
Preconditioning by incomplete factorizations and

approximate inverses

Miroslav Tůma

Institute of Computer Science

Academy of Sciences of the Czech Republic

tuma@cs.cas.cz

based on joint work with Michele Benzi, Rafael Bru, Jurjen

Duintjer Tebbens, José Marín, José Mas, Miroslav

Rozložník, Jennifer Scott et al.

Preconditioning 2009,

August 24-26, 2009, Hong Kong

1 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.In particular: Incomplete decompositions

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.In particular: Incomplete decompositions

As usual, should be cheap to compute, implying fast converging
preconditioned iterative method

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.In particular: Incomplete decompositions

As usual, should be cheap to compute, implying fast converging
preconditioned iterative method

First point usually satisfied

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.In particular: Incomplete decompositions

As usual, should be cheap to compute, implying fast converging
preconditioned iterative method

First point usually satisfied

Should be sparse enough

2 / 45

Motivation: I.

Solving large, sparse systems by preconditioned iterative methods

Ax = b

Algebraic preconditioning as a transformation

M−1Ax =M−1b

.In particular: Incomplete decompositions

As usual, should be cheap to compute, implying fast converging
preconditioned iterative method

First point usually satisfied

Should be sparse enough

Our target is robustness.

2 / 45

Motivation: II.

What we are interested in?

How can be a general direct incomplete decomposition modified such
that it serves as a “better” inverse in the form of preconditioner

We seek for a solution which is purely decomposition-based

3 / 45

Motivation: II.

What we are interested in?

How can be a general direct incomplete decomposition modified such
that it serves as a “better” inverse in the form of preconditioner

We seek for a solution which is purely decomposition-based

What we do not discuss here?

modifications of the basic algorithm (basic diagonal modifications,
more general diagonal compensations with respect to some matvecs
etc.)

a priori diagonal changes

matrix pre/post processings

embedding into a more general scheme (e.g., with more levels)

3 / 45

Motivation: II.

What we are interested in?

How can be a general direct incomplete decomposition modified such
that it serves as a “better” inverse in the form of preconditioner

We seek for a solution which is purely decomposition-based

What we do not discuss here?

modifications of the basic algorithm (basic diagonal modifications,
more general diagonal compensations with respect to some matvecs
etc.)

a priori diagonal changes

matrix pre/post processings

embedding into a more general scheme (e.g., with more levels)

All the above mentioned techniques are very important. But, here we try
to analyze, not to defend a synthetic approach.

3 / 45

Motivation: II.

What we are interested in?

How can be a general direct incomplete decomposition modified such
that it serves as a “better” inverse in the form of preconditioner

We seek for a solution which is purely decomposition-based

What we do not discuss here?

modifications of the basic algorithm (basic diagonal modifications,
more general diagonal compensations with respect to some matvecs
etc.)

a priori diagonal changes

matrix pre/post processings

embedding into a more general scheme (e.g., with more levels)

All the above mentioned techniques are very important. But, here we try
to analyze, not to defend a synthetic approach.

But, why we are interested in inverses?
3 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 126945

matrix ADD20 rather precise inverse
(2 its BiCGStab)

4 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 61505

matrix ADD20 less precise inverse

5 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 9752

matrix ADD20 even less precise inverse

6 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 7525

matrix ADD20 rough inverse

7 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 3499

matrix ADD20 very rough inverse

8 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 3260

matrix ADD20 ILU decomposition

9 / 45

Motivation: III.

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13151
0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 3260

matrix ADD20 inverted ILU decomposition

10 / 45

Motivation: IV.

Concluded motivation

Consulting / employing matrix inverse can provide useful information

Two extreme cases of incomplete decompositions
◮ approximate inverse decompositions
◮ direct incomplete decompositions

Approximate inverse decompositions (Kolotilina, Yeremin, 1993;
Benzi, Meyer, T., 1996; Benzi, T., 1998 etc.)

Successful use of parts of factorized matrix inverse used in
inverse-based incomplete decompositions (Bollhöfer, Saad, 2002;
Bollhöfer, 2003)

11 / 45

Motivation: IV.

