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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ (z\ _ [(f
BT o)\y) \o)-

> A s a square n X n nonsingular (symmetric positive definite) matrix,

» B is a rectangular n x m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained
optimization etc. [Benzi,Golub, Liesen, 2005].

Numerous schemes: block diagonal preconditioners, block triangular preconditioners,
constraint preconditioning, Hermitian/skew-Hermitian preconditioning and other
splittings, combination preconditioning

References: [Bramble and Pasciak, 1988], [Silvester and Wathen, 1993, 1994], [Elman,
Silvester and Wathen, 2002, 2005], [Kay, Loghin and Wathen, 2002], [Keller, Gould
and Wathen 2000], [Perugia, Simoncini, Arioli, 1999], [Gould, Hribar and Nocedal,
2001], [Stoll, Wathen, 2008], ...



Symmetric indefinite system, symmetric positive definite preconditioner

(A B\ . o1
A-(BT 0>~9>_5RR

A symmetric indefinite, P positive definite (R nonsingular)

(RTAR) R @) =R T (5)

R-TAR™! is symmetric indefinite!



Iterative solution of preconditioned (symmetric indefinite) system

» Preconditioned MINRES is the MINRES on R~T AR~1, minimizes the
P~1 = R-1R"T_norm of the residual on K, (P~ 1A, P~1rg)
= H-MINRES on P~1A with 3 = P~1
» CG applied to indefinite system with R=T AR1:
CG iterate exists at least at every second step (tridiagonal form T3, is nonsingular

at least at every second step)
[Paige, Saunders, 1975]

> peak/plateau behavior:
CG converges fast — MINRES is not much better than CG
CG norm increases (peak) — MINRES stagnates (plateau)
[Greenbaum, Cullum, 1996]



Symmetric indefinite system, indefinite or nonsymmetric preconditioner

P symmetric indefinite or nonsymmetric

()7 ()
o ()-0

P~1A and AP! are nonsymmetric!



Iterative solution of preconditioned nonsymmetric system, positive definite
inner product

> The existence of a short-term recurrence solution methods to solve the system
with P~1 A or AP~ for arbitrary right-hand side vector
[Faber, Manteuffel 1984, Liesen, Strako$, 2006]
» Matrices P~1A or AP~! can be symmetric (self-adjoint) in a given inner product
induced by the symmetric positive definite J{. Then three term-recurrence
method can be applied

H(PIA) = (PLATH < (P TH)TA = AP-TH)
HAP) = (AP H)TH = HAP ! = PTAK

> H(P~1A) symmetric indefinite: MINRES applied to H(P~1.A) and
preconditioned with JH
= J-MINRES on P~1A

> H(P~LA) positive definite: CG applied to H(P~1.A) and preconditioned with
F; works on K, (P71 A, P~1rg) and can be seen as the CG scheme applied to

P~ A with a nonstandard inner product
=3-CGon P 1A



Iterative solution of preconditioned nonsymmetric system, symmetric
bilinear form

> if there exists a symmetric indefinite J{ such that
H(PLA) = (PLA)TH = [3((P~1A)T
(AP DTH]T = FH(AP1) = (AP V)T %
is symmetric indefinite
MINRES method applied to (P~ 1A) or H(AP~1)
» symmetric indefinite preconditioner 7 = P~1 = (P~1)T so that
(P P)A = AP (P1)
(PHTAP = PlAP!
right vs left preconditioning for symmetric P
P LK, (AP L, rg) = Kn(P7LA, P 1ry)
(AP = (P~1)TA = P14



Iterative solution of preconditioned nonsymmetric system, symmetric
bilinear form

» JH-symmetric variant of the nonsymmetric Lanczos process:
—1 —I\T T
.A:P Vn — Vn—i—lTn-i-l,n: (.A{.P ) Wn — Wn+1Tn+1,n
WV, =1 = W, = HV,
[Freund, Nachtigal, 1995]
» JH-symmetric variant of Bi-CG
H-symmetric variant of QMR = ITFQMR
[Freund, Nachtigal, 1995]
» QMR-from-BiCG:
H-symmetric Bi-CG + QMR-smoothing
—> H-symmetric QMR
[Freund, Nachtigal, 1995, Walker, Zhou 1994]
> peak/plateau behavior:
QMR does not improve the convergence of Bi-CG (Bi-CG converges fast — QMR
is not much better, Bi-CG norm increases — quasi-residual of QMR stagnates)
[Greenbaum, Cullum, 1996]



Simplified Bi-CG algorithm is a preconditioned CG algorithm

J = P~ l-symmetric variant of two-term Bi-CG on AP~! is the Hestenes-Stiefel CG
algorithm on A preconditioned with P

