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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [(z\ _(f
BT o)\y)  \o/)"

> A is a square n X n nonsingular (symmetric positive definite) matrix,

> B is a rectangular n X m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization, computational fluid dynamics, electromagnetism etc.
[Benzi, Golub and Liesen, 2005]. For the updated list of applications leading to
saddle point problems contact [Benzi, 2009].
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Segregated or coupled solution approach

1. Schur complement or null-space projection approach: outer iteration
for solving the reduced system;

2. inexact solution of inner systems: inner iteration loop with appropriate
stopping criterion;

Numerous solution schemes: inexact Uzawa algorithms, inexact null-space
methods, inner-outer iteration methods, two-stage iteration processes,
multilevel or multigrid methods, domain decomposition methods

References: [Elman and Golub, 1994], [Bramble, Pasciak and Vassilev, 2000],
[Zulehner, 2002], [Braess, Deuflhard and Lipnikov, 2002], ...



Preconditioning and preconditioners

1. preconditioning: iteration scheme for solving the preconditioned system;

2. approximate or incomplete factorization scheme: structure-based or
with appropriate dropping criterion;

Numerous techniques: block diagonal preconditioners, block triangular
preconditioners, constraint preconditioning, Hermitian/skew-Hermitian
preconditioning and other splittings, combination preconditioning

References: [Bramble and Pasciak, 1988], [Silvester and Wathen, Wathen and
Silvester 1993, 1994], [Elman, Silvester and Wathen, 2002, 2005], [Kay, Loghin
and Wathen, 2002], [Perugia, Simoncini, Arioli, 1999], [Keller, Gould and
Wathen 2000], [Gould, Hribar and Nocedal, 2001], [Stoll, Wathen, 2008], ...



Exact and finite precision arithmetic

1. iterative method: finite termination property, theoretical rate of
convergence;

2. the rounding errors in floating point arithmetic: numerical stability of
the solver

Numerous iterative solvers: conjugate gradient (CG) method, MINRES,
GMRES, flexible GMRES, GCR, BiCG, BiCGSTAB, ...

References: [Hestenes and Stiefel, 1952], [Paige and Saunders, 1975], [Saad
and Schultz, 1986], [Elman, 1982], [Lanczos 1950], [Fletcher 1976], [van der
Vorst 1992], [Paige, 1976], [Greenbaum and Strako$ 1991, 1992], [Greenbaum,
Paige, R., Strako¥ 1995, 1997, 2006], [Modersitzki, Sleijpen and van der Vorst,
1997, [Gutknecht, Jirdnek, R, 2008], ..
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Schur complement reduction method

» Compute y as a solution of the Schur complement system
BTA'By=BTA™'f,
> compute x as a solution of
Ax = f — By.

> Segregated vs. coupled approach: zj and yi approximate solutions to x
and y, respectively.

> Inexact solution of systems with A: every computed solution 4 of
Awu = b is interpreted an exact solution of a perturbed system

(A+AA)a=b+ Ab, [|AA] < 7||Al], [|Ab]| < 7[bll, Tr(A) < 1.



Iterative solution of the Schur complement system

choose yo, solve Axg = f — Byo

compute ay, and piy)

Ye+1 = Yk + Otkpiy)

solve Ap\*) = —Bp¥

back-substitution: outer

. iterati
Az =xp + Oékpgf), inner iteration
B: solve Azky1 = f — Bygi1, iteration

C: solve Aup, = f — Az, — Byg+1,

Tk+1 = Tk + Uk-

A =1l BT



Numerical experiments: a small model example

A = tridiag(1,4,1) € R B = rand(100, 20), f = rand(100,1),
k(A) = ||A]|l - |[A7"|| = 7.1695 - 0.4603 ~ 3.3001,
w(B) = ||B|| - | BT|| = 5.9990 - 0.4998 ~ 2.9983.



Accuracy in outer iteration
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Y = max{||y:|||:=0,1,...,k}.

T=oW)
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BT(A+AA)'Bj=BT(A+AA)f,
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Does the final accuracy depend on the outer iteration method?

