Numeric behavior of saddle point solvers

Miro Rozložník joint results with Pavel Jiránek and Valeria Simoncini

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

The 4-th IMACS conference on Mathematical modelling and computational methods in applied sciences and engineering - MODELLING 2009, Rožnov pod Radhoštěm, Czech Republic, June 22-26, 2009

Saddle point problems

We consider a saddle point problem with the symmetric 2×2 block form

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}.$$

- ightharpoonup A is a square $n \times n$ nonsingular (symmetric positive definite) matrix,
- ▶ B is a rectangular $n \times m$ matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained optimization, computational fluid dynamics, electromagnetism etc. [Benzi, Golub and Liesen, 2005]. For the updated list of applications leading to saddle point problems contact [Benzi, 2009].

PRECONDITIONER

ITERATIVE SOLVER

Segregated or coupled solution approach

- Schur complement or null-space projection approach: outer iteration for solving the reduced system;
- inexact solution of inner systems: inner iteration loop with appropriate stopping criterion;

Numerous solution schemes: inexact Uzawa algorithms, inexact null-space methods, inner-outer iteration methods, two-stage iteration processes, multilevel or multigrid methods, domain decomposition methods References: [Elman and Golub, 1994], [Bramble, Pasciak and Vassilev, 2000], [Zulehner, 2002], [Braess, Deuflhard and Lipnikov, 2002], ...

Preconditioning and preconditioners

- 1. **preconditioning**: iteration scheme for solving the preconditioned system;
- approximate or incomplete factorization scheme: structure-based or with appropriate dropping criterion;

Numerous techniques: block diagonal preconditioners, block triangular preconditioners, constraint preconditioning, Hermitian/skew-Hermitian preconditioning and other splittings, combination preconditioning References: [Bramble and Pasciak, 1988], [Silvester and Wathen, Wathen and Silvester 1993, 1994], [Elman, Silvester and Wathen, 2002, 2005], [Kay, Loghin and Wathen, 2002], [Perugia, Simoncini, Arioli, 1999], [Keller, Gould and Wathen 2000], [Gould, Hribar and Nocedal, 2001], [Stoll, Wathen, 2008], ...

Exact and finite precision arithmetic

- iterative method: finite termination property, theoretical rate of convergence;
- the rounding errors in floating point arithmetic: numerical stability of the solver

Numerous iterative solvers: conjugate gradient (CG) method, MINRES, GMRES, flexible GMRES, GCR, BiCG, BiCGSTAB, ... References: [Hestenes and Stiefel, 1952], [Paige and Saunders, 1975], [Saad and Schultz, 1986], [Elman, 1982], [Lanczos 1950], [Fletcher 1976], [van der Vorst 1992], [Paige, 1976], [Greenbaum and Strakoš 1991, 1992], [Greenbaum, Paige, R., Strakoš 1995, 1997, 2006], [Modersitzki, Sleijpen and van der Vorst, 1997], [Gutknecht, Jiránek, R, 2008], ...

Delay of convergence and limit on the final accuracy

Schur complement reduction method

Compute y as a solution of the Schur complement system

$$B^T A^{-1} B y = B^T A^{-1} f,$$

compute x as a solution of

$$Ax = f - By$$
.

- Segregated vs. coupled approach: x_k and y_k approximate solutions to x and y_k respectively.
- Inexact solution of systems with A: every computed solution \hat{u} of Au=b is interpreted an exact solution of a perturbed system

$$(A+\Delta A)\hat{u}=b+\Delta b,\; \|\Delta A\|\leq \tau \|A\|,\; \|\Delta b\|\leq \tau \|b\|,\; \tau\kappa(A)\ll 1.$$

Iterative solution of the Schur complement system

choose
$$y_0$$
, solve $Ax_0 = f - By_0$ compute α_k and $p_k^{(y)}$
$$y_{k+1} = y_k + \alpha_k p_k^{(y)}$$
 solve $Ap_k^{(x)} = -Bp_k^{(y)}$ back-substitution: A: $x_{k+1} = x_k + \alpha_k p_k^{(x)}$, B: solve $Ax_{k+1} = f - By_{k+1}$, C: solve $Au_k = f - Ax_k - By_{k+1}$,
$$x_{k+1} = x_k + u_k$$
.
$$r_{k+1}^{(y)} = r_k^{(y)} - \alpha_k B^T p_k^{(x)}$$