P~ Lsymmetric Bi-CG(AP1) PCG(A) with P~1
Ep

Yo Yo
P
k

—1 Plrg, po=7o =P lpy z20=P 1rg

pPo =
=0,1,...
oy = (rk, ")/ (AP~ g, Pr) ok = (Tk, 2x)/ (AP pg, P ipy)
Tp4+1) _ [Tk —1
(yk+1 - <yk> + PPk
Tht1 =Tk — AP Ipy
Frt1 = P lrgq Zhp1 = P lrgq
Br = (ka1 Tlt1)/ (s ) Br = (Tht1s 26+1)/ Tk, 2k)

P lpprr =P lrpps + 8P g P lpptr = zpq1 + B P ok
Prt1 = P 1prpta



Saddle point problem and indefinite constraint preconditioner

A B\ (z f
BT 0) \y g

I B

BT O y J_C - j)_l

T:

PCG applied to indefinite system with indefinite preconditioner; will not work for
arbitrary right-hand side, particular right-hand side or initial guess:

<ZO>,TO: <800> here g=0and zg =yo =0

Yo
[Luk3an, VIEek, 1998], [Gould, Keller, Wathen 2000]
[Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]



Saddle point problem and indefinite constraint preconditioner -
preconditioned system

(5 0) ()= () 7= (o 0)

. (AT -T)+1 (A—D)B(BTB)™!
AP = ( 0 I )

I = B(BTB)~1BT - orth. projector onto span(B)



Indefinite constraint preconditioner: spectral properties of preconditioned
system

AP~! nonsymmetric and non-diagonalizable!
but it has a 'nice’ spectrum:

o(APY) c {1} Uo(A(I —1I) +1I)
C {1} Uo(( =AU - 1)) — {0}

and only 2 by 2 Jordan blocks!

[Luksan, VIgek 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]



Basic properties of any Krylov method with the constraint preconditioner

= () 1) (32)
S S
7“0=<00>$7“k+1=< kOH)

= BT (z —x341) =0
= 2441 € Null(BT)!



The energy-norm of the error in the preconditioned CG method

7{“?_11”]- =0,7=0,...,k
p1 is an iterate from CG applied to
(I -THA(I — )z = (I —10)f!
satisfying

H.CL‘ - xk+1”A - minuExo-i-span{(I—H)Mﬁ - uHA

[Luk3an, VIEek 1998], [Gould, Wathen, Keller, 1999]



The residual norm in the preconditioned CG method

|Zks1 — 2l — 0
but in general

Yk+1 7Y

which is reflected in

el = |( %5 )| 0

but under appropriate scaling yes!



The residual norm in the preconditioned CG method

T+l — X
T —Tp1 = Ppy1((I =AU —TI))(z — z0)

Tr41 = 1 (A — 1) + 1)so
o((I —IA(I —1I)) C o(A(I — II) + II)

{1} € o((I = A(I - 1)) — {0}
e ED



How to avoid the misconvergence of the scheme

> Scaling by a constant o > 0 such that

{1} € conv(o((I — M)aA(I —1I)) — {0})

(s 0)0)=0) = G o)a)=(7)

1
(I = I)v, A(I —II)v) !

vi (I -l #0, a=

> Scaling by a diagonal A — (diag(A))~/2A(diag(A))~1/2 often gives what we
want!

> Different direction vector so that ||ri4+1]] = [[sk+1]| is locally minimized!

yrr1 = yr + (BTB) "B sy,

[Braess, Deuflhard,Lipikov 1999], [Hribar, Gould, Nocedal, 1999]
[Jirdnek, R, 2008]



Numerical example

A = tridiag(1,4,1) € R?>25 B = rand(25,5) € R?%5
f =rand(25,1) € R?®

o(A) C [2.0146,5.9854]

a3t B (B

1/100 [0.0207,0.0586] U {1}
1/10 [0.2067,0.5856] U {1}
1/4 (0.5170,1.4641]

1 {1} U [2.0678, 5.8563]

4 {1} U [8.2712, 23.4252]
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Inexact saddle point solvers

1. exact method: exact constraint preconditioning, exact arithmetic : outer
iteration for solving the preconditioned system;

2. inexact method with approximate or incomplete factorization scheme to solve
inner problems with (BT B)~1: structure-based or with appropriate dropping
criterion; inner iteration method

3. the rounding errors: finite precision arithmetic.

