ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING

Miroslav Rozložník

joint work with Jiří Kopal, Alicja Smoktunowicz and Miroslav Tůma

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

A symmetric positive definite $m \times m$ matrix

$Z^{(0)} = [z^{(0)}_1, \ldots, z^{(0)}_n]$ full column rank $m \times n$ matrix

A-orthogonal basis of $\text{span}(Z^{(0)})$: $Z = [z_1, \ldots, z_n]$ - $m \times n$ matrix

having orthogonal columns with respect to the inner product $\langle \cdot, \cdot \rangle_A$

U upper triangular $n \times n$ matrix

\[
Z^{(0)} = ZU, \quad Z^T AZ = I
\]

\[
(Z^{(0)})^T AZ^{(0)} = U^T U
\]
\[
Z^T A Z = (A^{1/2} Z)^T (A^{1/2} Z) = I \implies \\
A^{1/2} Z \text{ is orthogonal with respect to the standard inner product} \\
A^{1/2} Z^{(0)} = (A^{1/2} Z) U \text{ is a standard QR factorization} \\
\kappa(Z) \ll \kappa^{1/2}(A) \\
\kappa(U) = \kappa(A^{1/2} Z^{(0)}) \leq \kappa^{1/2}(A) \kappa(Z^{(0)}) \\
\text{particular case } Z^{(0)} = I: Z = U^{-1} \text{ upper triangular } m \times n \text{ matrix} \\
\kappa(U) = \kappa(Z)
\]
Approximation properties of orthogonal factor

\[Z^T AZ = I \]

\[ZZ^T = Z^{(0)} U^{-1} U^{-T} (Z^{(0)})^T = Z^{(0)} [(Z^{(0)})^T AZ^{(0)}]^{-1} (Z^{(0)})^T \]

\[AZZ^T : \text{ orthogonal projector onto } R(AZ^{(0)}) \text{ and orthogonal to } R(Z^{(0)}) \]

\[ZZ^T A : \text{ orthogonal projector onto } R(Z^{(0)}) \text{ and orthogonal to } R(AZ^{(0)}) \]

important case \(Z^{(0)} \) square and nonsingular: inverse factorization

\[ZZ^T = A^{-1} \]
Important application: approximate inverse preconditioning

\[\tilde{Z} \] gives the approximate inverse \(\tilde{Z}\tilde{Z}^T \approx A^{-1} \]

\[Ax = b \]

\[\tilde{Z}^T A\tilde{Z} y = \tilde{Z}^T b \], where \(x = \tilde{Z} y \)

\(\tilde{U} \) approximates the Cholesky factor of \((Z^{(0)})^T AZ^{(0)} \)

the loss of orthogonality \(\| \tilde{Z}^T A\tilde{Z} - I \| \)
the factorization error \(\| Z^{(0)} - \tilde{Z}\tilde{U} \| \)
Cholesky factorization error \(\| (Z^{(0)})^T AZ^{(0)} - \tilde{U}^T \tilde{U} \| \)
Problem 1a (inverse Hilbert matrix)

\[
\|I - ZTAZ\| \quad \text{condition number (A)}
\]

\[
\|A\| = 0
\]

\[
\|A\| = 1 \times 10^{-14}
\]

\[
\|A\| = 1 \times 10^{-12}
\]

\[
\|A\| = 1 \times 10^{-10}
\]

\[
\|A\| = 1 \times 10^{-8}
\]

\[
u \times \|A\| \times \|Z\|^2 \times \|XTX\|
\]

\[
1 \times 10^{-14} \times \|A\| \times \|Z\|^2 \times \|XTX\|
\]

\[
1 \times 10^{-12} \times \|A\| \times \|Z\|^2 \times \|XTX\|
\]

\[
1 \times 10^{-10} \times \|A\| \times \|Z\|^2 \times \|XTX\|
\]