Numerical experiments: a small model example

$$A = \operatorname{tridiag}(1,4,1) \in \mathbb{R}^{100 \times 100}, \ B = \operatorname{rand}(100,20), \ f = \operatorname{rand}(100,1),$$

$$\kappa(A) = \|A\| \cdot \|A^{-1}\| = 7.1695 \cdot 0.4603 \approx 3.3001,$$

$$\kappa(B) = \|B\| \cdot \|B^{\dagger}\| = 5.9990 \cdot 0.4998 \approx 2.9983.$$

Accuracy in outer iteration

$$|| - B^T A^{-1} f + B^T A^{-1} B y_k - r_k^{(y)}|| \le \frac{O(\tau) \kappa(A)}{1 - \tau \kappa(A)} ||A^{-1}|| ||B|| (||f|| + ||B|| Y_k).$$

$$Y_k \equiv \max\{||y_i|| | i = 0, 1, \dots, k\}.$$

$$B^{T}(A + \Delta A)^{-1}B\hat{y} = B^{T}(A + \Delta A)^{-1}f,$$

$$\|B^{T}A^{-1}f - B^{T}A^{-1}B\hat{y}\| \le \frac{\tau\kappa(A)}{1 - \tau\kappa(A)}\|A^{-1}\|\|B\|^{2}\|\hat{y}\|.$$

Does the final accuracy depend on the outer iteration method?

Gap between the true and updated residual for any two-term recurrence method depends on the maximum norm of approximate solutions over the whole iteration process. [Greenbaum 1994, 1997]

$$||-B^{T}A^{-1}f + B^{T}A^{-1}By_{k} - r_{k}^{(y)}|| \le \frac{O(\tau)\kappa(A)}{1 - \tau\kappa(A)}||A^{-1}|||B||(||f|| + ||B||Y_{k}).$$

$$Y_{k} = \max\{||y_{i}|| | i = 0, 1, \dots, k\}.$$

Schur complement system is negative definite, some norm of the error or residual converges monotonically for almost all iterative methods. The quantity Y_k then does not play an important role and it can be replaced by $\|y_0\|$ or a multiple of $\|y\|$.

Accuracy in the saddle point system

$$||f - Ax_k - By_k|| \le \frac{O(\alpha_1)\kappa(A)}{1 - \tau\kappa(A)} (||f|| + ||B||Y_k),$$

$$|| - B^T x_k - r_k^{(y)}|| \le \frac{O(\alpha_2)\kappa(A)}{1 - \tau\kappa(A)} ||A^{-1}|| ||B|| (||f|| + ||B||Y_k),$$

$$Y_k \equiv \max\{||y_i|| \mid i = 0, 1, \dots, k\}.$$

	k-substitution scheme	α_1	α_2
A:	Generic update	τ	u
	$x_{k+1} = x_k + \alpha_k p_k^{(x)}$,	
B:	Direct substitution	τ	τ
	$x_{k+1} = A^{-1}(f - By_{k+1})$	'	<i>'</i>
C:	Corrected dir. subst.	u	τ
	$x_{k+1} = x_k + A^{-1}(f - Ax_k - By_{k+1})$,

additional system with A

$$-B^{T}A^{-1}f + B^{T}A^{-1}By_{k} = -B^{T}x_{k} - B^{T}A^{-1}(f - Ax_{k} - By_{k})$$

Generic update: $x_{k+1} = x_k + \alpha_k p_k^{(x)}$

Direct substitution: $x_{k+1} = A^{-1}(f - By_{k+1})$

Corrected direct substitution: $x_{k+1} = x_k + A^{-1}(f - Ax_k - By_{k+1})$

Forward error of computed approximate solution

$$||x - x_k|| \le \gamma_1 ||f - Ax_k - By_k|| + \gamma_2 || - B^T x_k||,$$

$$||y - y_k|| \le \gamma_2 ||f - Ax_k - By_k|| + \gamma_3 || - B^T x_k||,$$

$$\gamma_1 = \sigma_{min}^{-1}(A), \ \gamma_2 = \sigma_{min}^{-1}(B), \ \gamma_3 = \sigma_{min}^{-1}(B^T A^{-1} B).$$

Null-space projection method

 $\,\blacktriangleright\,$ compute $x\in N(B^T)$ as a solution of the projected system

$$(I - \Pi)A(I - \Pi)x = (I - \Pi)f,$$

lacktriangle compute y as a solution of the least squares problem

$$By \approx f - Ax$$
,

 $\Pi = B(B^T B)^{-1} B^T$ is the orthogonal projector onto R(B).

