method is very efficient especially when
suitable preconditioning is used.

• Dog-leg method. A simple combination of the
Cauchy step dC = (gTg/gTBg)g (the first CG
step) and the Newton step dN = −B−1g is
used (Powell (1970), Denis + Mei (1975)). This
is a very simple and efficient method which
requires only one sparse Choleski decomposition
per iteration.



• Multiple dog-leg method. Let m << n (usually
m = 5). Let dCG be the step obtained after
m CG iterations. If ‖dCG‖ < ∆, a combination
of dCG and dN = −B−1g is used (Steihaug
(1983)).

• Application of the Lanczos process. Initially,
the conjugate gradient algorithm is used (the
Lanczos tridiagonal matrix is constructed from
the CG coefficients). If a negative curvature is
indicated or the trust-region is left, we turn to
the Lanczos process. In this case, d = Zd̃, where
d̃ is obtained by minimizing quadratic function

Q̃(d̃) = (1/2)d̃TT d̃ + ‖g‖eT
1 d̃

subject to ‖d̃‖ ≤ ∆. Here T = ZTBZ is
the Lanczos tridiagonal matrix and ZTZ = I.
(Gould + Lucidi + Roma + Toint (1997)).
This method cannot be preconditioned, since
preconditioning changes the original trust-region
subproblem (dTCd ≤ ∆2 for precontitioner C).

• The shifted Steihaug-Toint method. The pre-
conditioned CG iterations are applied to system
(B+ λ̃I)d = −g, where λ̃ is an approximation of
the optimum Lagrange multiplier obtained from
a small-size Lanczos matrix.



The shifted Steihaug-Toint method:

Let m << n (usually m = 5). We use the m
Lanczos steps with matrix B and initial vector g to
obtain tridiagonal matrix T of order m. Then we
determine d̃ and λ̃ by minimizing

Q̃(d̃) = (1/2)d̃T d̃ + ‖g‖eT
1 d̃

subject to ‖d̃‖ ≤ ∆. The solution of this sub-
problem is inexpensive, since T is tridiagonal.
Obtaining λ̃, we apply the Steihaug-Toint conjugate
gradient method to system (B + λ̃I)d(λ̃) = −g
(instead of Bd = −g) and use the direction vector
d = d(λ̃). The following theorem guarantees
that ‖d‖ < ∆ if and only if the optimum locally
constrained step lies inside the trust region.

Theorem 6. Let λ̃ be the Lagrange multiplier
of the above small-size subproblem and λ be the
Lagrange multiplier obtained by the Moré-Sorensen
method. Then 0 ≤ λ̃ ≤ λ.

• Vector d(λ̃) is usually closer to the Moré-
Sorensen optimum locally constrained step in
comparison with that obtained by the Steihaug-
Toint method with the original matrix B.

• If λ̃ > 0, matrix B + λ̃I has smaller condition
number than B.



Computational experiments:

We give a numerical comparison of seven methods
for sparse trust-regions:

• MS - Optimum locally constrained step of Moré
and Sorensen.

• DL - The dog-leg strategy of Powell.

• MDL - The multiple dog-leg strategy (m = 5).

• ST - The basic Steihaug-Toint method.

• GLRT - The method of Gould, Lucidi, Roma and
Toint based on the Lanczos process.

• PST - Preconditioned Steihaug-Toint method
(with the incomplete Choleski preconditioner).

• PSST - Preconditioned shifted Steihaug-Toint
method (m = 5).

These algorithms were used for solving trust-
region subproblems arising in the realization of
the discrete Newton method. They were tested
by using a set of 22 sparse least-squares test
problems with 5000 variables (subroutine TEST14
in www.cs.cas.cz/~luksan/test.html). The
results are given in the following Table, where NIT
is the total number of iterations, NEV is the total
number of function evaluations, NCG is the total
number of the CG iterations and TIME is the total
computational time (in seconds).



N MET NIT NEV NCG TIME
1000 MS 1918 1955 - 4.65

DL 2515 2716 - 4.42
MDL 2292 2456 12203 4.61
ST 3329 3784 53573 8.20

GLRT 3107 3444 55632 8.53
PST 2631 2823 910 5.14
PSST 1999 2046 1161 4.25

5000 MS 8391 8566 - 2:02.44
DL 9657 10133 - 1:55.77

MDL 8938 9276 47236 2:02.84
ST 16894 19163 358111 6:04:42

GLRT 14679 16383 366695 6:41.45
PST 10600 11271 3767 2:25.42
PSST 8347 8454 4329 1:48.87

Conclusions:

• Direct methods MS and DL based on the sparse
Choleski decomposition are very efficient for our
set of test problems. Iterative methods require a
suitable preconditioning.

• The Moré-Sorensen strategy MS gives the
best approximation of the optimum locally
constrained step and decreases the number of
the major iterations.

• Our new strategy PSST can be efficiently
preconditioned. It gives a good approximation
of the optimum locally constrained step.