Concluded motivation

Consulting / employing matrix inverse can provide useful information

Two extreme cases of incomplete decompositions
◮ approximate inverse decompositions
◮ direct incomplete decompositions

Approximate inverse decompositions (Kolotilina, Yeremin, 1993;
Benzi, Meyer, T., 1996; Benzi, T., 1998 etc.)

Successful use of parts of factorized matrix inverse used in
inverse-based incomplete decompositions (Bollhöfer, Saad, 2002;
Bollhöfer, 2003)

Our final goal to be presented here: combined use of direct and
inverse incomplete decompositions

11 / 45

Motivation: IV.

Concluded motivation

Consulting / employing matrix inverse can provide useful information

Two extreme cases of incomplete decompositions
◮ approximate inverse decompositions
◮ direct incomplete decompositions

Approximate inverse decompositions (Kolotilina, Yeremin, 1993;
Benzi, Meyer, T., 1996; Benzi, T., 1998 etc.)

Successful use of parts of factorized matrix inverse used in
inverse-based incomplete decompositions (Bollhöfer, Saad, 2002;
Bollhöfer, 2003)

Our final goal to be presented here: combined use of direct and
inverse incomplete decompositions

One of the tools: generalized biconjugation formula

11 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

12 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

13 / 45

Standard sparsity pattern limits: I.

The error E = A− L̄L̄T inside the pattern is zero

14 / 45

Standard sparsity pattern limits: I.

The error E = A− L̄L̄T inside the pattern is zero

Error outside the pre-specified pattern can be large.

14 / 45

Standard sparsity pattern limits: I.

The error E = A− L̄L̄T inside the pattern is zero

Error outside the pre-specified pattern can be large.

Example: banded pattern: BCSSTK38, n = 8032, nz = 181, 746;
airplane engine component.

bandwidth (full) iterations

1 426

3 821

5 648

9 1638

15 792

1011 105

1311 56

1511 †

3111 35

4111 18

14 / 45

Standard sparsity pattern limits: I.

The error E = A− L̄L̄T inside the pattern is zero

Error outside the pre-specified pattern can be large.

Example: banded pattern: BCSSTK38, n = 8032, nz = 181, 746;
airplane engine component.

bandwidth (full) iterations

1 426

3 821

5 648

9 1638

15 792

1011 105

1311 56

1511 †

3111 35

4111 18
10

0
10

1
10

2
10

3
10

4
10

8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

no
rm

 o
f t

he
 r

es
id

ua
l m

at
rix

 /
ite

ra
tio

ns

bandwidth

 residual matrix norm
 iterations

14 / 45

Standard sparsity pattern limits: I.

The error E = A− L̄L̄T inside the pattern is zero

Error outside the pre-specified pattern can be large.

Example: banded pattern: BCSSTK38, n = 8032, nz = 181, 746;
airplane engine component.

bandwidth (full) iterations

1 426

3 821

5 648

9 1638

15 792

1011 105

1311 56

1511 †

3111 35

4111 18
10

0
10

1
10

2
10

3
10

4
10

8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

no
rm

 o
f t

he
 r

es
id

ua
l m

at
rix

 /
ite

ra
tio

ns

bandwidth

 residual matrix norm
 iterations

Decay may help

14 / 45

Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

15 / 45

Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

15 / 45

Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

Fill-path is a path in the matrix adjacency graph G joining nodes i
and i via nodes with labels lower than both i and j.

15 / 45

Standard sparsity pattern limits: II.

More sophisticated approach. Where does the fill appear?

= −

k

i

j

k < {i, j}

Fill-path is a path in the matrix adjacency graph G joining nodes i
and i via nodes with labels lower than both i and j.

Entries of the Cholesky factor lij, i > j are nonzero if and only if
there is a fill path joining i and j in G.

15 / 45

Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

16 / 45

Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

16 / 45

Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

16 / 45

Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

levels size prec iterations

0 2424822 523

1 4458588 300

2 7595466 199

3 12128289 115

4 18078603 87

5 25474380 54

6 34153746 45

7 43861328 46

8 54276063 36
16 / 45

Standard sparsity pattern limits: II.

Proposal: Allowing fill up to a maximum length ℓ of any fill path
(Watts III, (1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1} (e.g.)