References: [Gould, Hribar and Nocedal, 2001], [R, Simoncini, 2002] with the use of
[Greenbaum 1994,1997], [Sleijpen, et al. 1994]



Delay of convergence and limit on the final accuracy

error / residual

inexact method
P

\ maximum attainable accuracy

\
/

\

iteration number



Preconditioned CG in finite precision arithmetic

Tpy1 5561)1
v . P =
(G )e men=( )
lz = Zpt1lla < vll(z = Zrr)ll + 2l = IHAT = )(z — Trg1)]|

Exact arithmetic:
ITI(z — zk41)l| =0

(I =AU = )(z — zp41)]| — 0



Forward error of computed approximate solution: departure from the
null-space of BT + projection of the residual onto it

& — Zrr1lla < lBT (& — Zeyo)ll + 2| (T = TD(f — AZt1 — Blrs) |l
can be monitored by easily computable quantities:

_ _(2
BT (z — Zp41) ~ sl(c_zl

(I =) (f — AZTgy1 — Bygy1) ~ (I — H)gilll



Maximum attainable accuracy of the scheme

_ _ (1
I(f = AZkg1 = Bikg1) — 5424 |
— —(2
IBT (& = Zr41) — 5iy || <

_ (1)
f 4 B :
1(5)-( a8 ) - ()

< aer(A)maxj—o,... k+1 175l
[Greenbaum 1994,1997], [Sleijpen, et al. 1994]

good scaling: ||7;]] — O nearly monotonically
lI7oll ~ max;—o,...,k+1 175l



convergence characteristics
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convergence characteristics

o
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convergence characteristics

Ix=x Iy
e-m(f-Ax. =By Il

iteration number



Conclusions

> Short-term recurrence methods are applicable for saddle point problems with
indefinite preconditioning at a cost comparable to that of symmetric solvers.
There is a tight connection between the simplified Bi-CG algorithm and the
classical CG.

> The convergence of CG applied to saddle point problem with indefinite
preconditioner for all right-hand side vectors is not guaranteed. For a particular
set of right-hand sides the convergence can be achieved by the appropriate
scaling of the saddle point problem or by a different back-substitution formula for
dual unknowns.

> Since the numerical behavior of CG in finite precision arithmetic depends heavily
on the size of computed residuals, a good scaling of the problems leads to
approximate solutions satisfying both two block equations to the working
accuracy.



Thank you for your attention.

http://www.cs.cas.cz/~miro
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Null-space projection method

» compute x € N(BT) as a solution of the projected system
(I - IA(I — e = (I — D),
» compute y as a solution of the least squares problem
By ~ f — Az,

I = B(BTB)~'BT is the orthogonal projector onto R(B).

Results for schemes, where the least squares with B are solved inexactly. Every
computed approximate solution © of a least squares problem Bv = c is interpreted as
an exact solution of a perturbed least squares

(B+AB)v ~c+ Ac, |[AB|| < 7B, [[Acl| < 7llell, 7r(B) < 1.



Null-space projection method

choose zg, solve Byg ~ f — Axzg

compute «y and p,(f> € N(BT)

Th+1 = Tk + agpy,

(=)
Tht

solve Bp,”’ =~ ;" — ayAp,,

(z)

W) o () (z)

back-substitution:

(y)

A ypi1 =y +p 7,
B: solve Byy41 =~ f — Axp41,

C: solve Bvy, ~ f — Axiy1 — By,

Yk+1 = Yk + Vk-

1=

r](cz) — akAp,(f) — Bpfcy)

inner
iteration

outer
iteration



Accuracy in the saddle point system

o, Olag)s(B
If — Azy — Byg — ()| < %wn + 1A)IX),
o O(R(B)
| = Bz < ?H(B)”B”Xk’

Xy = max{||zi|||¢=0,1,...,k}.

Back-substitution scheme as
A:  Generic update
_ (v) u

Ye+1 = Yk + Py

B:  Direct substitution -
Yer1 = BI(f — Azpqa)

C: Corrected dir. subst. u
Ykt1 = Yk + BT (f — Azpq1 — By)

additional least
square with B



Maximum attainable accuracy of inexact null-space projection schemes

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic)
values of:

1. the true projected residual: (I —1II)f — (I — IT)A(J — II)ag;
2. the residuals in the saddle point system: f — Az, — By, and —BTz;

3. the forward errors: x — x;, and y — yi.

Numerical experiments: a small model example

A = tridiag(1,4,1) € R100X100 " B — +and(100,20), f = rand(100, 1),
k(A) = || Al - |A7Y| = 7.1695 - 0.4603 = 3.3001,
k(B) = ||B| - ||BY|| = 5.9990 - 0.4998 ~ 2.9983.
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Generic update: Y41
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Direct substitution: y41 = BY(f — Azpyq)

10° X 1 10° =10
=10
-
1 10 =10
& 1210
£ 10 1 =0
2
& 107 {1 E w* =100
£ =100 E
£ 10 2 10
3 g
£ 10 4w
S oo 1 107 -
g o T=0()
107 ] 107
10! . , . . . . . 10! . . . , . . . . .
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ieration number iteration number



Corrected direct substitution: 41 = yx + BT (f — Azp1 — Byy)

2 1w ce10
s 1wl
1w c=10%
| -
%
L
7 10° 4 F 10° 1=1070
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0 1 o =00
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feraton number feraton number



Schur complement reduction method

» Compute y as a solution of the Schur complement system
BTA'By=BTA1f,
» compute x as a solution of
Az = f — By.
> inexact solution of systems with A: every computed solution @ of Au =1b is

interpreted an exact solution of a perturbed system

(A+AA)d =b+ Ab, ||AA[ < Tl|A]l, [[Ab] < 7llb]l, 7(4) < 1.



