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Main point

In mathematical modeling of real world phenomena, the computed
algebraic approximations must be related to the underlying mathematical
model.

Accuracy of algebraic computations can not be evaluated using purely
algebraic tools.
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Thanks

André Gaul,
Jan Papež.
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Model boundary value problem

−∆u = 16η1η2(1 − η1)(1 − η2)

on the unit square with zero Dirichlet boundary conditions. Galerkin finite
element method (FEM) discretization with linear basis functions on the
regular triangular grid with the mesh size h = 1/(m + 1), where m is the
number of inner nodes in each direction. Discrete (piecewise linear)
solution

uh =
N∑

j=1

ζj φj(η1, η2) .

Computational error

u − u
(n)
h

︸ ︷︷ ︸

total error

= (u − uh)
︸ ︷︷ ︸

discretisation error

+ (uh − u
(n)
h )

︸ ︷︷ ︸

algebraic error

.
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Algebraic error?

Should we solve the discretized linear algebraic system accurately in the
presence of modeling (not mentioned above) and discretization errors?

No, it is enough to assure that the algebraic error does not significantly
affect the whole picture.

How to do it? What does it mean that the algebraic approximation is
accurate enough?

Our first thought is to apply backward error theory.
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Backward error

Giving an approximation xn , how close is the perturbed problem

(A + ∆A) xn = b + ∆b

which is solved exactly by xn , to the original problem Ax = b , which is
solved approximately by xn ? Normwise relative backward error

β(xn) ≡ min {β : (A + ∆A) xn = b + ∆b , ‖∆A‖ ≤ β‖A‖ , ‖∆b‖ ≤ β‖b‖ } ,

satisfies

β(xn) =
‖b − Axn‖

‖b‖ + ‖A‖ ‖xn‖
=

‖∆Amin‖

‖A‖
=

‖∆bmin‖

‖b‖
.

Componentwise relative backward error takes care for the structure.
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Alternative: Energy norm of the error

Theorem

Up to a small inaccuracy proportional to machine precision,

‖∇(u − u
(n)
h )‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − u

(n)
h )‖2

= ‖∇(u − uh)‖2 + ‖x − xn‖
2
A .

Using zero Dirichlet boundary conditions,

‖∇(u − uh)‖2 = ‖∇u‖2 − ‖∇uh‖
2 .
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Energy norm of the error and CG

Theorem shows that the (squared) energy norm of the total error u− u
(n)
h

consists of two distinct components:

● the (squared) energy norm of the discretization error u − uh,

● the (squared) energy norm of the algebraic error uh − u
(n)
h .

In solution of real world problems errors in all stages of the solution
process should be in balance.

CG is linked with the Galerkin FEM discretization.
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Solution and the discretization error
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Exact solution u of the Poisson model problem (left)
and the MATLAB trisurf plot of the discretization error u − uh (right).
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Algebraic and total errors
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Algebraic error uh − u
(n)
h (left) and the MATLAB trisurf plot of the total

error u − u
(n)
h (right)

‖∇(u − u
(n)
h )‖2 = ‖∇(u − uh)‖2 + ‖x − xn‖

2
A

= 5.8444e − 03 + 1.4503e − 05 .
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Algebraic and total errors
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One can see 1D analogy
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Papež (2011).
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Challenges

● Using a formula from literature requires understanding of the whole
context.

● Numerical PDE: Matrix computations do not provide exact results.
Verification in scientific and engineering computing should take this into
account. Whenever possible, one should aim at the local distribution of
the total error. Norms can hide important things.

● Algebra: Error should be evaluated in the function space. The backward
error analysis and perturbation theory seems not sufficient.

● Both: Local distribution of the discretization and the algebraic errors can
be very different. The algebraic computation can not be considered a
black box part of the whole solution process. It must be integrated (from
both sides) into it.

Liesen and S (2011), Liesen and S (2012?)
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Thank you for your kind patience
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