Example: Matrix ENGINE, n = 143571, nz = 2424822.

levels size prec iterations

0 2424822 523

1 4458588 300

2 7595466 199

3 12128289 115

4 18078603 87

5 25474380 54

6 34153746 45

7 43861328 46

8 54276063 36

Often the fill in L grows too fast with ℓ.

16 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

17 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

17 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

17 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré, (1990) with
extended memory. ILUT by Saad, (1994).

17 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré, (1990) with
extended memory. ILUT by Saad, (1994).

The importance of error matrix E = A− LLT understood (Duff,
Meurant, (1989)) and exploited (D’Azevedo, Forsyth, Tang, 1992)

17 / 45

Other classical possibilities and their limits: just a few

notes

Dropping entries with “smaller magnitudes” (absolutely/relatively)
(Zlatev et al. (1978), Munksgaard (1980), Axelsson (1972, 1983 et
al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré, (1990) with
extended memory. ILUT by Saad, (1994).

The importance of error matrix E = A− LLT understood (Duff,
Meurant, (1989)) and exploited (D’Azevedo, Forsyth, Tang, 1992)

More sophisticated level settings and pattern/values combination
(Scott, T., 2009); see the talk of Jennifer Scott

17 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

18 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A

19 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QR):

I = ZU

19 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QR):

I = ZU

◮ U is upper triangular, as usual.

19 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QR):

I = ZU

◮ U is upper triangular, as usual.
◮ Z is orthogonal in 〈 , 〉A:

ZTAZ = I (Biconjugate decomposition)

19 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QR):

I = ZU

◮ U is upper triangular, as usual.
◮ Z is orthogonal in 〈 , 〉A:

ZTAZ = I (Biconjugate decomposition)

◮ But: Z is upper triangular as well

19 / 45

Generalized Gram-Schmidt

Orthogonalize columns of I using the inner product 〈 , 〉A
We get (instead of A = QR):

I = ZU

◮ U is upper triangular, as usual.
◮ Z is orthogonal in 〈 , 〉A:

ZTAZ = I (Biconjugate decomposition)

◮ But: Z is upper triangular as well

Easy to interprete the matrix inverse:

A−1 = ZZT (A−1 = ZDZT)

19 / 45

Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

20 / 45

Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

20 / 45

Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

20 / 45

Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

Computational procedures to compute sparse incomplete factor Z:
AINV (Benzi, Meyer, T., 1996; Benzi, T., 1998)

Computational procedures to compute sparse incomplete U in this
way: RIF (Benzi, T., 2003)

20 / 45

Generalized Gram-Schmidt: the decomposition

I = ZU

Z is the inverse (Cholesky) factor of A

U is the direct (Cholesky) factor of A

In the incomplete case:

A ≈ LLT , U ≈ LT , Z ≈ L−1

Computational procedures to compute sparse incomplete factor Z:
AINV (Benzi, Meyer, T., 1996; Benzi, T., 1998)

Computational procedures to compute sparse incomplete U in this
way: RIF (Benzi, T., 2003)

Three related notes: 1) Historical connections, 2) Note on the
numerical properties, 3) Are we able to implement such algorithms?

20 / 45

Generalized Gram-Schmidt: historical connections

Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

21 / 45

Generalized Gram-Schmidt: historical connections

Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

A detailed treatment in the first Wilkinson paper (with Fox and
Huskey, 1948)

21 / 45

Generalized Gram-Schmidt: historical connections

Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

A detailed treatment in the first Wilkinson paper (with Fox and
Huskey, 1948)

First systematic treatment of the technique: Hestenes, Stiefel, 1952
(conjugate direction methods).

21 / 45

Generalized Gram-Schmidt: historical connections

Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

A detailed treatment in the first Wilkinson paper (with Fox and
Huskey, 1948)

First systematic treatment of the technique: Hestenes, Stiefel, 1952
(conjugate direction methods).

Slightly different schemes, papers differently motivated, different
breakdown-free properties, different in floating-point arithmetic.

21 / 45

Generalized Gram-Schmidt: historical connections

Origins of the biconjugation for solving linear systems in more papers
in 40’s and early 50’s (Escalator method by Morris (1946), Vector
method by Purcell (1952) etc.)

