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Motivation: IV.

Concluded motivation
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Successful use of parts of factorized matrix inverse used in
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Bollhöfer, 2003)
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Our final goal to be presented here: combined use of direct and
inverse incomplete decompositions
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Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

15 / 45



Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

15 / 45



Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

Fill-path is a path in the matrix adjacency graph G joining nodes i
and i via nodes with labels lower than both i and j.

15 / 45



Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

Fill-path is a path in the matrix adjacency graph G joining nodes i
and i via nodes with labels lower than both i and j.

Entries of the Cholesky factor lij, i > j are nonzero if and only if
there is a fill path joining i and j in G.

15 / 45



Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

16 / 45



Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

16 / 45



Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

16 / 45



Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

levels size prec iterations

0 2424822 523

1 4458588 300

2 7595466 199

3 12128289 115

4 18078603 87

5 25474380 54

6 34153746 45

7 43861328 46

8 54276063 36
16 / 45



Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

levels size prec iterations

0 2424822 523

1 4458588 300

2 7595466 199

3 12128289 115

4 18078603 87

5 25474380 54

6 34153746 45

7 43861328 46

8 54276063 36

Often the fill in L grows too fast with ℓ.
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Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré, (1990) with
extended memory. ILUT by Saad, (1994).

The importance of error matrix E = A− LLT understood (Duff,
Meurant, (1989)) and exploited (D’Azevedo, Forsyth, Tang, 1992)

More sophisticated level settings and pattern/values combination
(Scott, T., 2009); see the talk of Jennifer Scott
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We get (instead of A = QR):

I = ZU

◮ U is upper triangular, as usual.
◮ Z is orthogonal in 〈 , 〉A:

ZTAZ = I (Biconjugate decomposition)

◮ But: Z is upper triangular as well

Easy to interprete the matrix inverse:

A−1 = ZZT (A−1 = ZDZT )

19 / 45



Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

20 / 45



Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

20 / 45



Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

20 / 45



Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

Computational procedures to compute sparse incomplete factor Z:
AINV (Benzi, Meyer, T., 1996; Benzi, T., 1998)

Computational procedures to compute sparse incomplete U in this
way: RIF (Benzi, T., 2003)

20 / 45



Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

Computational procedures to compute sparse incomplete factor Z:
AINV (Benzi, Meyer, T., 1996; Benzi, T., 1998)

Computational procedures to compute sparse incomplete U in this
way: RIF (Benzi, T., 2003)

Three related notes: 1) Historical connections, 2) Note on the
numerical properties, 3) Are we able to implement such algorithms?
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Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

A detailed treatment in the first Wilkinson paper (with Fox and
Huskey, 1948)

First systematic treatment of the technique: Hestenes, Stiefel, 1952
(conjugate direction methods).

Slightly different schemes, papers differently motivated, different
breakdown-free properties, different in floating-point arithmetic.

Remind our goal: improving the algebraic preconditioners from inside
the algorithm.

Projection-based notes on our goal: see the talk T. at SIAM-LA’09 in
Monterey.
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Note on numerical properties of biconjugation
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It can be proved:

||I − ZU || upper bound proportional to κ1/2(A)
||I − ZTAZ|| upper bound proportional to κ(A)
(Rozložník, T. et al., 2009)
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for i=1, n

for j=1, i-1 ←− never

...

end j

end i

Left-looking direct decompositions know the j indices via the
elimination tree.

Even simpler in the multifrontal algorithm.

The real breakthrough useful also for incomplete decompositions
came with the Yale sparse package (Eisenstat, Gursky, Schultz,
Sherman, 1977, 1982)

The idea was rediscovered many times later.
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General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

*
*

*

Linked-list connects the j indices from the algorithm

This linked-list should be updated.

But: Generalized Gram-Schmidt contains the matrix-vector operation
in the j loop.
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Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)
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end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.
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scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.

Sparse implementation is possible.

The same is true for the breakdown-free variant SAINV.

But: in order to get U we must get Z: direct factor is obtained via
the inverse factor
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General algorithmic scheme of direct and inverse GE-based

decompositions: III.

Let us repeat: Standard biconjugation ZTAZ via generalized
Gram-Schmidt applied to get I = ZU :
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⇓

sI −A−1 = ZD−1V T

Analogical recursions:

zi = sei −
i−1
∑

j=1

vTj ei

dj
zj , vi = (ai − sei)T −

i−1
∑

j=1

zTj (ai − sei)

dj
vj,

Z and D are the same in both recursions
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More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner.
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More on the new biconjugation: II.

Pictorially
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





, diag(V ) = D − sI. (1)

V obtained by a simple recursion for its columns

The new recursions provide scaled U and L−1 at the same time!
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Different use of the new decomposition

The way of getting directly column of U and row of L−1 can be used
for contruction condition estimators. We can profit from using the
ideas of Bischof and Vömel, Duff, at the same time.

