The importance of Structure in Algebraic Preconditioners (Level-based Algebraic Preconditioning)

### Jennifer Scott

Rutherford Appleton Laboratory

#### Miroslav Tůma

Institute of Computer Science Academy of Sciences of the Czech Republic

> ALA 2010, In honor of Hans Schneider Novi Sad, May 24-28, 2010

### 1 Introduction: Preconditioned iterative methods

- 2 Goal of this talk
- Algebraic preconditioners
- The importance of having structure

### 5 Conclusions

### 1 Introduction: Preconditioned iterative methods

- 2 Goal of this talk
- 3 Algebraic preconditioners
- The importance of having structure

### 5 Conclusions

Solving large, sparse SPD systems by iterative methods

Ax = b

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

$$M^{-1}Ax = M^{-1}b$$

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

$$M^{-1}Ax = M^{-1}b$$

In particular: Incomplete decompositions

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

$$M^{-1}Ax = M^{-1}b$$

In particular: Incomplete decompositions

- As usual, should be cheap, fast to compute, implying fast converging preconditioned iterative method
- sparse enough
- providing just sufficient approximation of the algebraic problem if this makes computations faster
- Our target is robustness

### **1** Introduction: Preconditioned iterative methods

### 2 Goal of this talk

3 Algebraic preconditioners

The importance of having structure

### 5 Conclusions

Show the importance of structure of the matrix and its decomposition in algebraic preconditioners.

- Show the importance of structure of the matrix and its decomposition in algebraic preconditioners.
- Present the effect separately from the other possible improvements (no compensations, no diagonal changes etc.).

- Show the importance of structure of the matrix and its decomposition in algebraic preconditioners.
- Present the effect separately from the other possible improvements (no compensations, no diagonal changes etc.).
- Propose a new way to level-based strategies in incomplete decompositions.

- Show the importance of structure of the matrix and its decomposition in algebraic preconditioners.
- Present the effect separately from the other possible improvements (no compensations, no diagonal changes etc.).
- Propose a new way to level-based strategies in incomplete decompositions.
- The techniques are a basis of the HSL code MI22 which is being developed.

### 1 Introduction: Preconditioned iterative methods

2 Goal of this talk



The importance of having structure

### 5 Conclusions

 Stencil based advent (Buleev, 1959, 1960; Varga, 1960; etc.): stencils ↔ local interpolation ↔ elimination

- Stencil based advent (Buleev, 1959, 1960; Varga, 1960; etc.): stencils ↔ local interpolation ↔ elimination
- Crucial moment: paper by Meijerink and van der Vorst (1977) recognizing the potential of incomplete decompositions for preconditioning.

- Stencil based advent (Buleev, 1959, 1960; Varga, 1960; etc.): stencils ↔ local interpolation ↔ elimination
- Crucial moment: paper by Meijerink and van der Vorst (1977) recognizing the potential of incomplete decompositions for preconditioning.
- Dropping entries with "smaller magnitudes" (absolutely/relatively) (Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et al. etc.)

- Stencil based advent (Buleev, 1959, 1960; Varga, 1960; etc.): stencils ↔ local interpolation ↔ elimination
- Crucial moment: paper by Meijerink and van der Vorst (1977) recognizing the potential of incomplete decompositions for preconditioning.
- Dropping entries with "smaller magnitudes" (absolutely/relatively) (Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et al. etc.)
- But: if only magnitudes of entries are used structural information may be lost

 Plassman, Jones (1995): no structure, just the memory predictability, see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended memory. ILUT by Saad, (1994).

- Plassman, Jones (1995): no structure, just the memory predictability, see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended memory. ILUT by Saad, (1994).
- Allowing fill up to a maximum length ℓ of any fill path (Watts III, (1981)).

