Characterization of worst-case GMRES

Petr Tichý joint work with Vance Faber and Jörg Liesen

Institute of Computer Science AS CR

January 24–28, 2011, SNA 2011, Rožnov pod Radhoštěm, Czech Republic

GMRES

Consider a system of linear algebraic equations

$$\mathbf{A}x = b$$

 $\mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^n$.

For simplicity, $\ x_0 = \mathbf{0} \ \ \text{and} \ \ \|b\| = 1 \,.$ GMRES computes $\ \ x_k$,

$$x_k \in \mathcal{K}_k(\mathbf{A}, b)$$

such that

$$||r_k|| = ||b - \mathbf{A}x_k|| = \min_{p \in \pi_k} ||p(\mathbf{A})b||,$$

where $\pi_k = \{ p \text{ is a polynomial; } \deg(p) \le k; \ p(0) = 1 \}$.

Bounding the GMRES residual norm

$$\begin{split} \|r_k\| &= \min_{p \in \pi_k} \|p(\mathbf{A})b\| & \text{(GMRES)} \\ &\leq \max_{\|b\|=1} \min_{p \in \pi_k} \|p(\mathbf{A})b\| \equiv \psi_k(\mathbf{A}) & \text{(worst-case GMRES)} \\ &\leq \min_{p \in \pi_k} \|p(\mathbf{A})\| \equiv \varphi_k(\mathbf{A}) & \text{(ideal GMRES)} \\ &\leq 1 \,. \end{split}$$

Questions

$$||r_k|| \le \underbrace{\max_{\|b\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})b||}_{\psi_k(\mathbf{A})} \le \underbrace{\min_{p \in \pi_k} ||p(\mathbf{A})||}_{\varphi_k(\mathbf{A})}$$

- Relationship between ideal and worst case GMRES?
- Existence and uniqueness of the solution?
- Characterization of solutions? Understanding?
- How to approximate ideal/worst-case quantities?

Normal matrices

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^*, \quad \mathbf{Q}^* \mathbf{Q} = \mathbf{I}.$$

• [Greenbaum, Gurvits '94; Joubert '94] showed:

$$\max_{\|b\|=1} \min_{p \in \pi_k} \|p(\mathbf{A})b\| = \min_{p \in \pi_k} \|p(\mathbf{A})\|$$

- Is the solution unique? Yes
- Which (known) approximation problem is solved?

$$\min_{p \in \pi_k} \|p(\mathbf{A})\| = \min_{p \in \pi_k} \|\mathbf{Q}p(\mathbf{\Lambda})\mathbf{Q}^*\| = \min_{p \in \pi_k} \max_{\lambda_i} |p(\lambda_i)|.$$

• How to approximate ideal/worst-case quantities?

[Greenbaum '79; Liesen, T. '04]

GMRES convergence for nonnormal matrices

Any Nonincreasing Convergence Curve Is Possible for GMRES

Theorem

[Greenbaum, Pták, Strakoš '96]

Given a nonincreasing sequence

$$f(0) \ge f(1) \ge \dots \ge f(n-1) > 0$$

and a set of nonzero complex numbers $\{\lambda_1,\dots,\lambda_n\}$, there exists a matrix $\mathbf A$ with eigenvalues $\lambda_1,\dots,\lambda_n$ and a right-hand side b with $\|b\|=f(0)$ such that the residuals r_k of GMRES $(\mathbf A,b)$ satisfy

$$||r_k|| = f(k), \qquad k = 1, 2, \dots, n-1.$$

Nonnormal matrices – Toh's example

Worst-case GMRES can be very different from ideal GMRES!

Consider the 4 by 4 matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \epsilon \\ & -1 & \epsilon^{-1} \\ & & 1 & \epsilon \\ & & & -1 \end{bmatrix}, \quad \epsilon > 0.$$

Then, for $\,k=3\,$,

$$0 \stackrel{\epsilon \to 0}{\longleftarrow} \psi_k(\mathbf{A}) < \varphi_k(\mathbf{A}) = \frac{4}{5}.$$

[Toh '97; another example in Faber, Joubert, Knill, Manteuffel '96]

Uniqueness

Let ${\bf A}$ be a nonsingular matrix. Then the kth ideal GMRES polynomial $p_* \in \pi_k$ that solves the problem

$$\min_{p \in \pi_k} \| p(\mathbf{A}) \|$$

is unique.