\[
1 \times 10^{-8} \times \|A\| \times \|Z\|^2 \times \|XTX\|
\]
1. spectral decomposition $A = V\Lambda V^T$
2. QR factorization $\Lambda^{1/2}V^TZ^{(0)} = QU$
3. orthogonal-diagonal-orthogonal matrix multiplication $Z = VA^{-1/2}Q$

backward stable eigendecomposition + backward stable QR:

$$\|\tilde{Z}^TA\tilde{Z} - I\| \leq O(\nu)\|A\|\|\tilde{Z}\|^2$$
Gram-Schmidt orthogonalization

\[z_i^{(j)} = z_i^{(j-1)} - \alpha_{ji} z_j \]

\[z_i = \frac{z_i^{(i-1)}}{\alpha_{ii}}, \quad \alpha_{ii} = \|z_i^{i-1}\|_A \]

modified Gram-Schmidt (MGS) algorithm \equiv SAINV algorithm:

\[\alpha_{ji} = \langle z_i^{(j-1)}, z_j \rangle_A \]

classical Gram-Schmidt (CGS) algorithm:

\[\alpha_{ji} = \langle z_i^{(0)}, z_j \rangle_A \]

AINV algorithm: oblique projections

\[\alpha_{ji} = \frac{\langle z_i^{(j-1)}, z_j^{(0)} \rangle_A}{\alpha_{jj}} \]
Local errors in the (modified) Gram-Schmidt process

\[z_i^{(j)} = z_i^{(j-1)} - \alpha_{ji} \bar{z}_j \]

\[\alpha_{ji} = \langle z_i^{(j-1)}, \bar{z}_j \rangle_A \]

\[\langle z_i^{(j)}, \bar{z}_j \rangle_A = (1 - \| \bar{z}_j \|_A^2) \langle z_i^{(j-1)}, \bar{z}_j \rangle_A \]

\[z_i^{(j)} = z_i^{(j-1)} - \bar{\alpha}_{ji} z_j \]

\[\bar{\alpha}_{ji} = \text{fl}[\langle z_i^{(j-1)}, z_j \rangle_A] \]

\[\langle z_i^{(j)}, z_j \rangle_A = \left(\text{fl}[\langle z_i^{(j-1)}, z_j \rangle_A] - \langle z_i^{(j-1)}, z_j \rangle_A \right) \| z_j \|_A^2 \]
Loss of orthogonality in the MGS algorithm:

\[\mathcal{O}(u) \kappa(A) \kappa(A^{1/2}Z^{(0)}) < 1 \]

\[\|I - \tilde{Z}^T A \tilde{Z}\| \leq \frac{\mathcal{O}(u) \|A\| \|\tilde{Z}\|^2 \kappa(A^{1/2}Z^{(0)})}{1 - \mathcal{O}(u) \|A\| \|\tilde{Z}\|^2 \kappa(A^{1/2}Z^{(0)})} \]
Loss of orthogonality in the CGS and AINV algorithms

\[
O(u) \kappa(A) \kappa(A^{1/2}Z^{(0)}) \kappa(Z^{(0)}) < 1
\]

\[
\|I - \tilde{Z}^T A \tilde{Z}\| \leq \frac{O(u) \|A\|^{1/2} \|\tilde{Z}\| \kappa(A^{1/2}Z^{(0)}) \kappa^{1/2}(A) \kappa(Z^{(0)})}{1 - O(u) \|A\|^{1/2} \|\tilde{Z}\| \kappa(A^{1/2}Z^{(0)}) \kappa^{1/2}(A) \kappa(Z^{(0)})}
\]
Classical Gram-Schmidt (CGS2) with reorthogonalization

\[z^{(1)}_i = z^{(0)}_i - \sum_{j=1}^{i-1} \alpha^{(1)}_{ji} z_j, \quad \alpha^{(1)}_{ji} = \langle z^{(0)}_i, z_j \rangle_A \]

\[z^{(2)}_i = z^{(1)}_i - \sum_{j=1}^{i-1} \alpha^{(2)}_{ji} z_j, \quad \alpha^{(2)}_{ji} = \langle z^{(1)}_i, z_j \rangle_A \]