- Plassman, Jones (1995): no structure, just the memory predictability, see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended memory. ILUT by Saad, (1994).
- Allowing fill up to a maximum length ℓ of any fill path (Watts III, (1981)).
- Practically: A fill entry is permitted provided  $level(i, j) \leq \ell$ .

$$level(i,j) = \min_{1 \le l \le \min\{i,j\}} \{level(i,l) + level(l,j) + 1\}$$

(one of more definitions which slightly differ)

- Plassman, Jones (1995): no structure, just the memory predictability, see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended memory. ILUT by Saad, (1994).
- Allowing fill up to a maximum length ℓ of any fill path (Watts III, (1981)).
- Practically: A fill entry is permitted provided  $level(i, j) \leq \ell$ .

$$level(i,j) = \min_{1 \leq l \leq \min\{i,j\}} \{level(i,l) + level(l,j) + 1\}$$

(one of more definitions which slightly differ)

• Structure of levels helps but it has its strong drawbacks as well.

• Often found that fill in L grows too quickly with  $\ell$ .

- Often found that fill in L grows too quickly with  $\ell$ .
- While the error  $R = A LL^T$  inside the prespecified pattern is zero, outside can be large.

- Often found that fill in L grows too quickly with  $\ell$ .
- While the error  $R = A LL^T$  inside the prespecified pattern is zero, outside can be large.
- First simple combination of level-based approaches with dropping: D'Azevedo, Forsyth, Tang, (1992a).

- Often found that fill in L grows too quickly with  $\ell$ .
- While the error  $R = A LL^T$  inside the prespecified pattern is zero, outside can be large.
- First simple combination of level-based approaches with dropping: D'Azevedo, Forsyth, Tang, (1992a).
- The real breakthrough in level-based approaches: cheap predictions by Hysom, Pothen, (2002)

- Often found that fill in L grows too quickly with  $\ell$ .
- While the error  $R = A LL^T$  inside the prespecified pattern is zero, outside can be large.
- First simple combination of level-based approaches with dropping: D'Azevedo, Forsyth, Tang, (1992a).
- The real breakthrough in level-based approaches: cheap predictions by Hysom, Pothen, (2002)
- Our MI22 preconditioner is a new way to use level-based information, memory prediction and dropping at the same time.

### 1 Introduction: Preconditioned iterative methods

- 2 Goal of this talk
- 3 Algebraic preconditioners
- The importance of having structure

### 5 Conclusions

Preassign levels to the entries individually

• Computing the absolute values of the smallest and largest entries of *A*: *msmall* and *mbig*.

- Computing the absolute values of the smallest and largest entries of *A*: *msmall* and *mbig*.
- Distribute nonzero entries uniformly by  $\log |a_{ij}|$  into ngroup0 = [log(mbig) - log(msmall)] + 1 groups. Shrink zero groups to get ngroup of them.

- Computing the absolute values of the smallest and largest entries of *A*: *msmall* and *mbig*.
- Distribute nonzero entries uniformly by  $\log |a_{ij}|$  into ngroup0 = [log(mbig) - log(msmall)] + 1 groups. Shrink zero groups to get ngroup of them.
- Set level(i, j) for individual entries: For  $\ell < ngroup$ :  $level(i, j) = (\ell - 1) * (l/ngroup) + 1$  where l  $(1 \le l \le ngroup0)$  is the index of the group  $a_{ij}$  belongs to, and slightly differently otherwise.

- Computing the absolute values of the smallest and largest entries of *A*: *msmall* and *mbig*.
- Distribute nonzero entries uniformly by  $\log |a_{ij}|$  into ngroup0 = [log(mbig) - log(msmall)] + 1 groups. Shrink zero groups to get ngroup of them.
- Set level(i, j) for individual entries: For  $\ell < ngroup$ :  $level(i, j) = (\ell - 1) * (l/ngroup) + 1$  where l  $(1 \le l \le ngroup0)$  is the index of the group  $a_{ij}$  belongs to, and slightly differently otherwise.
- During the  $IC(\ell)$  decomposition, entries of the factor L that correspond to nonzero entries of A are assigned the level level(i, j).

### Preassign levels to the entries individually

- Computing the absolute values of the smallest and largest entries of *A*: *msmall* and *mbig*.
- Distribute nonzero entries uniformly by  $\log |a_{ij}|$  into ngroup0 = [log(mbig) - log(msmall)] + 1 groups. Shrink zero groups to get ngroup of them.
- Set level(i, j) for individual entries: For l < ngroup: level(i, j) = (l - 1) \* (l/ngroup) + 1 where l  $(1 \le l \le ngroup0)$  is the index of the group  $a_{ij}$  belongs to, and slightly differently otherwise.
- During the  $IC(\ell)$  decomposition, entries of the factor L that correspond to nonzero entries of A are assigned the level level(i, j).
- Each potential fill entry  $l_{ij}$  is assigned a level

$$level(i,j) = \min_{1 \le l \le \min\{i,j\}} \{level(i,l) + level(l,j) + 1\}.$$

A fill entry is permitted provided  $level(i, j) \leq k$ .