▶ Schemes with the inexact solution of least squares with B. Every computed approximate solution \bar{v} of a least squares problem $Bv \approx c$ is interpreted as an exact solution of a perturbed least squares

$$(B + \Delta B)\overline{v} \approx c + \Delta c, \ \|\Delta B\| \le \tau \|B\|, \ \|\Delta c\| \le \tau \|c\|, \ \tau \kappa(B) \ll 1.$$

Null-space projection method

$$\begin{aligned} & \text{choose } x_0, \text{ solve } By_0 \approx f - Ax_0 \\ & \text{compute } \alpha_k \text{ and } p_k^{(x)} \in N(B^T) \\ & x_{k+1} = x_k + \alpha_k p_k^{(x)} \\ & \text{solve } Bp_k^{(y)} \approx r_k^{(x)} - \alpha_k Ap_k^{(x)} \\ & \text{back-substitution:} \\ & \textbf{A: } y_{k+1} = y_k + p_k^{(y)}, \\ & \textbf{B: solve } By_{k+1} \approx f - Ax_{k+1}, \\ & \textbf{C: solve } Bv_k \approx f - Ax_{k+1} - By_k, \\ & y_{k+1} = y_k + v_k. \end{aligned} \end{aligned} \end{aligned} \text{inner iteration}$$

Accuracy in the saddle point system

$$||f - Ax_k - By_k - r_k^{(x)}|| \le \frac{O(\alpha_3)\kappa(B)}{1 - \tau\kappa(B)} (||f|| + ||A||X_k),$$
$$|| - B^T x_k|| \le \frac{O(\tau)\kappa(B)}{1 - \tau\kappa(B)} ||B||X_k,$$
$$X_k \equiv \max\{||x_i|| \mid i = 0, 1, \dots, k\}.$$

Back-substitution scheme		α_3
A:	Generic update	u
	$y_{k+1} = y_k + p_k^{(y)}$	
B:	Direct substitution	τ
	$y_{k+1} = B^{\dagger}(f - Ax_{k+1})$	'
C:	Corrected dir. subst.	u
	$y_{k+1} = y_k + B^{\dagger} (f - Ax_{k+1} - By_k)$	

additional least square with B

Generic update: $y_{k+1} = y_k + p_k^{(y)}$

Direct substitution: $y_{k+1} = B^{\dagger}(f - Ax_{k+1})$

Corrected direct substitution: $y_{k+1} = y_k + B^{\dagger}(f - Ax_{k+1} - By_k)$

Preconditioning of saddle point problems

 ${\mathcal A}$ symmetric indefinite, ${\mathcal P}$ positive definite

$$\mathcal{A} = \begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \approx \mathcal{P} = \mathcal{R}^T \mathcal{R}$$

$$\left(\mathcal{R}^{-T}\mathcal{A}\mathcal{R}^{-1}\right)\mathcal{R}\begin{pmatrix}x\\y\end{pmatrix}=\mathcal{R}^{-T}\begin{pmatrix}f\\0\end{pmatrix}$$

 $\mathcal{R}^{-T}\mathcal{A}\mathcal{R}^{-1}$ is symmetric indefinite!