[Greenbaum, Trefethen '94]

Corrected proof and generalization to

$$\min_{p \in \mathcal{P}_m} \| f(\mathbf{A}) - p(\mathbf{A}) \|$$

can be found in [Liesen, T. '09].

Notation:

 p_* ... the kth ideal GMRES polynomial for ${\bf A}$,

 $p_*(\mathbf{A})$... the kth ideal GMRES matrix of \mathbf{A} .

Matrix approximation problems in spectral norm and characterization of Ideal GMRES

Ideal GMRES is a special case of the problem

$$\min_{\mathbf{M} \in \mathbb{A}} \| \mathbf{B} - \mathbf{M} \| = \| \mathbf{B} - \mathbf{A}_* \|$$

 A_* is called a spectral approximation of B from the subspace A.

In our case,

$$\min_{p \in \pi_k} \|p(\mathbf{A})\| = \min_{\alpha_i \in \mathbb{C}} \|\mathbf{I} - \sum_{j=1}^k \alpha_j \mathbf{A}^j\|,$$

i.e.
$$\mathbf{B} = \mathbf{I}$$
, $\mathbb{A} = \operatorname{span}\{\mathbf{A}, \dots, \mathbf{A}^k\}$.

General characterization by [Lau and Riha, 1981] and [Zietak, 1993, 1996] \rightarrow based on the Singer's theorem [Singer, 1970].

Characterization of Ideal GMRES

by Faber, Joubert, Knill, Manteuffel '96

Given a polynomial $q \in \pi_k$ and **A**, define the set

$$\Omega_k(q) \equiv \left\{ \begin{bmatrix} w^*q(\mathbf{A})^*\mathbf{A}w \\ \vdots \\ w^*q(\mathbf{A})^*\mathbf{A}^kw \end{bmatrix} : w \in \Sigma(q(\mathbf{A})), \|w\| = 1 \right\}$$

where $\Sigma(\mathbf{B})$ is the span of maximal right singular vectors of \mathbf{B} .

Theorem

[Faber, Joubert, Knill, Manteuffel '96]

 $h \in \pi_k$ is the kth ideal GMRES pol. of $\mathbf{A} \iff \mathbf{0} \in \text{cvx}(\Omega_k(h))$.

Let p_* be the kth ideal GMRES polynomial of \mathbf{A} . If $\Omega_k(p_*)$ is convex then $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$.

[Faber, Joubert, Knill, Manteuffel '96]

Worst-case GMRES

For a given k, there exists a right hand side b such that

$$||r_k|| = \min_{p \in \pi_k} ||p(\mathbf{A})b|| = \max_{\|v\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})v||$$

Theorem

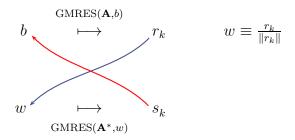
[Zavorin '02; Faber, T., Liesen '11]

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Then GMRES achieves the same worst-case behavior for \mathbf{A} and \mathbf{A}^* at every iteration.

- ullet [Zavorin '02] o only for diagonalizable matrices.
- ullet [Faber, T., Liesen '11] \to for all nonsingular matrices.

Cross equality for worst-case GMRES vectors

Given: $\mathbf{A} \in \mathbb{C}^{n \times n}$, k, a worst-case starting vector b



It holds that

$$||s_k|| = ||r_k|| = \psi_k(\mathbf{A}), \qquad b = \frac{s_k}{||s_k||}.$$

[Zavorin '02; Faber, T., Liesen '11]

A new characterization of worst-case GMRES

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be given. For $v \in \mathbb{R}^n$ and $c \in \mathbb{R}^k$ define

$$f(c,v) = \|v - K(v)c\|^2, \qquad F(c,v) \equiv \frac{f(c,v)}{\|v\|^2},$$

$$K(v) \equiv [\mathbf{A}v, \mathbf{A}^2v, \dots, \mathbf{A}^kv]$$
. Denote $S \equiv \{u \in \mathbb{R}^n : ||u|| = 1\}$.