> Gap between the true and updated residual for any two-term recurrence
method depends on the maximum norm of approximate solutions over the
whole iteration process. [Greenbaum 1994, 1997]

_ _ O(1)k(A _
I=B"47 f+ B A By < LA BN 1+ 1B,

Y = max{||y:|||:=0,1,...,k}.

> Schur complement system is negative definite, some norm of the error or
residual converges monotonically for almost all iterative methods. The
quantity Yy then does not play an important role and it can be replaced by
llyol| or a multiple of ||y||.



Accuracy in the saddle point system

I~ Az — Byl < L 151 + 1BV

| = BTay — | < (O‘L"(())HA B + [BIY:).

Yie = max{||ly:|| | =0,1,...,k}.

Back-substitution scheme a1 | o

A:  Generic update
Tht1 = Tk + QP

B: Direct substitution
Thp1 = AT — Byks1) additional

C: Corrected dir. subst. system with A
Tri1 = xp + A7H(f — Az — Byry1)

(z) T u

—BT"A ' f+ B"A By, = —BTx), — BTAT(f — Az — Byy)



Generic update: 1 = o3 + ozkpl(f’)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: xj 1 = x5, + A~ (f — Az, — Bypy1)
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Forward error of computed approximate solution

|z — 2kl < 7llf — Aze — Byxl| + 2l — B 2,
ly — yrll < y2llf — Azx — Byl + sl — BT @il

"= O—'r_nin(A), T2 = U;Lin(BL V3= O—T_nin(BTA_IB)'
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Null-space projection method

» compute z € N(B”) as a solution of the projected system
(I -INA({I -z = —1I)f,
» compute y as a solution of the least squares problem
By~ f — Ax,

I = B(BTB)™' BT is the orthogonal projector onto R(B).
> Schemes with the inexact solution of least squares with B. Every

computed approximate solution © of a least squares problem Bv = c is
interpreted as an exact solution of a perturbed least squares

(B+AB)t = c+ Ac, |ABJ < 7||BJ|, ||Ac|| < 7|l¢||, Tr(B) < 1.



Null-space

projection method

choose zg, solve Byy ~ f — Axo

compute ay, and p\* € N(BT)

Tk4+1 = Tk + Qkpy,

(z)

(@)

W) g (@) (@)
Tk

solve Bp,, — arAp;,

back-substitution:

A: g1 = i+,
B: solve Byix4+1 ~ f — Azk41,
C: solve Bvy, =~ f — Axk4+1 — Byg,
Yk+1 = Yk + Vk.
(=)

Tag1 = Th akAp(z) Bp,(cy)

inner
iteration

outer
iteration



Accuracy in the saddle point system

I = Az = By = < SEDRD 1)+ 4150,

- BTanl < 2O B

X = max{||z;]| |1 =0,1,...,k}.

Back-substitution scheme as
A:  Generic update
Yk+1 = Yk -l-p(y) “
B: Direct substitution -
Yk4+1 = BJr(f - AZEk+1) additional least
C: Corrected dir. subst. u square with B
Yrt1 = yk + B (f — Azp1 — Byy)




Generic update: yx11 = Yk +P;(€y)
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Direct substitution: i1 = BT (f — Azjyq)
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Corrected direct substitution: yp11 = yr + BT (f — Azp1 — Byg)
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Preconditioning of saddle point problems

A symmetric indefinite, P positive definite

— A B ~ _ T
A= (4 B)wporrn

(RTAR) R (g) =R (g)

R-TAR™! is symmetric indefinite!



Positive definite preconditioner: iterative solution of indefinite system

» Preconditioned MINRES is the MINRES on R=T AR ™!, minimizes the
P~ = R7'R"T-norm of the residual on K, (P~' A, P~ 1ro)

» CG applied to indefinite system with R~T AR~
CG iterate exists at least at every second step (tridiagonal form T, is
nonsingular at least at every second step)
[Paige, Saunders, 1975]

» peak/plateau behavior:
CG converges fast — MINRES is not much better than CG
CG norm increases (peak) — MINRES stagnates (plateau)
[Greenbaum, Cullum, 1996]



Symmetric indefinite or nonsymmetric preconditioner

P symmetric indefinite or nonsymmetric

()9
o) ()

P-1A and AP~! are nonsymmetric!