Positive definite preconditioner: iterative solution of indefinite system

- Preconditioned MINRES is the MINRES on $\mathcal{R}^{-T}\mathcal{A}\mathcal{R}^{-1}$, minimizes the $\mathcal{P}^{-1}=\mathcal{R}^{-1}\mathcal{R}^{-T}$ -norm of the residual on $K_n(\mathcal{P}^{-1}\mathcal{A},\mathcal{P}^{-1}r_0)$
- ► CG applied to indefinite system with $\mathcal{R}^{-T}\mathcal{A}\mathcal{R}^{-1}$: CG iterate exists at least at every second step (tridiagonal form T_n is nonsingular at least at every second step)

[Paige, Saunders, 1975]

▶ peak/plateau behavior: CG converges fast → MINRES is not much better than CG CG norm increases (peak) → MINRES stagnates (plateau) [Greenbaum, Cullum, 1996] ${\cal P}$ symmetric indefinite or nonsymmetric

$$\mathcal{P}^{-1}\mathcal{A}\begin{pmatrix} x \\ y \end{pmatrix} = \mathcal{P}^{-1}\begin{pmatrix} f \\ 0 \end{pmatrix}$$

$$\left(\mathcal{A}\mathcal{P}^{-1}\right)\mathcal{P}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}f\\0\end{pmatrix}$$

 $\mathcal{P}^{-1}\mathcal{A}$ and $\mathcal{A}\mathcal{P}^{-1}$ are nonsymmetric!

Indefinite preconditioner: iterative solution of nonsymmetric system

- ▶ The existence of a short-term recurrence solution methods to solve the system with $\mathcal{P}^{-1}\mathcal{A}$ or $\mathcal{A}\mathcal{P}^{-1}$ for arbitrary right-hand side vector [Faber, Manteuffel 1984, Liesen, Strakoš, 2006]
- ▶ Matrices $\mathcal{P}^{-1}\mathcal{A}$ or $\mathcal{A}\mathcal{P}^{-1}$ can be symmetric (self-adjoint) in a given bilinear form induced by **symmetric indefinite** \mathcal{H} such that $\mathcal{H}(\mathcal{P}^{-1}\mathcal{A}) = (\mathcal{P}^{-1}\mathcal{A})^T\mathcal{H}$ $\mathcal{H}(\mathcal{A}\mathcal{P}^{-1}) = (\mathcal{A}\mathcal{P}^{-1})^T\mathcal{H}$
- ▶ symmetric indefinite preconditioner $\mathcal{H} = \mathcal{P}^{-1} = (\mathcal{P}^{-1})^T$ so that $(\mathcal{P}^{-1})^T(\mathcal{P}^{-1})\mathcal{A} = \mathcal{A}(\mathcal{P}^{-1})^T(\mathcal{P}^{-1})$ $(\mathcal{P}^{-1})^T\mathcal{A}\mathcal{P}^{-1} = \mathcal{P}^{-1}\mathcal{A}\mathcal{P}^{-1}$
- right vs left preconditioning for symmetric \mathcal{P} $\mathcal{P}^{-1}K_n(\mathcal{A}\mathcal{P}^{-1},r_0)=K_n(\mathcal{P}^{-1}\mathcal{A},\mathcal{P}^{-1}r_0)$ $(\mathcal{A}\mathcal{P}^{-1})^T=(\mathcal{P}^{-1})^T\mathcal{A}=\mathcal{P}^{-1}\mathcal{A}$

Iterative solution of a system symmetric in the given bilinear form

lacktriangleright $\mathcal{H} ext{-symmetric variant of the nonsymmetric Lanczos process:}$

$$\mathcal{AP}^{-1}V_n = V_{n+1}T_{n+1,n}, \ (\mathcal{AP}^{-1})^TW_n = W_{n+1}\tilde{T}_{n+1,n}$$

$$W_n^TV_n = I \Longrightarrow W_n = \mathcal{H}V_n$$

[Freund, Nachtigal, 1995]

 $\begin{array}{l} \blacktriangleright \ \, \mathcal{H}\mbox{-symmetric variant of Bi-CG} \\ \mathcal{H}\mbox{-symmetric variant of QMR} \equiv \mbox{ITFQMR} \end{array}$

[Freund, Nachtigal, 1995]

QMR-from-BiCG:

 \mathcal{H} -symmetric Bi-CG + QMR-smoothing $\Longrightarrow \mathcal{H}$ -symmetric QMR

[Freund, Nachtigal, 1995, Walker, Zhou 1994]

peak/plateau behavior:

QMR does not improve the convergence of Bi-CG (Bi-CG converges fast \rightarrow QMR is not much better, Bi-CG norm increases \rightarrow quasi-residual of QMR stagnates)

[Greenbaum, Cullum, 1996]

