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Main points

● In iterative methods applied to linear algebraic problems, computational
cost of finding sufficiently accurate approximation to the exact solution
heavily depends on the particular data.

● Any evaluation of cost in iterative computations must take into account
effects of rounding errors.

● In mathematical modeling of real world phenomena, the accuracy
of the computed approximation must be related to the underlying
mathematical model, i.e., its evaluation can not be restricted to algebra.
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Conjugate Gradients: A HPD, x0, r0, p0 = r0

‖x − xn‖A = min
u∈x0+Kn(A,r0)

‖x − u‖A

Kn(A, r0) ≡ span {r0, Ar0, · · · , An−1r0}

For n = 1, 2, . . .

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1)

xn = xn−1 + γn−1 pn−1

rn = rn−1 − γn−1 Apn−1

δn = (rn, rn)/(rn−1, rn−1)

pn = rn + δn pn−1.

Hestenes and Stiefel (1952)
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CG and Gauss-Christoffel quadrature

∫ U

L

(λ)−1 dω(λ) =
n
∑

i=1

ω
(n)
i

(

θ
(n)
i

)−1

+ Rn(f)

‖x − x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x − xn‖
2
A

‖r0‖2

n−1
∑

j=0

γj‖rj‖
2

CG : model reduction matching 2n moments

Golub, Meurant, Reichel, Boley, Gutknecht, Saylor, Smolarski, ......... ,
Meurant and S (2006), Golub and Meurant (2010), S and Tichý (2011)
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Outline

1. Linear bounds for the nonlinear method?

2. Do we know how to evaluate the computational error?
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Thanks

André Gaul,
Jan Papež,
Tomáš Gergelits.
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1 Linear bounds for the nonlinear method?

‖x − xn‖A = min
p(0)=1

deg(p)≤n

‖A1/2p(A)(x − x0)‖

= min
p(0)=1

deg(p)≤n

‖Y p(Λ)Y ∗A1/2(x − x0)‖

≤

(

min
p(0)=1

deg(p)≤n

max
1≤j≤N

|p(λj)|

)

‖x − x0‖A

Using the shifted Chebyshev polynomials on the interval [λ1, λN ] ,

‖x − xn‖A ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)n

‖x − x0‖A .
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1 Linear bounds for the nonlinear method?

This bound should not be used in connection with the behaviour of CG
unless κ(A) = λN/λ1 is really small or unless the (very special)
distribution of eigenvalues makes it relevant.

In particular, one should be very careful while using it as a part of a
composite bound in the presence of the large outlying eigenvalues

min
p(0)=1

deg(p)≤n−s

max
1≤j≤N

| qs(λj) p(λj) | ≤ max
1≤j≤N

|qs(λj)|

∣

∣

∣

∣

Tn−s(λj)|

Tn−s(0)

∣

∣

∣

∣

< max
1≤j≤N−s

∣

∣

∣

∣

Tn−s(λj)

Tn−s(0)

∣

∣

∣

∣

.

Meinardus (Chebyshev polynomial) bound on the interval [λ1, λN−s]
is then valid after s initial steps.
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1 The polynomial qs(λ) has desired roots
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The Chebyshev polynomials T4(λ), T5(λ), and the polynomial q1(λ) ,
q1(0) = 1 having the single root at the large outlying eigenvalue.
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1 Quote (2009, ... ): the desired accuracy ǫ

Theorem. After

k = s +

⌈

ln(2/ǫ)

2

√

λN−s

λ1

⌉

iteration steps the CG will produce the approximate solution xn

satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

This recently republished and used statement is in finite precision
arithmetic not true at all.
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1 Mathematical model of FP CG

CG in finite precision arithmetic can be seen as the exact arithmetic CG
for the problem with the slightly modified distribution function with larger
support, i.e., with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... ,
Druskin, Knizhnermann, Zemke, Wülling, Meurant, ...
Recent review and update in Meurant and S, Acta Numerica (2006).

Fundamental consequence:

In FP computations, the composite convergence bounds eliminating in
exact arithmetic large outlying eigenvalues at the cost of one iteration per
eigenvalue do not, in general, work.
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1 Axelsson (1976), quote Jennings (1977)

p. 72: ... it may be inferred that rounding errors ... affects the convergence
rate when large outlying eigenvalues are present.
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1 The composite bounds completely fail
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Composite bounds with varying number of outliers (left)
and the failure of the composed bounds in FP CG (right),

Gergelits (2011).
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2 PDE discretization and matrix computations

−∆u = 16η1η2(1 − η1)(1 − η2)

on the unit square with zero Dirichlet boundary conditions. Galerkin finite
element method (FEM) discretization with linear basis functions on a
regular triangular grid with the mesh size h = 1/(m + 1), where m is the
number of inner nodes in each direction. Discrete solution

uh =
N
∑

j=1

ζj φj(η1, η2) .

Up to a small inaccuracy proportional to machine precision,

‖∇(u − u
(n)
h )‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − u

(n)
h )‖2

= ‖∇(u − uh)‖2 + ‖x − xn‖
2
A .
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2 Solution and the discretization error
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and the MATLAB trisurf plot of the discretization error u − uh (right).
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2 Algebraic and total errors
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‖∇(u − u
(n)
h )‖2 = ‖∇(u − uh)‖2 + ‖x − xn‖

2
A

= 5.8444e − 03 + 1.4503e − 05 .
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2 Algebraic and total errors
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2 One can see 1D analogy
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The discretization error (left),
the algebraic and the total error (right),

Papež (2011).
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Challenges

● Using a formula from literature requires understanding of the whole
context. Rounding errors can not be ignored.

● Numerical PDE: Matrix computations do not provide exact results.
Verification in scientific and engineering computing should take this into
account. Whenever possible, one should aim at the local distribution of
the total error. Norms can hide important things.

● Algebra: Error should be evaluated in the function space. The backward
error analysis and perturbation theory seems not sufficient.

● Both: Local distribution of the discretization and the algebraic errors can
be very different. The algebraic computation can not be considered a
black box part of the whole solution process. It must be integrated (from
both sides) into it.

Liesen and S (2011), Liesen and S (201X)
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Thank you for your kind patience
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