Indefinite preconditioner: iterative solution of nonsymmetric system

> The existence of a short-term recurrence solution methods
to solve the system with P~ A or AP~ for arbitrary right-hand side vector
[Faber, Manteuffel 1984, Liesen, Strako$, 2006]
» Matrices P~* A or AP~! can be symmetric (self-adjoint) in a given
bilinear form induced by symmetric indefinite H such that
H(PA) = (PTATH
H(AP™) = (AP~ H)TH
» symmetric indefinite preconditioner H = P! = (P17 so that
(PHLPHA= AP HT(PTY)
(P HTAP =P tAP!
> right vs left preconditioning for symmetric P
'P_IKH(A'P_I, To) = Kn(P_lA, 73_17”0)
(AP~)T = (P1)TA= P14



Iterative solution of a system symmetric in the given bilinear form

> H-symmetric variant of the nonsymmetric Lanczos process:
APV, = Vn+1Tn+17n, (.A'P_I)TWTL = Wn+1Tn+17n
WIV, =1 = W, = HV,
[Freund, Nachtigal, 1995]
> H-symmetric variant of Bi-CG
‘H-symmetric variant of QMR = ITFQMR
[Freund, Nachtigal, 1995]
» QMR-from-BiCG:
‘H-symmetric Bi-CG + QMR-smoothing
= H-symmetric QMR
[Freund, Nachtigal, 1995, Walker, Zhou 1994]
> peak/plateau behavior:
QMR does not improve the convergence of Bi-CG (Bi-CG converges fast
— QMR is not much better, Bi-CG norm increases — quasi-residual of
QMR stagnates)
[Greenbaum, Cullum, 1996]



Simplified Bi-CG algorithm is a preconditioned CG algorithm

H = P~ '-symmetric variant of two-term Bi-CG on AP~*
is the CG algorithm on A preconditioned with P

P~ tsymmetric Bi-CG(AP™) PCG(A) with P*
G
Yo Yo
7371]70 = 73717'0 , Do =To = P71p0 20 = 7)717“0
k=0,1,...
ay = (ri,7x)/ (AP~ ' pr, pr) ag = (re, z) /(AP 'pk, P~ " pk)
(ka) = (mk> + o P ps
Yk+1 Yk
Tht1 =Tk — e AP Ipg
Frp1 = P reaa Zhr1 = P v
Br = (he1, Frg1)/(Ths Tr) Br = ("kg1, 2611)/(Th> 2k)

P k1 = P rpgr + B P s P kg1 = zut1 + BuP ™ ok
Prtr1 =P ' pet1



Saddle point problem and indefinite constraint preconditioner

(o 0) ()= () 7= (o 0)

. (AI-T)+1 (A—I)B(B"B)™
AP = ( 0 I )

I = B(BYB)™*B” - orth. projector onto span(B)

[Luksan, VIgek, 1998], [Gould, Keller, Wathen 2000]
[Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]



Indefinite constraint preconditioner: spectral properties

AP~! nonsymmetric and non-diagonalizable!
but it has a 'nice’ spectrum:

oc(APY) c {1}Uuo(A(I —1I) +1II)
C {1} Ua((I - A - II)) — {0}

and only 2 by 2 Jordan blocks!

[LukZan, Vigek 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]



Krylov method with the constraint preconditioner: basic properties

()= (8) = (5500)
_(fY_( A B Th1

Tk+1 = 0 BT o Yrt

ro = (300) o = (3/<8L1>

= BT (x —x141) =0
= 341 € Null(BT)!



Preconditioned CG method: error norm

rE P lr;=0,7=0,...k
ZTk+1 is an iterate from CG applied to
(I — A — )z = (I — D) /!
satisfying

H.%' - karlHA - minue:r:o-l-span{(I—H)Sj} HHJ - UHA

[Luksan, VIEek 1998], [Gould, Wathen, Keller, 1999]



Preconditioned CG method: residual norm

[ k41 — 2f} =0
but in general

Yk+1 7Y

which is reflected in

S
Il = H( o )H # 0!

but under appropriate scaling yes!