# First component of our approach: new setting of levels Experiments: Kohn-Sham equation, n=250500

Effect of individual level preassignments: MI22

# First component of our approach: new setting of levels Experiments: Kohn-Sham equation, n=250500

#### Effect of individual level preassignments: MI22



# First component of our approach: new setting of levels Experience from the experiments

### Notes on the presetting of levels

# First component of our approach: new setting of levels Experience from the experiments

### Notes on the presetting of levels

• (+) Settings do not increase timings significantly.

### Notes on the presetting of levels

- (+) Settings do not increase timings significantly.
- (-)The improvements are often small. We intend to construct a robust strategy which is used as a default value.

### Notes on the presetting of levels

- (+) Settings do not increase timings significantly.
- (-)The improvements are often small. We intend to construct a robust strategy which is used as a default value.
- Open problem: determine more sophisticated rules to preassign levels.

Integrate the predefined factor structure with dropping

Integrate the predefined factor structure with dropping

• Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.

### Integrate the predefined factor structure with dropping

- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .

- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .
- Additional space distributed (1) uniformly or (2) nonuniformly.

- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .
- Additional space distributed (1) uniformly or (2) nonuniformly.

- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .
- Additional space distributed (1) uniformly or (2) nonuniformly.



- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .
- Additional space distributed (1) uniformly or (2) nonuniformly.



- Symbolic part of the modified (MI22)  $IC(\ell)$  predefines the structure.
- Only very small entries from the structure are not kept. The space is then freed and can be further used.
- The final size parametrized by memory multiplier  $0 \le \theta$ .
- Additional space distributed (1) uniformly or (2) nonuniformly.





S1RMT3M1, cylindrical shell problem, n=5489

size of the preconditioner (in the number of nonzeros)

2

3

x 10<sup>5</sup>



Level-based  $\times$  value-based: example 2

NASASRB, structural mechanics, n=54870

97 problems; efficiency profiles (Dolan, Moré, 2001) for 3 levels efficiency=size × iterations; fractions  $p(\alpha)$  for which a solver is within a factor of  $\alpha$  of the best solver.



Strategy I.: stress on sparsity; Strategy II.: denser and faster option

#### Efficiency profiles for 6 levels.



### MI22: scaling the preconditioner for simple (2D Poisson) problem

![](_page_52_Figure_2.jpeg)

# MI22 with levels versus $IC(\tau)$ (also via MI22) TUBE1, cylindrical shell, n=21498

| struc | drop=0.0 |     | $drop=10^{-7}$ |     |
|-------|----------|-----|----------------|-----|
| level | size     | its | size           | its |
| 5     | 1250952  | †   | 1227570        | Ť   |
| 6     | 1660827  | 429 | 1618808        | 423 |
| 7     | 1807337  | 405 | 1756733        | 408 |
| 8     | 2178312  | 272 | 2104496        | 281 |
| 9     | 2368289  | 260 | 2280081        | 267 |
| 10    | 3026431  | 184 | 2873613        | 185 |
| 11    | 3968731  | 426 | 3656826        | 335 |
| 12    | 4874629  | †   | 4398086        | Ť   |
| 13    | 5849563  | †   | 5178688        | Ť   |
| 14    | 6840871  | 664 | 5938543        | 647 |
| 15    | 7838623  | 262 | 6680235        | 215 |

| $IC(\tau)$ | size     | its |
|------------|----------|-----|
| 55         | 280626   | †   |
| 50         | 1458024  | †   |
| 45         | 2076970  | †   |
| 40         | 2252687  | †   |
| 1e-3       | 16139618 | †   |
| 1e-4       | 9001342  | †   |
| 5e-5       | 9649083  | 471 |
| 2e-5       | 9610841  | 87  |
| 1e-5       | 10050227 | 18  |
| 5e-6       | 10741254 | 6   |
| 1e-6       | 12451396 | 2   |
| 0          | 21802746 | 1   |

