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.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

sparse enough

providing just sufficient approximation of the algebraic problem if this
makes computations faster

Our target is robustness, not a fragile power
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Structure of this talk

Some notes on the history of the structure-based preconditioners

Basic ways of improvements

Experimental results showing some structure-based effects
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1960).

Later co-invented and interpreted as incomplete decompositions
(Varga, 1960)

Additional corrections started to be heavily parametrized, added
purely algebraic relaxations (Baker, Oliphant (1960), Il’in (1970),
Woznicki (1989)); changing compensations dynamically (Sabinin,
1981, 1985).

stencils ↔ local interpolation ↔ elimination

starting with first order factorizations N =M −A = O(h)
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First encounter (continued)

Stencil-based advent (continued)

Later, second order factorizations (SIP - Stone, 1968). Difficulties to
symmetrize them (Saylor, 1974).

Nice results related to conditioning of M−1A, subsequent diagonal
modifications and their “algebraizations” (Dupont, Kendall, Rachford
(1968), Gustafsson (1978), Axelsson, Lindsgog (1986), van der Vorst
(1989) and a lot later work!.

More general patterns

Crucial moment: paper by Meijerink and van der Vorst (1977)
recognizing the potential of incomplete decompositions for
preconditioning.

Incomplete decompositions classified by adding (ℓ) after the name.
Starting to denote them by number of additional diagonals in simple
problems → IC(ℓ).
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General patterns

Matrix-based approach

Allowing fill up to a maximum length ℓ of any fill path (Watts III,
(1981)).

Practically: A fill entry is permitted provided level(i, j) ≤ ℓ.

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}

(one of more slightly different definitions)
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Incomplete decompositions
General patterns

Matrix-based approach

Often found that fill in L grows too quickly with ℓ.

While the error R = A− LLT inside the pattern is zero, outside can
be large.

But: Decay of entries away from diagonal may help a lot.
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al. etc.)

But: if only magnitudes of entries are used - structural information
may be lost

More complicated schemes may strongly influence implementations
(e.g., if both row and column access for intermediate quantities is
needed)

Plassman, Jones (1995): no structure, just the memory predictability,
see also Freund, Nachtigal, (1990). Similarly Lin, Moré with extended
memory. ILUT by Saad, (1994).

The importance of error matrix E = A− LLT understood (Duff,
Meurant, (1989)) and exploited (D’Azevedo, Forsyth, Tang, 1992)
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Natural competitor of level-based methods: considering values

First simple combination of level-based approaches with dropping:
D’Azevedo, Forsyth, Tang, (1992a).

Generally, convergence behavior can be far from predictable

The real breakthrough in level-based approaches: cheap predictions by
Hysom, Pothen, (2002)

Our MI22 preconditioner is a new way to use level-based information,
memory prediction and dropping at the same time.
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groups to get ngroup of them.
Set level(i, j) for individual entries: For ℓ < ngroup:
level(i, j) = (ℓ− 1) ∗ (l/ngroup) + 1 where l (1 ≤ l ≤ ngroup0) is
the index of the group aij belongs to, and slightly differently
otherwise.
During the IC(ℓ) decomposition, entries of the factor L that
correspond to nonzero entries of A are assigned the level level(i, j).
Each potential fill entry lij is assigned a level

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}.

A fill entry is permitted provided level(i, j) ≤ k.
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First component of our approach: new setting of levels
Experience from the experiments

Notes on the experiments

(+) Settings do not increase timings significantly.

(-)The improvements are often small. We intend to construct a
robust strategy which should be used as a default value.

Open problem: determine more sophisticated rules to preassign levels.
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Second component of our approach: keeping structure

Experiments with memory multiplier θ = 1: more difficult problem
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Second component of our approach: keeping structure

Experiments with memory multiplier θ = 1: simpler problem
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MI22 with levels versus IC(τ)(also via MI22)
TUBE1, cylindrical shell, n=21498

struc drop=0.0 drop=10−7

level size its size its
5 1250952 † 1227570 †

6 1660827 429 1618808 423
7 1807337 405 1756733 408
8 2178312 272 2104496 281
9 2368289 260 2280081 267
10 3026431 184 2873613 185
11 3968731 426 3656826 335
12 4874629 † 4398086 †

13 5849563 † 5178688 †

14 6840871 664 5938543 647
15 7838623 262 6680235 215

IC(τ) size its
55 280626 †

50 1458024 †

45 2076970 †

40 2252687 †

1e-3 16139618 †

1e-4 9001342 †

5e-5 9649083 471
2e-5 9610841 87
1e-5 10050227 18
5e-6 10741254 6
1e-6 12451396 2

0 21802746 1
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But: Reorderings may minimize the effect.
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MI22 and memory multiplier θ < 1
simple problem, 2D POISSON on a square, n=10000

memory drop=0.0 drop=10−4

0.2 10000 160 10000 160
0.3 11880 226 11880 226
0.4 15840 205 15840 205
0.5 19800 155 19800 155
0.6 27729 141 27721 142
0.7 35597 111 35524 111
0.8 39583 63 39583 63
0.9 39584 58 39584 63
1 39601 41 39601 41

1.5 59401 42 59401 43
2 79202 42 79202 42
3 118803 42 118803 40
4 158404 42 158404 42
5 198005 44 198005 39
8 316808 42 316808 32
10 396010 42 396010 22
15 594015 37 471092 6
20 792020 27 471092 6 24
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Conclusions

Preserving the structure may play significant role in incomplete
decompositions.
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