A detailed treatment in the first Wilkinson paper (with Fox and
Huskey, 1948)

First systematic treatment of the technique: Hestenes, Stiefel, 1952
(conjugate direction methods).

Slightly different schemes, papers differently motivated, different
breakdown-free properties, different in floating-point arithmetic.

Remind our goal: improving the algebraic preconditioners from inside
the algorithm.

Projection-based notes on our goal: see the talk T. at SIAM-LA’09 in
Monterey.

21 / 45

Note on numerical properties of biconjugation

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
ro

be
ni

us
 n

or
m

s
lo

ss
es

condition number

 ||D−ZTAZ||/eps
 ||I−ZU||/eps

It can be proved:

||I − ZU || upper bound proportional to κ1/2(A)
||I − ZTAZ|| upper bound proportional to κ(A)
(Rozložník, T. et al., 2009)

22 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

23 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1

...

end j

end i

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1 ←− never

...

end j

end i

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1 ←− never

...

end j

end i

Left-looking direct decompositions know the j indices via the
elimination tree.

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1 ←− never

...

end j

end i

Left-looking direct decompositions know the j indices via the
elimination tree.

Even simpler in the multifrontal algorithm.

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1 ←− never

...

end j

end i

Left-looking direct decompositions know the j indices via the
elimination tree.

Even simpler in the multifrontal algorithm.

The real breakthrough useful also for incomplete decompositions
came with the Yale sparse package (Eisenstat, Gursky, Schultz,
Sherman, 1977, 1982)

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions

for i=1, n

for j=1, i-1 ←− never

...

end j

end i

Left-looking direct decompositions know the j indices via the
elimination tree.

Even simpler in the multifrontal algorithm.

The real breakthrough useful also for incomplete decompositions
came with the Yale sparse package (Eisenstat, Gursky, Schultz,
Sherman, 1977, 1982)

The idea was rediscovered many times later.

24 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

25 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

*
*

*

25 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

*
*

*

Linked-list connects the j indices from the algorithm

25 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

*
*

*

Linked-list connects the j indices from the algorithm

This linked-list should be updated.

25 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: II.

* * *

*
*

*

Linked-list connects the j indices from the algorithm

This linked-list should be updated.

But: Generalized Gram-Schmidt contains the matrix-vector operation
in the j loop.

25 / 45

Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

26 / 45

Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.

26 / 45

Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.

Sparse implementation is possible.

26 / 45

Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.

Sparse implementation is possible.

The same is true for the breakdown-free variant SAINV.

26 / 45

Generalized Gram-Schmidt

I = ZU ≡ [z1, . . . , zn] (uij)i,j

for i=1, n

for j=1, i-1 with nonzero uij = 〈eTj , z
(j)
i 〉A

z
(j)
i = z

(j−1)
i − z

(j−1)
j

〈eTj , z
(j−1)
i 〉A

〈eTj , z
(j−1)
j 〉A

end j

end i

scale Z by the
√

diag(di) ≡
√

diag(〈eTj , z
(j−1)
j 〉A)

All tests for one outer index i can be obtained in only one search
through a few columns of A altogether.

Sparse implementation is possible.

The same is true for the breakdown-free variant SAINV.

But: in order to get U we must get Z: direct factor is obtained via
the inverse factor

26 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: III.

Let us repeat: Standard biconjugation ZTAZ via generalized
Gram-Schmidt applied to get I = ZU :

Z L

done
not used

useddone

UT =

27 / 45

General algorithmic scheme of direct and inverse GE-based

decompositions: III.

Let us repeat: Standard biconjugation ZTAZ via generalized
Gram-Schmidt applied to get I = ZU :

