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Saddle point problems

We consider a saddle point problem with the symmetric 2 x 2 block form
A B\ [(z\ _ (f
BT o0)\y) \o/"
» A is a square n X n nonsingular (symmetric positive definite) matrix,

» B is a rectangular n X m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization etc. [Benzi, Golub, and Liesen, 2005].



Inexact saddle point solvers

Solution algorithms for saddle point problems:

1. the segregated or coupled approach: outer iteration for solving the
reduced system;

2. the inexact solution of inner systems: inner iteration loop with
appropriate stopping criterion;

3. the rounding errors: finite precision arithmetic.

Numerous schemes: inexact Uzawa algorithms, inexact null-space methods,
inner-outer iteration methods, two-stage iteration processes, multilevel or
multigrid methods, domain decomposition methods

[Elman and Golub, 1994], [Bramble, Pasciak, and Vassilev, 2000], [Zulehner,
2002], [Braess, Deuflhard, and Lipnikov, 2002],...
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Schur complement reduction method

» Compute y as a solution of the Schur complement system
B'"AT'By=B"A"'f,
» compute z as a solution of
Az = f — By.

> Segregated vs. coupled approach: z and y, approximate solutions to =
and y, respectively.



Iterative solution of the Schur complement system

choose yo, solve Axg = f — Byo

compute ay, and piy)

Ye+1 = Yk + Otkpiy)

solve Ap\*) = —Bp¥

back-substitution: outer

. iterati
Az =xp + Oékpgf), inner iteration
B: solve Azky1 = f — Bygi1, iteration

C: solve Aup, = f — Az, — Byg+1,

Tk+1 = Tk + Uk-

A =1l BT



Accuracy in solving the inner systems

> Inexact solution of systems with A: every computed solution 4 of
Awu = b is interpreted an exact solution of a perturbed system

(A+AA)i =b+ Ab, [|AA] < 7||A[], [|Ab]| < 7[bll, Tr(A) < 1.

» Schur complement system solved with two-term recursion: if
lfI(BYA~'Bx) — BTA™'Bz|| < O(u)||A™ ||| B||?||z|| the theory of A.
Greenbaum could be applied , but in our 'idealized’ case we have
f(BTA™'Bz) = BY(A+ AA)"'Bz, |AA|| < 7||A|| leading to

A)

T 4—1 _ pT -1 < 7k(
Ifi(BTA™'Bz) — BTA Ba;||_1_m(A)

AT B ]l
> Variable tolerance for solving inner systems based on the relative residual
b — Adl|/||b]| < 7, where b = Bz gives
I 0BT A~ Bx) — B" A7 Bx| < 7| A7 |[|B|]*| ||

which can be seen as a floating point iteration process for the Schur
complement system with the roundoff unit equal to 7.



Maximum attainable accuracy of inexact Schur complement schemes

The limiting (maximum attainable) accuracy is measured by the ultimate
(asymptotic) values of:

1. the Schur complement residual: BT A~ f — BT A~! By;
2. the residuals in the saddle point system: f — Az, — By and —BTzy;
3. the forward errors: x — = and y — yi.

Numerical experiments: a small model example
A = tridiag(1,4,1) € R B = rand(100, 20), f = rand(100,1),
k(A) = ||A|| - |A™Y| = 7.1695 - 0.4603 ~ 3.3001,
k(B) = |B|| - | BT|| = 5.9990 - 0.4998 ~ 2.9983.



Accuracy in the outer iteration process

_ pT 41 T a-1g, @y < OK(A)
|-B A" f+B A" By —r, Hfl—m(A)”A HBIALN+ 1BYe)-

Y = max{||y:|||:=0,1,...,k}.

T=oW)

Teaveresidua o 187A-H1-87A- oy A H-BTA sy KO
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TK(A)

|BTAT = BT AT Byl < 1 el d) AT B [19]1-



Does the final accuracy depend on the method used in the outer iteration?

> According to A. Greenbaum, the gap between the true and updated
residuals for the two-term recurrence methods depends is proportional to
the maximum norm of the approximate solutions over the whole iteration
process.

O(r)r(4)

|-BTA7 4 BTAT By < ¥

—ry [AHIBICALA+ (1B YE).-

Yi = max{||y:|||:=0,1,...,k}.

> The Schur complement system is negative definite, the norm of the error
or residual converges monotonically for the most iterative methods. The
quantity Yy in the bounds then does not play an important role and it can
be replaced by [|yo|| or a small multiple of ||y]|.

» Our concept is similar to the general framework of inexact Krylov methods
due to Simoncini, Szyld, van den Eshof and Sleijpen, but we take into
account also the effects of associated rounding errors. For the outer
iteration process we consider a general class of iterative methods based on
two-term recurrences.



Accuracy in the saddle point system

I~ Az — Byl < L 151 + 1BV

| = BTay — | < (O‘L"(())HA B + [BIY:).

Yie = max{||ly:|| | =0,1,...,k}.

