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Each method must generate a basis of Cj(A,v).

@ The trivial choice v, Awv, ..., A7~y is computationally
infeasible (recall the Power Method).

@ For numerical stability: Well conditioned basis.

@ For computational efficiency: Short recurrence.



Krylov subspace methods

Basis

Methods based on projection onto the Krylov subspaces

IC;(A,v) = span(v, Av,. .. AT Ly) i=12....

A e R™" veR™

Each method must generate a basis of Cj(A,v).

@ The trivial choice v, Awv, ..., A7~y is computationally
infeasible (recall the Power Method).

@ For numerical stability: Well conditioned basis.
@ For computational efficiency: Short recurrence.

@ Best of both worlds:
Orthogonal basis computed by short recurrence.
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Optimal Krylov subspace methods

with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

@ based on three-term recurrences
it = AT — oy = Birj-1,
@ generate orthogonal (or A-orthogonal) Krylov subspace basis,

@ optimal in the sense that they minimize some error norm:
|z — x;]|a in CG,
|z — 2j]|ara = |||l in MINRES,
|z — ;|| in SYMMLQ -here z; € zg + AK;(A,19).

@ An important assumption on A:
A is symmetric (MINRES, SYMMLQ) & pos. definite (CG).



Gene Golub

@ By the end of the 1970s it was
V= ; unknown if such methods
existed also for general
unsymmetric A.

o Gatlinburg VIII (now
Householder VIII) held in
Oxford from July 5 to 11, 1981.

@ “A prize of $500 has been
offered by Gene Golub for the
construction of a 3-term
conjugate gradient like descent
method for non-symmetric real

G. H. Golub, 192_2007 matrices or a proof that there
can be no such method".
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@ We want to solve Az = b using CG-like descent method:
error is minimized in some given inner product norm,
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@ Starting from xg, compute
Tjp1 = Tj +a;pj, ij=0,1,...,
p; is a direction vector, «; is a scalar (to be determined),
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What kind of method Golub had in mind

@ We want to solve Az = b using CG-like descent method:
error is minimized in some given inner product norm,

-8 = )5

@ Starting from xg, compute
Tjp1 = xj + a;p;, ij=0,1,...,
p; is a direction vector, «; is a scalar (to be determined),
span{po, ...,p;} = KCj+1(A, ro), ro =b— Axg.
® ||z — zj41|lB is minimal iff

(r —2j,pj)B

o =
! (pj,pj)B

and (p;,pi)B=0.

® po,...,p; has to be a B-orthogonal basis of ;1 1(A, 7).



Faber and Manteuffel, 1984

SIAM J. NUMER. ANAL. © 1984 Society for Industrial and Applied Mathematics
Vol. 21, No. 2, April 1984 011

NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF A CONJUGATE GRADIENT METHOD*

VANCE FABERt AND THOMAS MANTEUFFEL*

Abstract. We characterize the class CG(s) of matrices A for which the linear system Ax=b can be
solved by an s-term conjugate gradient method. We show that, except for a few anomalies, the class CG(s)
consists of matrices A for which conjugate gradient methods are already known. These matrices are the
Hermitian matrices, A*= A, and the matrices of the form A = e'(dI + B), with B*=—B.

@ Faber and Manteuffel gave the answer in 1984:
For a general matrix A there exists no short recurrence
for generating orthogonal Krylov subspace bases.

@ What are the details of this statement?
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Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, B = I. Otherwise change the basis:

(z,y)B = <B1/2$aB1/29>, A = BY2AB Y2, 5 = B'/?y.
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Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, B = I. Otherwise change the basis:

(r,y)B = <B1/25€,Bl/2y>, A = B1/2AB_1/2, b = BY%y.
Input data:

@ A € C™™, a nonsingular matrix.

@ v € C", an initial vector.
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Formulation of the problem

B-inner product, Input and Notation

Without loss of generality, B = I. Otherwise change the basis:

(z,y)B = <B1/2$,B1/29>, A = BY2AB Y2, 5 = B'/?y.

Input data:
@ A € C™™, a nonsingular matrix.

@ v € C", an initial vector.

Notation:
® dpin(A) ... the degree of the minimal polynomial of A.

@ d=d(A,v) ... the grade of v with respect to A,
the smallest d s.t. C4(A,v) is invariant under mult. with A.

10



Formulation of the problem

Our Goal

@ Generate a basis v1,...,vq of K4(A,v) s.t.

1. span{vy,...,v;} = K;(A,v), for j=1,...,d,
2. (v,v;) =0, for i#j, di,j=1,...d.
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Formulation of the problem

Our Goal

@ Generate a basis v1,...,vq of K4(A,v) s.t.

1. span{vy,...,v;} = K;(A,v), for j=1,...,d,
2. (v,v;) =0, for i#j, di,j=1,...d.

Arnoldi’s method:
Standard way for generating the orthogonal basis
(no normalization for convenience): v; = v,

j (Avj,v;)
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Formulation of the problem

Arnoldi's method - matrix formulation

In matrix notation:

[ hig - higa
) .
A [’Ul,... ,’Udfl] = [’Ul,...,l)d} hdfl . s
= Vdfl = Vd
- 1 -
=Hyq1

V;V, is diagonal, d=dim/k,(A,v).