\[z_i = z^{(2)}_i / \alpha_{ii}, \quad \alpha_{ii} = \| z^{(2)}_i \|_A \]

\[O(u) \kappa^{1/2}(A) \kappa(A^{1/2} Z^{(0)}) < 1 \]

\[\| I - \bar{Z}^T A \bar{Z} \| \leq O(u) \| A \| \| \bar{Z} \|^2 \]
Local errors in the inner product and normalization

general positive definite A:

$$|\text{fl}[\langle z_i^{(j-1)}, z_j \rangle_A] - \langle z_i^{(j-1)}, z_j \rangle_A| \leq O(u)\|A\|\|z_i^{(j-1)}\|\|z_j\|$$

$$|1 - \|z_j\|_A^2| \leq O(u)\|A\|\|z_j\|^2$$

diagonal (weight matrix) A:

$$|\text{fl}[\langle z_i^{(j-1)}, z_j \rangle_A] - \langle z_i^{(j-1)}, z_j \rangle_A| \leq O(u)\|z_i^{(j-1)}\|_A\|z_j\|_A$$

$$|1 - \|z_j\|_A^2| \leq O(u)$$
A diagonal similar to orthogonalization with the standard inner product

MGS algorithm:

\[\mathcal{O}(u) \kappa(A^{1/2}Z(0)) < 1 \]
\[\|I - \bar{Z}^T A \bar{Z}\| \leq \frac{\mathcal{O}(u) \kappa(A^{1/2}Z(0))}{1 - \mathcal{O}(u) \kappa(A^{1/2}Z(0))} \]

CGS and AINV algorithms:

\[\mathcal{O}(u) \kappa^2(A^{1/2}Z(0)) < 1 \]
\[\|I - \bar{Z}^T A \bar{Z}\| \leq \frac{\mathcal{O}(u) \kappa^2(A^{1/2}Z(0))}{1 - \mathcal{O}(u) \kappa^2(A^{1/2}Z(0))} \]

CGS with reorthogonalization:

\[\mathcal{O}(u) \kappa(A^{1/2}Z(0)) < 1 \]
\[\|I - \bar{Z}^T A \bar{Z}\| \leq \mathcal{O}(u) \]

[weighted least squares problem; MGS: Gulliksson, Wedin 1992, Gulliksson 1995]
Numerical experiments - four extremal cases

1. $\kappa^{1/2}(A) \ll \kappa(A^{1/2}Z^{(0)})$

2. $\kappa(A^{1/2}Z^{(0)}) \ll \kappa^{1/2}(A)$

3. A positive diagonal

4. $Z^{(0)} = I$
Problem 9 (Hilbert matrix), $\kappa(A) = 1.2e5$

Loss of orthogonality $||I-Z^T AZ||$

Condition number $(A^{1/2} Z(0))$

Orthogonalization with a non-standard inner product

Miroslav Rozložník (ICS CAS)
Problem 11 (Hilbert matrix)

Loss of orthogonality $\|I - Z^T AZ\|

condition number (A)

MGS
CGS
CGS2
AINV
EIG

$u \kappa(A)$
$u \kappa(A) \kappa(A^{1/2}Z(0))$
$u \kappa(A) \kappa(A^{1/2}Z(0)) \kappa(Z^0)$

Orthogonalization with a non-standard inner product

Miroslav Rozložník (ICS CAS)
Orthogonalization with a non-standard inner product

Problem 3 (diagonal matrix)

Loss of orthogonality $\|I - Z^T A Z\|$
Problem 6 (Hilbert matrix)

Loss of orthogonality $||I-Z^T AZ||$

condition number (A)

MGS
CGS
CGS2
AINV
EIG

u κ(A)
κ(A 1/2Z(0)) κ(Z 0)

Miroslav Rozložník (ICS CAS)
Orthogonalization with a non-standard inner product
10th IMACS 19 / 20
Thank you for your attention!!!