Preconditioned CG method: residual norm

Tk+1 — T
T —zp41 = Pp1 ([ — DA — 1)) (z — 20)

Skt1 = Pr+1(A( —1II) + IT)so
o((I —IA(I —10)) ~ o(A(I — II) 4 I1)?

(1} € o((I — aA(I — 1)) — {0}

= s = H( Skt )H Lo



How to avoid misconvergence?

> Scaling by a constant a > 0 such that

{1} € conv(o((I — IN)aA(I —1I)) — {0})

(5 00 -0) = G 9a)-()
vi NT=Mef#£0, a=ra H)u,ix(f “ o)’

» Scaling by a diagonal A — (diag(A))~'/?A(diag(A))~1/? often gives
what we want!

» Different direction vector so that ||rg+1]| = ||sk+1]| is locally minimized!

yrt1 = yr + (B B) ' B sy,

[Braess, Deuflhard,Lipikov 1999], [Hribar, Gould, Nocedal, 1999], [Jirdnek, R, 2008]



Numerical experiments: a small model example

A = tridiag(1, 4, 1) € R*?*, B =rand(25,5) € R*®*®
f =rand(25,1) € R

o(A) C [2.0146,5.9854]

a=vr (5 D D)

1/100 [0.0207,0.0586] U {1}
1/10 [0.2067, 0.5856] U {1}
1/4 [0.5170,1.4641]

1 {1} U[2.0678, 5.8563]

4 {1} U [8.2712,23.4252)]
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Error norm of the computed approximate solution

Finite precision arithmetic:

_ _(1)
(Jgkﬂ )7 Tk+1=< f?f)l >_’O
Yr+1 Sk+1
lo—zs1llh = (MA@ — 241, 11w — 5201)+((] — D A@ — 311, (T — T (@ — 3441))

lz = Zesrlla < M@ — Zesr)l] + 72 ll(1 = DAL = ) (z — Tt ||

Exact arithmetic:
Iz — 2s)l| = 0

(I =AW - I)(z — zx41)]| = 0



Error norm of the computed approximate solution

departure from the null-space of BT + projection of the residual onto it
— T — _ —
lz = @rsalla < 3BT (@ = Zaar)| + 72l (I = (S = AZiss — B
can be monitored by easily computable quantities:

- (2
BT (& — Zpy1) ~ 32421

(I = T)(f — AZxp1 — Bier) ~ (I — 5,



Residuals: maximum attainable accuracy

_ _ —(1 _ —(2
I(f = AZy1 — Biisr) — 5oyl BT (x — Frga) — 5701 <

i (D)= (A4 BY () - ()
=1o BT 0 Thot1 57
< ciek(A) maxj—o,...k+1 [|75]]

[Greenbaum 1994,1997], [Sleijpen, et al. 1994]

good scaling: ||7;|| — 0 nearly monotonically
7ol ~ maxj=o,....k+1 [I75]l



convergence characteristics
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convergence characteristics
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Conclusions: segregated solution approach

> The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [Jirdnek, R, 2008].
The schemes with (generic or corrected substitution) updates deliver
approximate solutions which satisfy either the first or second block
equation to working accuracy.

» Care must be taken when solving nonsymmetric systems [Jirdnek, R,
2008], all bounds of the limiting accuracy depend on the maximum norm
of computed iterates, cf. [Greenbaum 1994,1997], [Sleijpen, et al. 1994].

iteration number k



Conclusions: coupled approach with indefinite preconditioner

» Short-term recurrence methods are applicable for saddle point problems
with indefinite preconditioning at a cost comparable to that of symmetric
solvers. There is a tight connection between the simplified Bi-CG
algorithm and the classical CG.

» The convergence of CG applied to saddle point problem with indefinite
preconditioner for all right-hand side vectors is not guaranteed. For a
particular set of right-hand sides the convergence can be achieved by the
appropriate scaling of the saddle point problem.

» Since the maximum attainable accuracy depends heavily on the size of
computed residuals, a good scaling of the problems leads to approximate
solutions satisfying both two block equations to the working accuracy.



Thank you for your attention.

http://www.cs.cas.cz/~miro
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