We want to characterize the solution of the problem

$$\max_{v \in S} \min_{c \in \mathbb{R}^k} f(c, v) . \tag{1}$$

Theorem

[Faber, T., Liesen '11]

 $ilde{c} \in \mathbb{R}^k$ and $ilde{v} \in S$ that solve the problem (1) satisfy

$$\frac{\partial F}{\partial c}(\tilde{c}, \tilde{v}) = 0, \qquad \frac{\partial F}{\partial v}(\tilde{c}, \tilde{v}) = 0,$$

i.e., (\tilde{c}, \tilde{v}) is a stationary point of the function F(c, v).

Consequences of the new characterization

Let $b \in S$ be a worst-case starting vector and

$$r_k = p_k(\mathbf{A})b, \qquad ||r_k|| = \psi_k(\mathbf{A})$$

the corresponding GMRES residual vector. Then

• b is a right singular vector of $p_k(\mathbf{A})$, i.e.

$$\psi_k(\mathbf{A})^2 b = p_k(\mathbf{A}^T) p_k(\mathbf{A}) b.$$

- p_k is also a worst-case GMRES polynomial for \mathbf{A}^T .
- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff a worst-case starting vector b is a maximal right singular vector of $p_k(\mathbf{A})$.
- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff the points $(\tilde{c}, \tilde{v}) \in \mathbb{R}^k \times S$ that solve

$$\max_{v \in S} \min_{c \in \mathbb{R}^k} f(c, v) .$$

are also the saddle points of f(c, v) in $\mathbb{R}^k \times S$.

[Faber, T., Liesen '11]

Worst-case GMRES polynomials need not be unique

Theorem

[Faber, T., Liesen '11]

A worst-case GMRES polynomial for the Toh matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \epsilon & & \\ & -1 & \epsilon^{-1} & \\ & & 1 & \epsilon \\ & & & -1 \end{bmatrix}, \quad \epsilon > 0,$$

and the step k=3 is **not unique**.

Example: If $\varepsilon = 0.1$, then both

$$-39.9^{-1}(z-1.181)(z+0.939)(z+35.96)$$

and

$$39.9^{-1}(z+1.181)(z-0.939)(z-35.96)$$

are worst-case GMRES polynomials of A.

Summary on worst-case GMRES

- Worst-case starting vectors satisfy the cross equality.
- Worst-case GMRES data (\tilde{c}, \tilde{v}) are stationary points of the function F(c, v).
- **3** Worst-case starting vector b is a right singular vector of the corresponding GMRES matrix $p_k(\mathbf{A})$.
- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff b is a maximal right singular vector of $p_k(\mathbf{A})$.
- Worst-case GMRES polynomials need not be unique.

Thank you for your attention!

References

- V. FABER, P. TICHÝ AND J. LIESEN, [Ideal and Worst-case GMRES: Characterization and examples, in preparation, (2011).]
- J. LIESEN AND P. TICHÝ, [On best approximations of polynomials in matrices in the matrix 2-norm, SIMAX, 31 (2009), pp. 853–863.]
- P. TICHÝ, J. LIESEN, AND V. FABER, [On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block, ETNA, 26 (2007), pp. 453–473.]
- K. C. TOH, [GMRES vs. ideal GMRES, SIMAX, 18 (1997), pp. 30–36.]
- V. FABER, W. JOUBERT, E. KNILL, AND T. MANTEUFFEL, [Minimal residual method stronger than polynomial preconditioning, SIMAX, 17 (1996), pp. 707–729.]
- A. GREENBAUM AND L. N. TREFETHEN, [GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SISC, 15 (1994), pp. 359–368.]