Simplified Bi-CG algorithm is a preconditioned CG algorithm

 $\mathcal{H}=\mathcal{P}^{-1}$ -symmetric variant of two-term Bi-CG on \mathcal{AP}^{-1} is the CG algorithm on \mathcal{A} preconditioned with \mathcal{P}

$$\begin{array}{ll} \mathcal{P}^{-1}\text{-symmetric Bi-CG}(\mathcal{A}\mathcal{P}^{-1}) & \operatorname{PCG}(\mathcal{A}) \text{ with } \mathcal{P}^{-1} \\ \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \ r_0 = b - \mathcal{A}\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \\ \\ \mathcal{P}^{-1}p_0 = \mathcal{P}^{-1}r_0 \text{ , } \tilde{p}_0 = \tilde{r}_0 = \mathcal{P}^{-1}p_0 & z_0 = \mathcal{P}^{-1}r_0 \\ k = 0, 1, \dots \\ \alpha_k = (r_k, \tilde{r}_k)/(\mathcal{A}\mathcal{P}^{-1}p_k, \tilde{p}_k) & \alpha_k = (r_k, z_k)/(\mathcal{A}\mathcal{P}^{-1}p_k, \mathcal{P}^{-1}p_k) \\ \begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} + \alpha_k \mathcal{P}^{-1}p_k \\ \\ r_{k+1} = r_k - \alpha_k \mathcal{A}\mathcal{P}^{-1}p_k \\ \\ \tilde{r}_{k+1} = \mathcal{P}^{-1}r_{k+1} & z_{k+1} = \mathcal{P}^{-1}r_{k+1} \\ \beta_k = (r_{k+1}, \tilde{r}_{k+1})/(r_k, \tilde{r}_k) & \beta_k = (r_{k+1}, z_{k+1})/(r_k, z_k) \\ \mathcal{P}^{-1}p_{k+1} = \mathcal{P}^{-1}r_{k+1} + \beta_k \mathcal{P}^{-1}p_k & \mathcal{P}^{-1}p_{k+1} = z_{k+1} + \beta_k \mathcal{P}^{-1}p_k \\ \\ \tilde{p}_{k+1} = \mathcal{P}^{-1}p_{k+1} & \mathcal{P}^{-1}p_{k+1} & \mathcal{P}^{-1}p_k \\ \end{array}$$

Saddle point problem and indefinite constraint preconditioner

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}, \quad \mathcal{P} = \begin{pmatrix} I & B \\ B^T & 0 \end{pmatrix}$$

$$\mathcal{AP}^{-1} = \begin{pmatrix} A(I - \Pi) + \Pi & (A - I)B(B^TB)^{-1} \\ 0 & I \end{pmatrix}$$

 $\Pi = B(B^TB)^{-1}B^T$ - orth. projector onto span(B)

[Lukšan, Vlček, 1998], [Gould, Keller, Wathen 2000] [Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]

Indefinite constraint preconditioner: spectral properties

 \mathcal{AP}^{-1} nonsymmetric and non-diagonalizable! but it has a 'nice' spectrum:

$$\sigma(\mathcal{AP}^{-1}) \subset \{1\} \cup \sigma(A(I - \Pi) + \Pi)$$

$$\subset \{1\} \cup \sigma((I - \Pi)A(I - \Pi)) - \{0\}$$

and only 2 by 2 Jordan blocks!

[Lukšan, Vlček 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]

Krylov method with the constraint preconditioner: basic properties

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, r_0 = \begin{pmatrix} s_0 \\ 0 \end{pmatrix}, e_{k+1} = \begin{pmatrix} x - x_{k+1} \\ y - y_{k+1} \end{pmatrix}$$

$$r_{k+1} = \begin{pmatrix} f \\ 0 \end{pmatrix} - \begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix}$$

$$r_0 = \begin{pmatrix} s_0 \\ 0 \end{pmatrix} \Rightarrow r_{k+1} = \begin{pmatrix} s_{k+1} \\ 0 \end{pmatrix}$$

$$\Rightarrow B^T(x - x_{k+1}) = 0$$

$$\Rightarrow x_{k+1} \in Null(B^T)!$$

Preconditioned CG method: error norm

$$r_{k+1}^T \mathcal{P}^{-1} r_j = 0$$
, $j = 0, \dots, k$

 x_{k+1} is an iterate from CG applied to

$$(I - \Pi)A(I - \Pi)x = (I - \Pi)f!$$

satisfying

$$||x - x_{k+1}||_A = \min_{u \in x_0 + span\{(I - \Pi)s_j\}} ||x - u||_A$$

[Lukšan, Vlček 1998], [Gould, Wathen, Keller, 1999]