Z L

done
not used

useddone

UT =

One way tranfer of information

27 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

28 / 45

New shifted biconjugation

Note: we will use here general nonsymmetric formulation

A−1 = ZZT ←− A−1 = ZD−1W T

29 / 45

New shifted biconjugation

Note: we will use here general nonsymmetric formulation

A−1 = ZZT ←− A−1 = ZD−1W T

Nonsymmetric recursions:

z
(j)
i = z

(j−1)
i − z

(j−1)
j

ajz
(j−1)
i

ajz
(j−1)
j

, w
(j)
i = w

(j−1)
i − w

(j−1)
j

aTj w
(j−1)
i

aTj w
(j−1)
j

29 / 45

New shifted biconjugation

Note: we will use here general nonsymmetric formulation

A−1 = ZZT ←− A−1 = ZD−1W T

Nonsymmetric recursions:

z
(j)
i = z

(j−1)
i − z

(j−1)
j

ajz
(j−1)
i

ajz
(j−1)
j

, w
(j)
i = w

(j−1)
i − w

(j−1)
j

aTj w
(j−1)
i

aTj w
(j−1)
j

⇓

sI −A−1 = ZD−1V T

29 / 45

New shifted biconjugation

Note: we will use here general nonsymmetric formulation

A−1 = ZZT ←− A−1 = ZD−1W T

Nonsymmetric recursions:

z
(j)
i = z

(j−1)
i − z

(j−1)
j

ajz
(j−1)
i

ajz
(j−1)
j

, w
(j)
i = w

(j−1)
i − w

(j−1)
j

aTj w
(j−1)
i

aTj w
(j−1)
j

⇓

sI −A−1 = ZD−1V T

Analogical recursions:

zi = sei −
i−1
∑

j=1

vTj ei

dj
zj , vi = (ai − sei)T −

i−1
∑

j=1

zTj (ai − sei)

dj
vj,

Z and D are the same in both recursions
29 / 45

More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner.

30 / 45

More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner.

It was shown that this new biconjugation can be used to get a direct
decomposition as well, Bru, Marín, Mas, T., 2008.

s−1I −A−1 = ZD−1V T and A = LDU and Z = U−1

s−1I − U−1D−1L−1 = U−1D−1V T

s−1I = U−1D−1(L−1 + V T)

30 / 45

More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner.

It was shown that this new biconjugation can be used to get a direct
decomposition as well, Bru, Marín, Mas, T., 2008.

s−1I −A−1 = ZD−1V T and A = LDU and Z = U−1

s−1I − U−1D−1L−1 = U−1D−1V T

s−1I = U−1D−1(L−1 + V T)

upper triangularր

30 / 45

More on the new biconjugation

The (s−1I −A−1)−1) biconjugation introduced by Bru, Cerdán,
Marín, Mas, 2003. The incomplete algorithm was proposed as an
approximate inverse preconditioner.

It was shown that this new biconjugation can be used to get a direct
decomposition as well, Bru, Marín, Mas, T., 2008.

s−1I −A−1 = ZD−1V T and A = LDU and Z = U−1

s−1I − U−1D−1L−1 = U−1D−1V T

s−1I = U−1D−1(L−1 + V T)

upper triangularր տ lower triangular

30 / 45

More on the new biconjugation: II.

Pictorially

V =

























. . . −sL−T

. . .

UTD
. . .

























, diag(V) = D − sI. (1)

31 / 45

More on the new biconjugation: II.

Pictorially

V =

























. . . −sL−T

. . .

UTD
. . .

























, diag(V) = D − sI. (1)

V obtained by a simple recursion for its columns

31 / 45

More on the new biconjugation: II.

Pictorially

V =

























. . . −sL−T

. . .

UTD
. . .

























, diag(V) = D − sI. (1)

V obtained by a simple recursion for its columns

The new recursions provide scaled U and L−1 at the same time!

31 / 45

Different use of the new decomposition

The way of getting directly column of U and row of L−1 can be used
for contruction condition estimators. We can profit from using the
ideas of Bischof and Vömel, Duff, at the same time.

New fast block decompositions can be proposed.

32 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

33 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

33 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

33 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

Still the inverse factor influences the direct factor.

L−1 −→ L

33 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

Still the inverse factor influences the direct factor.

L−1 −→ L

But, dropping can interconnect computation of both L and L−1.

33 / 45

New biconjugation in the SPD case

Note that s−1I −A−1 = ZD−1V T , V = LD − sL−T , Z = L−T

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

We do not need to compute Z at all!

This is correct strictly mathematically, but computationally?

Still the inverse factor influences the direct factor.

L−1 −→ L

But, dropping can interconnect computation of both L and L−1.

We drop L using sizes of entries in L−1 and vice versa: balanced
incomplete factorization, Bru, Mas, Marín, T. 2008.

