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Six tons large scale real world ill-posed problem:
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Solving large scale discrete ill-posed problems is frequently based upon

orthogonal projections-based model reduction using Krylov sub-

spaces, see, e.g., hybrid methods. This can be viewed as

approximation of a Riemann-Stieltjes distribution function

via matching moments.
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Consider the Riemann-Stieltjes distribution function ω(λ) with the

n points of increase associated with the HPD matrix B and the

normalized inital vector s , (or with the transfer function given by

the Laplace transform of a linear dynamical system determined by

B, s ). Then

s∗(λI − B)−1s =
n

∑

j=1

ωj

λ − λj
≡ Fn(λ) ,

where λj, j = 1, . . . , n denote the eigenvalues of B and ωj the

squared size of the component of s in the corresponding invariant

subspace respectively.
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The continued fraction on the right hand side is given by

Fn(λ) ≡
Rn(λ)

Pn(λ)

≡
1

λ − γ1 −
δ22

λ − γ2 −
δ23

λ − γ3 − . . .
. . .

λ − γn−1 −
δ2n

λ − γn

and the entries γ1, . . . , γn and δ2, . . . , δn form the Jacobi matrix
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Tn ≡











γ1 δ2
δ2 γ2

. . .
. . . . . . δn

δn γn











, δℓ > 0 , ℓ = 2, . . . , n .

Consider the kth Gauss-Christoffel quadrature approximation ω(k)(λ)

of the Riemann-Stieltjes distribution function ω(λ) . Its algebraic

degree is 2k − 1 , i.e., it matches the first 2k moments

ξℓ−1 =

∫

λℓ−1 dω(λ) =
k

∑

j=1

ω
(k)
j {λ

(k)
j }ℓ−1, ℓ = 1, . . . ,2k .
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The nodes and weights of ω(k)(λ) are given by the eigenvalues and

the corresponding squared first elements of the normalized eigenvec-

tors of Tk .

Expansion of the continued fraction Fn(λ) in terms of the decreasing

powers of λ and the approximation by its kth convergent Fk(λ)

gives

Fn(λ) =
2k
∑

ℓ=1

ξℓ−1

λℓ
+ O

(

1

λ2k+1

)

= Fk(λ) + O

(

1

λ2k+1

)

.

Here Fk(λ) approximates Fn(λ) with the error proportional to

λ−(2k+1), which represents the minimal partial realization matching

the first 2k moments, cf. [Stieltjes - 1894, Chebyshev - 1855].

7



Discrete ill-posed problem,

the smallest node and weight in approximation of ω(λ):
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Outline

1. Problem formulation

2. Golub-Kahan iterative bidiagonalization, Lanczos tridiagonaliza-

tion, and approximation of the Riemann-Stieltjes distribution func-

tion

3. Propagation of the noise in the Golub-Kahan bidiagonalization

4. Determination of the noise level

5. Numerical illustration

6. Summary and future work
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Consider an ill-posed square nonsingular linear algebraic system

A x ≈ b, A ∈ R
n×n, b ∈ R

n,

with the right-hand side corrupted by a white noise

b = bexact + bnoise 6= 0 ∈ R
n , ‖ bexact ‖ ≫ ‖ bnoise ‖ ,

and the goal to approximate xexact ≡ A−1 bexact.

The noise level δnoise ≡
‖bnoise‖

‖bexact‖
≪ 1 .
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Properties (assumptions):

• matrices A, AT , AAT have a smoothing property;

• left singular vectors uj of A represent increasing frequencies

as j increases;

• the system A x = bexact satisfies the discrete Picard condition.

Discrete Picard condition (DPC):

On average, the components |(bexact, uj)| of the true right-hand

side bexact in the left singular subspaces of A decay faster than

the singular values σj of A, j = 1, . . . , n .

White noise:

The components |(bnoise, uj)|, j = 1, . . . , n do not exhibit any trend.
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Problem Shaw: Noise level, Singular values, and DPC:

[Hansen – Regularization Tools]
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Regularization is used to suppress the effect of errors in the data

and extract the essential information about the solution.

In hybrid methods, see [O’Leary, Simmons – 81], [Hansen – 98], or

[Fiero, Golub Hansen, O’Leary – 97], [Kilmer, O’Leary – 01], [Kilmer,

Hansen, Español – 06], [O’Leary, Simmons – 81], the outer bidiago-

nalization is combined with an inner regularization – e.g., truncated

SVD (TSVD), or Tikhonov regularization – of the projected small

problem (i.e. of the reduced model).

The bidiagonalization is stopped when the regularized solution of the

reduced model matches some selected stopping criteria.
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Stopping criteria are typically based, amongst others, see [Björk –

88], [Björk, Grimme, Van Dooren – 94], on

• estimation of the L-curve [Calvetti, Golub, Reichel – 99], [Calvetti,

Morigi, Reichel, Sgallari – 00], [Calvetti, Reichel – 04];

• estimation of the distance between the exact and regularized so-

lution [O’Leary – 01];

• the discrepancy principle [Morozov – 66], [Morozov – 84];

• cross validation methods [Chung, Nagy, O’Leary – 04], [Golub,

Von Matt – 97], [Nguyen, Milanfar, Golub – 01].