### MI22 with levels versus $IC(\tau)$ (also via MI22) TUBE1, cylindrical shell, n=21498

| struc | drop=0.0 |     | $drop=10^{-7}$ |     |
|-------|----------|-----|----------------|-----|
| level | size     | its | size           | its |
| 5     | 1250952  | t   | 1227570        | t   |
| 6     | 1660827  | 429 | 1618808        | 423 |
| 7     | 1807337  | 405 | 1756733        | 408 |
| 8     | 2178312  | 272 | 2104496        | 281 |
| 9     | 2368289  | 260 | 2280081        | 267 |
| 10    | 3026431  | 184 | 2873613        | 185 |
| 11    | 3968731  | 426 | 3656826        | 335 |
| 12    | 4874629  | †   | 4398086        | t   |
| 13    | 5849563  | †   | 5178688        | Ť   |
| 14    | 6840871  | 664 | 5938543        | 647 |
| 15    | 7838623  | 262 | 6680235        | 215 |

| $IC(\tau)$ | size     | its |
|------------|----------|-----|
| 55         | 280626   | †   |
| 50         | 1458024  | †   |
| 45         | 2076970  | †   |
| 40         | 2252687  | †   |
| 1e-3       | 16139618 | †   |
| 1e-4       | 9001342  | †   |
| 5e-5       | 9649083  | 471 |
| 2e-5       | 9610841  | 87  |
| 1e-5       | 10050227 | 18  |
| 5e-6       | 10741254 | 6   |
| 1e-6       | 12451396 | 2   |
| 0          | 21802746 | 1   |

But: Reorderings may minimize the effect.

### 1 Introduction: Preconditioned iterative methods

- 2 Goal of this talk
- 3 Algebraic preconditioners
- The importance of having structure

![](_page_55_Picture_5.jpeg)

• Preserving the structure may play significant role in incomplete decompositions.

- Preserving the structure may play significant role in incomplete decompositions.
- Codes may be reasonably fast and robust.

- Preserving the structure may play significant role in incomplete decompositions.
- Codes may be reasonably fast and robust.
- MI22 code of Harwell Subroutine Library offers a way to implement this strategy.

- Preserving the structure may play significant role in incomplete decompositions.
- Codes may be reasonably fast and robust.
- MI22 code of Harwell Subroutine Library offers a way to implement this strategy.

$$k(s_{ij}, min_j s_{ij}, \alpha) = \begin{array}{cc} 1 & \text{if } s_{ij} \leq \alpha \ min_j s_{ij} \\ 0 & otherwise \end{array}$$

• displaystyle 
$$p_i(\alpha) = \frac{\sum_j k(s_{ij}, min_j s_{ij}, \alpha)}{|\aleph|}$$
 for  $\alpha \ge 1$ .

$$k(s_{ij}, min_j s_{ij}, \alpha) = \begin{array}{cc} 1 & \text{if } s_{ij} \leq \alpha \ min_j s_{ij} \\ 0 & otherwise \end{array}$$

• displaystyle 
$$p_i(\alpha) = \frac{\sum_j k(s_{ij}, min_j s_{ij}, \alpha)}{|\aleph|}$$
 for  $\alpha \ge 1$ .

$$k(s_{ij}, min_j s_{ij}, \alpha) = \begin{array}{cc} 1 & \text{if } s_{ij} \leq \alpha \ min_j s_{ij} \\ 0 & otherwise \end{array}$$

• displaystyle 
$$p_i(\alpha) = \frac{\sum_j k(s_{ij}, min_j s_{ij}, \alpha)}{|\aleph|}$$
 for  $\alpha \ge 1$ .

$$k(s_{ij}, min_j s_{ij}, \alpha) = \begin{array}{cc} 1 & \text{if } s_{ij} \leq \alpha \ min_j s_{ij} \\ 0 & otherwise \end{array}$$

• displaystyle 
$$p_i(\alpha) = \frac{\sum_j k(s_{ij}, min_j s_{ij}, \alpha)}{|\aleph|}$$
 for  $\alpha \ge 1$ .