Is is the best thing we can do?

33 / 45

Balanced incomplete factorization (BIF) experiments
SPD experiments: I.

Example: matrix PWTK, n=217,918, nnz=5,926,171

34 / 45

Balanced incomplete factorization (BIF) experiments
SPD experiments: I.

Example: matrix PWTK, n=217,918, nnz=5,926,171

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25
tim

e
to

 c
om

pu
te

 th
e

pr
ec

on
di

tio
ne

r
(in

 s
ec

on
ds

)

size of the preconditioner (in the number of nonzeros)

 RIF
 BIF

34 / 45

Balanced incomplete factorization (BIF) experiments: II.

Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.

35 / 45

Balanced incomplete factorization (BIF) experiments: II.

Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002, but dropping should be further investigated. It seems that
sometimes any rules influence entries of the factors nonuniformly.
Also, our dropping often forces skipping a lot of updates in the
decomposition. Is this really the right way to go?

35 / 45

Balanced incomplete factorization (BIF) experiments: II.

Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A is a must.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002, but dropping should be further investigated. It seems that
sometimes any rules influence entries of the factors nonuniformly.
Also, our dropping often forces skipping a lot of updates in the
decomposition. Is this really the right way to go?

The convergence curve is often rather flat if we run many iterations.
Is the accuracy sufficient for solving sequences from nonlinear solvers?

35 / 45

Balanced incomplete factorization (BIF) experiments: III.
SPD experiments: II.

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25

30

35

40
to

ta
l t

im
e

(in
 s

ec
on

ds
)

size of the preconditioner (in the number of nonzeros)

 RIF
 BIF

36 / 45

Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

37 / 45

Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

k

p

37 / 45

Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

k

p

vpi: just the entries of V with indices p+ 1, . . . , i− 1 are involved

37 / 45

Direct-inverse decomposition

Vector formulation of the shifted biconjugation can hide important
details Bru, Mas, Marín, T. 2009

vi = (ai − sei)T −
i−1
∑

j=1

zTj (ai − sei)

dj
vj ,

k

p

vpi: just the entries of V with indices p+ 1, . . . , i− 1 are involved

good, but not enough: the inverse factor still updated only by entries
of the inverse factor

37 / 45

Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case

38 / 45

Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
�������� ��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

pp

k kV Vt

38 / 45

Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
�������� ��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

pp

k kV Vt

v1:p−1 computed using fully filled areas

38 / 45

Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
�������� ��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

pp

k kV Vt

v1:p−1 computed using fully filled areas

vp+1:n computed using dashed areas

38 / 45

Direct-inverse decomposition: II.

Even more sophisticated computation possible

Here we demonstrate the computation in the fully nonsymmetric case

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
�������� ��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

pp

k kV Vt

v1:p−1 computed using fully filled areas

vp+1:n computed using dashed areas

direct and inverse factors influence each other

38 / 45

Scaling parameter

Choice of scaling parameter s / computational procedures should be
coordinated
Here we demonstrate the computation in the fully nonsymmetric case

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k (s=10k)

er
ro

r
no

rm
 ||

A
−

LD
U

|| 2
Matrix Olm100

without Z
with Z

39 / 45

Direct-inverse (NBIF) decomposition: test problems
Matrix n nz Application

CHEM_MASTER1 40,401 201,201 chemical engineering
EPB3 84,617 463,625 thermal problem
POISSON3DB 85,623 2,374,949 CFD
RAJAT20 86,916 604,299 circuit simulation
HCIRCUIT 105,676 513,072 circuit simulation
TRANS4 116,835 749,800 circuit simulation
CAGE12 130,228 2,032,536 directed weighted graph
FEM_3D_THERMAL2 147,900 3,489,300 thermal problem
XENON2 157,464 3,866,668 materials problem
CRASHBASIS 160,000 1,750,416 optimization problem
MAJORBASIS 160,000 1,750,416 optimization problem
STOMACH 213,360 3,021,648 2D/3D problem
TORSO3 256,156 4,429,042 2D/3D problem
ASIC_320KS 321,671 1,316,085 circuit simulation
LANGUAGE 399,130 1,216,334 directed weighted graph
CAGE13 445,315 7,479,343 directed weighted graph
RAJAT30 643,994 6,175,244 circuit simulation
ASIC_680KS 682,862 2,638,997 circuit simulation