For an extensive study and comparison see [Hansen – 98], [Kilmer,

O’Leary – 01].
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Stopping criteria based on information from residual vectors:

A vector x̂ is a good approximaton to xexact = A−1 bexact if the

corresponding residual approximates the (white) noise in the data

r̂ ≡ b − A x̂ ≈ bnoise .

Behavior of r̂ can be expressed in the frequency domain using

• discrete Fourier transform, see [Rust – 98], [Rust – 00],

[Rust, O’Leary – 08], or

• discrete cosine transform, see [Hansen, Kilmer, Kjeldsen – 06],

and then analyzed using statistical tools – cumulative periodograms.
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This talk:

Under the given (quite natural) assumptions, the Golub-Kahan itera-

tive bidiagonalization reveals the noise level δnoise .
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Outline

1. Problem formulation

2. Golub-Kahan iterative bidiagonalization, Lanczos tridiago-

nalization, and approximation of the Riemann-Stieltjes dis-

tribution function

3. Propagation of the noise in the Golub-Kahan bidiagonalization

4. Determination of the noise level

5. Numerical illustration

6. Summary and future work
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Golub-Kahan iterative bidiagonalization (GK) of A :

given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for j = 1,2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 .

Let Sk = [ s1, . . . , sk ] , Wk = [w1, . . . , wk ] be the associated

matrices with orthonormal columns.
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Denote

Lk =











α1
β2 α2

. . . . . .

βk αk











,

Lk+ =

















α1
β2 α2

. . . . . .

βk αk
βk+1

















=

[

Lk

eT
k βk+1

]

,

the bidiagonal matrices containing the normalization coefficients. Then
GK can be written in the matrix form as

AT Sk = Wk LT
k ,

A Wk =
[

Sk, sk+1

]

Lk+ = Sk+1 Lk+ .
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GK is closely related to the Lanczos tridiagonalization of the sym-

metric matrix A AT with the starting vector s1 = b / β1,

A AT Sk = Sk Tk + αk βk+1 sk+1 eT
k ,

Tk = Lk LT
k =















α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . . . . . αk−1 βk

αk−1 βk α2
k + β2

k















,

i.e. the matrix Lk from GK represents a Cholesky factor of the

symmetric tridiagonal matrix Tk from the Lanczos process.
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Approximation of the distribution function:

The Lanczos tridiagonalization of the given (SPD) matrix B ∈ Rn×n

generates at each step k a non-decreasing piecewise constant distri-

bution function ω(k) , with the nodes being the (distinct) eigenvalues

of the Lanczos matrix Tk and the weights ω
(k)
j being the squared

first entries of the corresponding normalized eigenvectors [Hestenes,

Stiefel – 52].

The distribution functions ω(k)(λ) , k = 1, 2, . . . represent Gauss-

Christoffel quadrature (i.e. minimal partial realization) approxima-

tions of the distribution function ω(λ) , [Hestenes, Stiefel – 52], [Fis-

cher – 96], [Meurant, Strakoš – 06].
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Consider the SVD

Lk = Pk Θk Qk
T ,

Pk = [p
(k)
1 , . . . , p

(k)
k ] , Qk = [q

(k)
1 , . . . , q

(k)
k ] , Θk = diag (θ

(k)
1 , . . . , θ

(k)
n ) ,

with the singular values ordered in the increasing order,

0 < θ
(k)
1 < . . . < θ

(k)
k .

Then Tk = Lk LT
k = Pk Θ2

k PT
k is the spectral decomposition of Tk ,

(θ
(k)
ℓ )2 are its eigenvalues (the Ritz values of AAT) and

p
(k)
ℓ its eigenvectors (which determine the Ritz vectors of AAT),

ℓ = 1, . . . , k .
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Summarizing:

The GK bidiagonalization generates at each step k the distribution

function

ω(k)(λ) with nodes (θ
(k)
ℓ )2 and weights ω

(k)
ℓ = |(p

(k)
ℓ , e1)|

2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(b/β1, uj)|

2 ,

where σ2
j , uj are the eigenpairs of A AT , for j = n, . . . , 1 .

Note that unlike the Ritz values (θ
(k)
ℓ )2, the squared singular values

σ2
j are enumerated in descending order.
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Outline

1. Problem formulation

2. Golub-Kahan iterative bidiagonalization, Lanczos tridiagonaliza-

tion, and approximation of the Riemann-Stieltjes distribution func-

tion

3. Propagation of the noise in the Golub-Kahan bidiagonaliza-

tion

4. Determination of the noise level

5. Numerical illustration

6. Summary and future work
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GK starts with the normalized noisy right-hand side s1 = b / ‖b‖ .

Consequently, vectors sj contain information about the noise.

Can this information be used to determine the level of the noise in

the observation vector b ?