Iterative solution of the Schur complement system

choose yg, solve Azg = f — Byo

compute o and p,(f)

Yk+1 = Yk + awi”

solve Apgf) = —Bpiy)

back-substitution: outer
. iteration

A: Ty =Tk + akpff), inner

B: solve Azp 1 = f — Byg+1, iteration

C: solve Auy, = f — Az, — Byk+y1,

Tyl = T + Uk

A =P~ BT



Maximum attainable accuracy of inexact Schur complement schemes

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic)
values of:

1. the Schur complement residual: BT A=1f — BT A=1By,;
2. the residuals in the saddle point system: f — Az, — By, and —BTz;

3. the forward errors: x — x, and y — yi.

Numerical experiments: a small model example

A = tridiag(1,4,1) € R100X100 " B — +and(100,20), f = rand(100, 1),
k(A) = || Al - |A7Y| = 7.1695 - 0.4603 = 3.3001,
k(B) = ||B| - ||BY|| = 5.9990 - 0.4998 ~ 2.9983.



Accuracy in the outer iteration process

_ O(1)k(A _
= BTA 4 BTA By, — v < QO s + 1B1v0)-
1—7r(A)

Vi = max{||y;|||¢ =0,1,...,k}.

=10

o T=100

=0

feration number k

BT(A4+ AA)'Bj=BT(A+ A4,

_ 1 Tr(A
HBTA lf_BTA 1By||§1 ( )

— = 1A~ Y1182 9]
—TMAN II1B1=119]



Accuracy in the saddle point system

I — Awy — Byl < O(L)(()(Hfll B,
= BT —r® ) < 2O amr 1+ I,

r(4)
Y = max{||yi|||¢ =0,1,...,k}.

Back-substitution scheme a1 | as
A:  Generic update

_ (z) T w
Tk4+1 = Tk + kD
B:  Direct substitution
g1 = A" — Byg+1) additional
C: Corrected dir. subst. system with A
Tpy1 = ap + A7H(f — Azg, — Byry1)

—BTA 'y 4+ BTA 1By, = —BTa, — BTA™Y(f — Axj, — By)



Generic update: 1 = o3 + akp,(f)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: 1 = xx + A (f — Az — Bypy1)

= 4 &L =10
B 2 r=100
H 1% ol
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Related results in the context of saddle-point problems and Krylov subspace
methods

> General framework of inexact Krylov subspace methods: in exact arithmetic the
effects of relaxation in matrix-vector multiplication on the ultimate accuracy of
several solvers [?], [?].

> The effects of rounding errors in the Schur complement reduction (block LU
decomposition) method and the null-space method [?], [?], the maximum
attainable accuracy studied in terms of the user tolerance specified in the outer
iteration [?], [?].

> Error analysis in computing the projections into the null-space and constraint
preconditioning, limiting accuracy of the preconditioned CG , residual update
strategy when solving constrained quadratic programming problems [?], or in
cascadic multigrid method for elliptic problems [?].

> Theory for a general class of iterative methods based on coupled two-term
recursions, all bounds of the limiting accuracy depend on the maximum norm of
computed iterates, fixed matrix-vector multiplication, cf. [?].



General comments and considerations, future work

"new_value = old_value + small_correction”

> Fixed-precision iterative refinement for improving the computed solution x4 to a
system Ax = b: solving update equations Azcorr = 7 that have residual
r =b— Ayolq as a right-hand side to obtain Znew = Zold + 2corr, see [?], [?].

> Stationary iterative methods for Ax = b and their maximum attainable accuracy
[?]: assuming splitting A = M — N and inexact solution of systems with M, use
Tnew = ZTold + M ™1 (b — Aylq) rather than Tnew = M~ (Nxoq +0), [?].

» Two-step splitting iteration framework: A = M7 — N1 = M2 — N2 assuming
inexact solution of systems with M7 and Ma, reformulation of
Mizy/5 = Ni%old + b, M2Tnew = Naz1/2 +b, Hermitian/skew-Hermitian
splitting (HSS) iteration [?].

> Inexact preconditioners for saddle point problems: SIMPLE and SIMPLE(R) type
algorithms [?] and constraint preconditioners [?].