New fast block decompositions can be proposed.
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New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,
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vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

Still the inverse factor influences the direct factor.

L−1 −→ L

But, dropping can interconnect computation of both L and L−1.

We drop L using sizes of entries in L−1 and vice versa: balanced
incomplete factorization, Bru, Mas, Marín, T. 2008.

Is is the best thing we can do?
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Balanced incomplete factorization (BIF) experiments
SPD experiments: I.

Example: matrix PWTK, n=217,918, nnz=5,926,171
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Balanced incomplete factorization (BIF) experiments: II.

Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.
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Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002, but dropping should be further investigated. It seems that
sometimes any rules influence entries of the factors nonuniformly.
Also, our dropping often forces skipping a lot of updates in the
decomposition. Is this really the right way to go?

The convergence curve is often rather flat if we run many iterations.
Is the accuracy sufficient for solving sequences from nonlinear solvers?
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Balanced incomplete factorization (BIF) experiments: III.
SPD experiments: II.
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Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
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Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

k

p

vpi: just the entries of V with indices p+ 1, . . . , i− 1 are involved

good, but not enough: the inverse factor still updated only by entries
of the inverse factor
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Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case
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Scaling parameter

Choice of scaling parameter s / computational procedures should be
coordinated
Here we demonstrate the computation in the fully nonsymmetric case
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Direct-inverse (NBIF) decomposition: test problems
Matrix n nz Application

CHEM_MASTER1 40,401 201,201 chemical engineering
EPB3 84,617 463,625 thermal problem
POISSON3DB 85,623 2,374,949 CFD
RAJAT20 86,916 604,299 circuit simulation
HCIRCUIT 105,676 513,072 circuit simulation
TRANS4 116,835 749,800 circuit simulation
CAGE12 130,228 2,032,536 directed weighted graph
FEM_3D_THERMAL2 147,900 3,489,300 thermal problem
XENON2 157,464 3,866,668 materials problem
CRASHBASIS 160,000 1,750,416 optimization problem
MAJORBASIS 160,000 1,750,416 optimization problem
STOMACH 213,360 3,021,648 2D/3D problem
TORSO3 256,156 4,429,042 2D/3D problem
ASIC_320KS 321,671 1,316,085 circuit simulation
LANGUAGE 399,130 1,216,334 directed weighted graph
CAGE13 445,315 7,479,343 directed weighted graph
RAJAT30 643,994 6,175,244 circuit simulation
ASIC_680KS 682,862 2,638,997 circuit simulation
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Direct-inverse (NBIF) decomposition: experiments

Matrix NBIF ILU(τ )
relsize t_p its t_it relsize t_p its t_it

CHEM_MASTER1 0.53 0.42 169 0.73 0.46 0.02 170 0.75
EPB3 0.93 1.09 76 1.22 1.03 0.03 73 1.14
POISSON3DB 0.11 1.11 126 3.45 0.12 0.11 136 3.92
RAJAT20 0.17 0.70 8 0.09 0.15 0.03 8 0.09
HCIRCUIT 0.39 0.56 182 2.45 0.31 0.03 191 2.45
TRANS4 0.32 0.41 65 1.06 0.22 0.06 66 1.03
CAGE12 0.31 0.94 5 0.13 0.36 0.09 5 0.17
FEM_3D_THERMAL2 0.06 1.45 20 0.63 0.08 0.14 23 0.73
XENON2 0.33 1.58 368 19.3 0.40 0.30 † †

CRASHBASIS 0.18 0.66 29 0.73 0.18 0.08 25 0.61
MAJORBASIS 0.36 1.08 15 0.42 0.37 0.09 15 0.42
STOMACH 0.07 0.80 20 0.67 0.07 0.09 25 0.86
TORSO3 0.06 1.31 6 0.28 0.06 0.17 3 0.16
ASIC_320KS 0.26 0.55 20 0.88 0.24 0.09 20 0.84
LANGUAGE 0.53 1.72 9 0.53 0.54 0.11 15 0.98
CAGE13 0.06 2.48 5 0.45 0.06 0.30 7 0.64
RAJAT30 0.11 3.53 3 0.34 0.13 0.41 3 0.30
ASIC_680KS 0.26 2.36 5 0.48 0.26 0.13 6 0.55
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Direct-inverse (NBIF) decomposition: experiments: II.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
5

0

200

400

600

800

1000

1200

nu
m

be
r 

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 ILU(tau)
 NBIF

Figure: Sizes of NBIF and ILU(τ) preconditioners versus iteration counts of the
preconditioned BiCGStab method for the matrix CHEM_MASTER1.
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In particular, a new direct-inverse decomposition BIF/NBIF useful in
preconditioning was introduced.

BIF/NBIF may be useful in other applications, e.g. in construction of
condition estimators.

Efficiency of the new schemes is strongly related to their
implementation.

Further computational aspects are still under investigation.

Thank you for your attention!
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