Preconditioned CG method: residual norm

$$||x_{k+1} - x|| \to 0$$

but in general

$$y_{k+1} \not\to y$$

which is reflected in

$$||r_{k+1}|| = \left\| \left(\begin{array}{c} s_{k+1} \\ 0 \end{array} \right) \right\| \neq 0!$$

but under appropriate scaling yes!

Preconditioned CG method: residual norm

$$x_{k+1} \to x$$

$$x - x_{k+1} = \phi_{k+1}((I - \Pi)A(I - \Pi))(x - x_0)$$

$$s_{k+1} = \phi_{k+1}(A(I - \Pi) + \Pi)s_0$$

$$\sigma((I - \Pi)A(I - \Pi)) \sim \sigma(A(I - \Pi) + \Pi)?$$

$$\{1\} \in \sigma((I - \Pi)\alpha A(I - \Pi)) - \{0\}$$

$$\Rightarrow ||r_{k+1}|| = \left\| \begin{pmatrix} s_{k+1} \\ 0 \end{pmatrix} \right\| \to 0!$$

How to avoid misconvergence?

▶ Scaling by a constant $\alpha > 0$ such that

$$\{1\} \in conv(\sigma((I - \Pi)\alpha A(I - \Pi)) - \{0\})$$

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{pmatrix} \alpha A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ \alpha y \end{pmatrix} = \begin{pmatrix} \alpha f \\ 0 \end{pmatrix}$$

$$v : \quad \|(I - \Pi)v\| \neq 0, \quad \alpha = \frac{1}{((I - \Pi)v, A(I - \Pi)v)}!$$

- ▶ Scaling by a diagonal $A \to (diag(A))^{-1/2} A (diag(A))^{-1/2}$ often gives what we want!
- ▶ Different direction vector so that $||r_{k+1}|| = ||s_{k+1}||$ is locally minimized!

$$y_{k+1} = y_k + (B^T B)^{-1} B^T s_k$$

[Braess, Deuflhard, Lipikov 1999], [Hribar, Gould, Nocedal, 1999], [Jiránek, R, 2008]

Numerical experiments: a small model example

$$A = \operatorname{tridiag}(1,4,1) \in \mathsf{R}^{25,25}, \ B = \operatorname{rand}(25,5) \in \mathsf{R}^{25,5}$$

$$f = \operatorname{rand}(25,1) \in \mathsf{R}^{25}$$

$$\sigma(A) \subset [2.0146,5.9854]$$

$$\alpha = 1/\tau \quad \sigma(\begin{pmatrix} \alpha A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} I & B \\ B^T & 0 \end{pmatrix}^{-1})$$

$$\frac{1/100}{1/10} \quad \begin{bmatrix} 0.0207,0.0586 \end{bmatrix} \cup \{1\} \\ 1/10 \quad \begin{bmatrix} 0.2067,0.5856 \end{bmatrix} \cup \{1\} \\ 1/4 \quad \begin{bmatrix} 0.5170,1.4641 \end{bmatrix}$$

$$1 \quad \{1\} \cup [2.0678,5.8563] \\ 4 \quad \{1\} \cup [8.2712,23.4252]$$

Error norm of the computed approximate solution

Finite precision arithmetic:

$$\begin{pmatrix} \bar{x}_{k+1} \\ \bar{y}_{k+1} \end{pmatrix}, \quad \bar{r}_{k+1} = \begin{pmatrix} \bar{s}_{k+1}^{(1)} \\ \bar{s}_{k+1}^{(2)} \end{pmatrix} \to 0$$

$$||x - \bar{x}_{k+1}||_A^2 = (\Pi A(x - \bar{x}_{k+1}), \Pi(x - \bar{x}_{k+1})) + ((I - \Pi)A(x - \bar{x}_{k+1}), (I - \Pi)(x - \bar{x}_{k+1}))$$

$$||x - \bar{x}_{k+1}||_A \le \gamma_1 ||\Pi(x - \bar{x}_{k+1})|| + \gamma_2 ||(I - \Pi)A(I - \Pi)(x - \bar{x}_{k+1})||$$