40 / 45

Direct-inverse (NBIF) decomposition: experiments

Matrix NBIF ILU(τ)
relsize t_p its t_it relsize t_p its t_it

CHEM_MASTER1 0.53 0.42 169 0.73 0.46 0.02 170 0.75
EPB3 0.93 1.09 76 1.22 1.03 0.03 73 1.14
POISSON3DB 0.11 1.11 126 3.45 0.12 0.11 136 3.92
RAJAT20 0.17 0.70 8 0.09 0.15 0.03 8 0.09
HCIRCUIT 0.39 0.56 182 2.45 0.31 0.03 191 2.45
TRANS4 0.32 0.41 65 1.06 0.22 0.06 66 1.03
CAGE12 0.31 0.94 5 0.13 0.36 0.09 5 0.17
FEM_3D_THERMAL2 0.06 1.45 20 0.63 0.08 0.14 23 0.73
XENON2 0.33 1.58 368 19.3 0.40 0.30 † †

CRASHBASIS 0.18 0.66 29 0.73 0.18 0.08 25 0.61
MAJORBASIS 0.36 1.08 15 0.42 0.37 0.09 15 0.42
STOMACH 0.07 0.80 20 0.67 0.07 0.09 25 0.86
TORSO3 0.06 1.31 6 0.28 0.06 0.17 3 0.16
ASIC_320KS 0.26 0.55 20 0.88 0.24 0.09 20 0.84
LANGUAGE 0.53 1.72 9 0.53 0.54 0.11 15 0.98
CAGE13 0.06 2.48 5 0.45 0.06 0.30 7 0.64
RAJAT30 0.11 3.53 3 0.34 0.13 0.41 3 0.30
ASIC_680KS 0.26 2.36 5 0.48 0.26 0.13 6 0.55

41 / 45

Direct-inverse (NBIF) decomposition: experiments: II.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
5

0

200

400

600

800

1000

1200

nu
m

be
r

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 ILU(tau)
 NBIF

Figure: Sizes of NBIF and ILU(τ) preconditioners versus iteration counts of the
preconditioned BiCGStab method for the matrix CHEM_MASTER1.

42 / 45

Outline

1 Limits of standard algebraic approaches

2 Standard biconjugation and matrix inverses

3 Fast implementations of more sophisticated incomplete decompositions

4 Direct-inverse decompositions

5 Conclusions

43 / 45

Conclusions

Development of algebraic decompositions not finished.

44 / 45

Conclusions

Development of algebraic decompositions not finished.

In particular, a new direct-inverse decomposition BIF/NBIF useful in
preconditioning was introduced.

44 / 45

Conclusions

Development of algebraic decompositions not finished.

In particular, a new direct-inverse decomposition BIF/NBIF useful in
preconditioning was introduced.

BIF/NBIF may be useful in other applications, e.g. in construction of
condition estimators.

44 / 45

Conclusions

Development of algebraic decompositions not finished.

In particular, a new direct-inverse decomposition BIF/NBIF useful in
preconditioning was introduced.

BIF/NBIF may be useful in other applications, e.g. in construction of
condition estimators.

Efficiency of the new schemes is strongly related to their
implementation.

44 / 45

Conclusions

Development of algebraic decompositions not finished.

In particular, a new direct-inverse decomposition BIF/NBIF useful in
preconditioning was introduced.

BIF/NBIF may be useful in other applications, e.g. in construction of
condition estimators.

Efficiency of the new schemes is strongly related to their
implementation.

Further computational aspects are still under investigation.

Thank you for your attention!

44 / 45

Last but not least

Thank you for your attention!

45 / 45

Last but not least

Thank you for your attention!

45 / 45

Last but not least

Thank you for your attention!

45 / 45

Last but not least

Thank you for your attention!

45 / 45

	Algebraic preconditioners
	Limits of standard algebraic approaches
	Standard biconjugation and matrix inverses
	Fast implementations of more sophisticated incomplete decompositions
	Direct-inverse decompositions
	Conclusions