Consider the problem Shaw from [Hansen – Regularization Tools]

(computed via [A,b exact,x] = shaw(400)) with a noisy right-

hand side (the noise was artificially added using the MATLAB function

randn). As an example we set

δnoise ≡
‖ bnoise ‖

‖ bexact ‖
= 10−14 .
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Components of several bidiagonalization vectors sj

computed via GK with double reorthogonalization:

0 200 400
−0.2

−0.1

0

0.1

0.2

s
1

0 200 400
−0.2

−0.1

0

0.1

0.2

s
6

0 200 400
−0.2

−0.1

0

0.1

0.2

s
11

0 200 400
−0.2

−0.1

0

0.1

0.2

s
16

0 200 400
−0.2

−0.1

0

0.1

0.2

s
17

0 200 400
−0.2

−0.1

0

0.1

0.2

s
18

0 200 400
−0.2

−0.1

0

0.1

0.2

s
19

0 200 400
−0.2

−0.1

0

0.1

0.2

s
20

0 200 400
−0.2

−0.1

0

0.1

0.2

s
21

0 200 400
−0.2

−0.1

0

0.1

0.2

s
22

26



The first 80 spectral coefficients of the vectors sj

in the basis of the left singular vectors uj of A:
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Signal space – noise space diagrams:
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(horizontal axis) and the noise space span{uk+2, . . . , un} (vertical axis).
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The noise is amplified with the ratio αk/βk+1 :

GK for the spectral components:

α1 (V Tw1) = Σ(UTs1) ,

β2 (UTs2) = Σ(V Tw1) − α1 (UTs1) ,

and for k = 2,3, . . .

αk(V
Twk) = Σ(UTsk) − βk(V

Twk−1) ,

βk+1(U
Tsk+1) = Σ(V Twk) − αk(U

Tsk) .
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Since dominance in Σ(UTsk) and (V Twk−1) is shifted by one com-

ponent, in αk (V Twk) = Σ(UTsk) − βk (V Twk−1) , one can not ex-

pect a significant cancelation, and therefore

αk ≈ βk .

Whereas Σ (V Twk) and (UT sk) do exhibit dominance in the direc-

tion of the same components. If this dominance is strong enough,

then the required orthogonality of sk+1 and sk in

βk+1 (UTsk+1) = Σ(V Twk) − αk (UTsk) can not be achieved without

a significant cancelation, and one can expect

βk+1 ≪ αk .

.
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Absolute values of the first 25 components of Σ(V Twk), αk(U
Tsk),

and βk+1(U
Tsk+1) for k = 7, β8/α7 = 0.0524 (left)

and for k = 12, β13/α12 = 0.677 (right),
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Shaw with the noise level δnoise = 10−14:
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Outline

1. Problem formulation
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tion
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Depending on the noise level, the smaller nodes of ω(λ) are com-

pletely dominated by noise, i.e., there exists an index Jnoise such

that for j ≥ Jnoise

|(b/β1, uj)|
2 ≈ |(bnoise/β1, uj)|

2

and the weight of the set of the associated nodes is given by

δ2 ≡
n

∑

j=Jnoise

|(bnoise/β1, uj)|
2 .

Recall that the large nodes σ2
1, σ2

2, . . . are well-separated (relatively

to the small ones) and their weights on average decrease faster than

σ2
1, σ2

2 , see (DPC). Therefore the large nodes essentially control the

behavior of the early stages of the Lanczos process.
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At any iteration step, the weight corresponding to the smallest node

(θ
(k)
1 )2 must be larger than the sum of weights of all σ2

j smaller

than this (θ
(k)
1 )2 , see [Fischer, Freund – 94]. As k increases, some

(θ
(k)
1 )2 eventually approaches (or becomes smaller than) the node

σ2
Jnoise

, and its weight becomes

|(p
(k)
1 , e1)|

2 ≈ δ2 ≈ δ2noise .

The weight |(p
(k)
1 , e1)|

2 corresponding to the smallest Ritz value

(θ
(k)
1 )2 is strictly decreasing. At some iteration step it sharply starts

to (almost) stagnate on the level close to the squared noise level

δ2noise .
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Square roots of the weights |(p
(k)
1 , e1)|
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Shaw with the noise level δnoise = 10−14:
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Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . .,
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The smallest node and weight in approximation of ω(λ):
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The smallest node and weight in approximation of ω(λ):
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Image deblurring problem, image size 324 × 470 pixels,

problem dimension n = 152280, the exact solution (left) and

the noisy right-hand side (right), δnoise = 3 × 10−3.

xexact bexact + bnoise
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Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . . (top)

and error history of LSQR solutions (bottom):
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The best LSQR reconstruction (left), xLSQR
41 ,

and the corresponding componentwise error (right).

GK without any reorthogonalization!

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
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Message:

Using GK, information about the noise can be obtained in a straight-

forward way.

Future work:

• Large scale problems;

• Behavior in finite precision arithmetic

(GK without reorthogonalization);

• Regularization;

• Denoising;

• Colored noise.
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Main message:

Whenever you see a blurred elephant which is a bit too noisy,

the best thing is to apply the GK iterative bidiagonalization.

Full version of the talk can be found at

www.cs.cas.cz/strakos
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Thank you for your kind attention!
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