Back-substitution scheme a1 | o

A:  Generic update
Tht1 = Tk + QP

B: Direct substitution
Thp1 = AT — Byks1) additional

C: Corrected dir. subst. system with A
Tri1 = xp + A7H(f — Az — Byry1)

(z) T u

—BT"A ' f+ B"A By, = —BTx), — BTAT(f — Az — Byy)



Generic update: 1 = o3 + ozkpl(f’)
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Direct substitution: z3.1 = A~ (f — Bypi1)
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Corrected direct substitution: xj 1 = x5, + A~ (f — Az, — Bypy1)
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Forward error of computed approximate solution

|z — 2kl < 7llf — Aze — Byxl| + 2l — B 2,
ly — yrll < y2llf — Azx — Byl + sl — BT @il

"= O—'r_nin(A), T2 = U;Lin(BL V3= O—T_nin(BTA_IB)'
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Null-space

projection method

Analogous results for schemes, where the least squares with B are solved
inexactly. Again, every computed approximate solution of a least squares
problem with B is interpreted as an exact solution of a perturbed least

squares

choose xg, solve Byo ~ f — Axo

com

Th+1 = Tk + QkPy,

(=)
Thy

pute ay and pff) e N(BT)
()

solve Bp](cw ~ r,(f> - ozkApEf)

back-substitution:

A:yiin =y +py,

B: solve Byx+1 =~ f — Axk1,

C: solve By =~ f — Azi+1 — Bys,
Yk+1 = Yk + Vk.

=i~ atpl? — Bpl?

inner
iteration

outer
iteration



Null-space projection method

» compute x € N(B7) as a solution of the projected system
(I - A(I - e = (I - TI),
> compute y as a solution of the least squares problem
By~ f — Az,
IT is the orthogonal projector onto R(B).

The least squares with B are solved inexactly, i.e. the computed solution o of
Buv = c is an exact solution of a perturbed least squares problem

(B+AB)t =~ c+ Ac, ||AB| < 7||Bll, |Ac]| < 7|le|l, 7x(B) < 1.



Accuracy in the saddle point system

I = Az = By = < SEDRD 1)+ 4150,

- BTanl < 2O B

X = max{||z;]| |1 =0,1,...,k}.

Back-substitution scheme as
A:  Generic update
Yk+1 = Yk -l-p(y) “
B: Direct substitution -
Yk4+1 = BJr(f - AZEk+1) additional least
C: Corrected dir. subst. u square with B
Yrt1 = yk + B (f — Azp1 — Byy)




Generic update: yx11 = Yk +P;(€y)
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Direct substitution: i1 = BT (f — Azjyq)
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Corrected direct substitution: yp11 = yr + BT (f — Azp1 — Byg)
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Conclusions

> The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [Jirdnek, R, 2008].
The schemes with (generic or corrected substitution) updates deliver
approximate solutions which satisfy either the first or second block
equation to working accuracy.

» Care must be taken when solving nonsymmetric systems [Jirdnek, R,
2007], all bounds of the limiting accuracy depend on the maximum norm
of computed iterates, cf. [Greenbaum, 1997].

iteration number k



Related results in the context of saddle-point problems and Krylov subspace
methods

» General framework of inexact Krylov subspace methods: in exact
arithmetic the effects of relaxation in matrix-vector multiplication on the
ultimate accuracy of several solvers [Simoncini and Szyld, 2003], [van den
Eshof and Sleijpen, 2004].

» The effects of rounding errors in the Schur complement reduction (block
LU decomposition) method and the null-space method [Demmel, Higham,
and Schreiber, 1995], [Arioli, 2000], the maximum attainable accuracy
studied in terms of the user tolerance specified in the outer iteration [Arioli
and Baldini, 2001], [Mary3ska, R, Tama, 2000].

> Error analysis in computing the projections into the null-space and
constraint preconditioning, limiting accuracy of the preconditioned CG [R,
Simoncini, 2002], residual update strategy when solving constrained
quadratic programming problems [Gould, Hribar, and Nocedal, 2001], or in
cascadic multigrid method for elliptic problems [Braess, Deuflhard, and
Lipnikov, 2002].

> Theory for a general class of iterative methods based on coupled two-term
recursions, all bounds of the limiting accuracy depend on the maximum

norm of computed iterates, fixed matrix-vector multiplication,
cf. [Greenbaum, 1997].



General

comments and considerations, future work

"new_value = old_value 4+ small_correction”

Fixed-precision iterative refinement for improving the computed solution
Zold to a system Az = b: solving update equations Azcorr = 7 that have
residual » = b — Ayoq as a right-hand side to obtain Tnew = Told + Zcorr,
see [Wilkinson, 1963], [Higham, 1996].

Stationary iterative methods for Az = b and their maximum attainable
accuracy [Higham and Knight, 1993]: assuming splitting A = M — N and
inexact solution of systems with M, use Znew = Zola + M (b — Azola)
rather than Tnew = M ™' (Nxoa + b), [Higham, 1996].

Two-step splitting iteration framework: A = M7 — N1 = Mz — N,
assuming inexact solution of systems with M; and Ma, reformulation of
Mlxl/z = Ni1Zoga + b, Moxnew = N2£C1/2 + b, Hermitian/skew-Hermitian
splitting (HSS) iteration [Bai, Golub, and Ng, 2003].

Inexact preconditioners for saddle point problems: SIMPLE and
SIMPLE(R) type algorithms [Vuik and Saghir, 2002] and constraint
preconditioners [Benzi and Golub, 2004].



Thank you for your attention.
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