Exact arithmetic:

$$\|\Pi(x - x_{k+1})\| = 0$$
$$\|(I - \Pi)A(I - \Pi)(x - x_{k+1})\| \to 0$$

Error norm of the computed approximate solution

departure from the null-space of \boldsymbol{B}^T + projection of the residual onto it

$$||x - \bar{x}_{k+1}||_A \le \gamma_3 ||B^T(x - \bar{x}_{k+1})|| + \gamma_2 ||(I - \Pi)(f - A\bar{x}_{k+1} - B\bar{y}_{k+1})||$$

can be monitored by easily computable quantities:

$$B^{T}(x - \bar{x}_{k+1}) \sim \bar{s}_{k+1}^{(2)}$$
$$(I - \Pi)(f - A\bar{x}_{k+1} - B\bar{y}_{k+1}) \sim (I - \Pi)\bar{s}_{k+1}^{(1)}$$

Residuals: maximum attainable accuracy

$$\begin{split} \|(f - A\bar{x}_{k+1} - B\bar{y}_{k+1}) - \bar{s}_{k+1}^{(1)}\|, & \|B^T(x - \bar{x}_{k+1}) - \bar{s}_{k+1}^{(2)}\| \leq \\ & \leq \|\begin{pmatrix} f \\ 0 \end{pmatrix} - \begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} \bar{x}_{k+1} \\ \bar{y}_{k+1} \end{pmatrix} - \begin{pmatrix} \bar{s}_{k+1}^{(1)} \\ \bar{s}_{k+1}^{(2)} \end{pmatrix} \| \\ & \leq c_1 \varepsilon \kappa(\mathcal{A}) \max_{j=0,\dots,k+1} \|\bar{r}_j\| \\ & \text{[Greenbaum 1994,1997], [Sleijpen, et al. 1994]} \end{split}$$

good scaling:
$$\|\bar{r}_j\| \to 0$$
 nearly monotonically $\|\bar{r}_0\| \sim \max_{j=0,\dots,k+1} \|\bar{r}_j\|$

SOLUTION APPROACH MAXIMUM ATTAINABLE ACCURACY

ITERATIVE SOLVER

Conclusions: segregated solution approach

- The accuracy measured by the residuals of the saddle point problem depends on the choice of the back-substitution scheme [Jiránek, R, 2008]. The schemes with (generic or corrected substitution) updates deliver approximate solutions which satisfy either the first or second block equation to working accuracy.
- Care must be taken when solving nonsymmetric systems [Jiránek, R, 2008], all bounds of the limiting accuracy depend on the maximum norm of computed iterates, cf. [Greenbaum 1994,1997], [Sleijpen, et al. 1994].

Conclusions: coupled approach with indefinite preconditioner

- Short-term recurrence methods are applicable for saddle point problems with indefinite preconditioning at a cost comparable to that of symmetric solvers. There is a tight connection between the simplified Bi-CG algorithm and the classical CG.
- The convergence of CG applied to saddle point problem with indefinite preconditioner for all right-hand side vectors is not guaranteed. For a particular set of right-hand sides the convergence can be achieved by the appropriate scaling of the saddle point problem.
- Since the maximum attainable accuracy depends heavily on the size of computed residuals, a good scaling of the problems leads to approximate solutions satisfying both two block equations to the working accuracy.

Thank you for your attention.

 $\verb|http://www.cs.cas.cz/~miro| \\$

- P. Jiránek and M. Rozložník. Maximum attainable accuracy of inexact saddle point solvers. *SIAM J. Matrix Anal. Appl.*, 29(4):1297–1321, 2008.
- P. Jiránek and M. Rozložník. Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems. *J. Comput. Appl. Math.* 215 (2008), pp. 28-37.
- M. Rozložník and V. Simoncini, Krylov subspace methods for saddle point problems with indefinite preconditioning, *SIAM J. Matrix Anal. Appl.*, 24 (2002), pp. 368–391.