12



Formulation of the problem

Optimal short recurrences (Definition - Liesen and Strakos, 2008)

A admits an optimal (s + 2)-term recurrence, if
@ for any v, Hy 41 is at most (s + 2)-band Hessenberg, and
o for at least one v, Hy 41 is (s + 2)-band Hessenberg.

s+1
—
o . _
[ )
[}
AV, = V4
[}

13



Formulation of the problem

Basic question

What are sufficient and necessary conditions for A to admit an
optimal (s + 2)-term recurrence?
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Formulation of the problem

Basic question

What are sufficient and necessary conditions for A to admit an
optimal (s + 2)-term recurrence?

In other words, how can we characterize matrices A such that for
any v, Arnoldi’s method applied to A and v generates an
orthogonal basis via a short recurrence of length s + 2.

Example of sufficiency: If A* = A, then s =1 and A admits an
optimal 3-term recurrence.

Definition. If
A" =ps(A),

where p; is a polynomial of the smallest possible degree s, A is
called normal(s).

14



© The Faber-Manteuffel theorem
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The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strako, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s + 2 < dyin(A):

A admits an optimal (s + 2)-term recurrence

if and only if

A is normal(s).
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The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strako, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s + 2 < dyin(A):

A admits an optimal (s + 2)-term recurrence

if and only if

A is normal(s).

@ Sufficiency is rather straightforward, necessity is not. Key
words from the proof of necessity in (Faber and Manteuffel,
1984) include: “continuous function” (analysis), “closed set of
smaller dimension” (topology), “wedge product” (multilinear
algebra).

16



The Faber-Manteuffel theorem

Why is necessity so hard?

Optimal (s + 2)-term recurrence:

d—1

Prove something about the linear operator A, without complete

knowledge of the structure of its matrix representation.
17



The Faber-Manteuffel theorem

Why is necessity so hard?

Since KC4(A,v) is invariant, Avg € K4(A,v) and
d
AUd = Z hid V.
i=1

s+ 1

AV, = V,

18



@ The ideas of a new proof
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V. Faber, J. Liesen and P. Tichy., 2008

The Faber-Manteuffel Theorem for Linear Operators

@ Motivated by the paper [J. Liesen and Z. Strakos, 2008] which
contains a completely reworked theory of short recurrences for
generating orthogonal Krylov subspace bases.

“It is unknown if a simpler proof of the necessity part can be found.
In view of the fundamental nature of the Faber-Manteuffel
Theorem, such proof would be a welcome addition to the existing
literature. It would lead to a better understanding of the theorem by
enlightening some (possibly unexpected) relationships, and it would
also be more suitable for classroom teaching.”

20



V. Faber, J. Liesen and P. Tichy., 2008

The Faber-Manteuffel Theorem for Linear Operators

@ Motivated by the paper [J. Liesen and Z. Strakos, 2008] which
contains a completely reworked theory of short recurrences for
generating orthogonal Krylov subspace bases.

“It is unknown if a simpler proof of the necessity part can be found.
In view of the fundamental nature of the Faber-Manteuffel
Theorem, such proof would be a welcome addition to the existing
literature. It would lead to a better understanding of the theorem by
enlightening some (possibly unexpected) relationships, and it would
also be more suitable for classroom teaching.”

@ We give two new proofs of the Faber-Manteuffel theorem that
use more elementary tools,

@ first proof - improved version of the Faber-Manteuffel proof,

@ second proof - completely new proof based on orthogonal
transformations of upper Hessenberg matrices.

20



|dea of the second proof (1)

V. Faber, J. Liesen and P. Tichy, 2008
(for simplicity, we omit indices by V; and Hy 4)
Let A admit an optimal (s + 2)-term recurrence
AV = VH, V'V-=1I.
Up to the last column, H is (s + 2)-band Hessenberg.
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|dea of the second proof (1)

V. Faber, J. Liesen and P. Tichy, 2008

(for simplicity, we omit indices by V; and Hy 4)
Let A admit an optimal (s + 2)-term recurrence
AV = VH, V'V-=1I.

Up to the last column, H is (s + 2)-band Hessenberg.
Let G be a d x d unitary matrix, G*G = 1. Then

A (VG) = (VG) (G'HG) .
N—— S—— —

w w H

W is unitary.
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|dea of the second proof (1)

V. Faber, J. Liesen and P. Tichy, 2008

(for simplicity, we omit indices by V; and Hy 4)
Let A admit an optimal (s + 2)-term recurrence
AV = VH, V'V-=1I.

Up to the last column, H is (s + 2)-band Hessenberg.
Let G be a d x d unitary matrix, G*G = 1. Then

A (VG) = (VG) (G'HG) .
—— —— ——
w w a
W is unitary. If G is chosen such that H is again unreduced upper
Hessenberg matrix, then
AW = WH.

represents the result of Arnoldi's method applied to A and w;.
Up to the last column, H has to be (s + 2)-band Hessenberg.

21



|dea of the second proof (2)

V. Faber, J. Liesen and P. Tichy, 2008

Proof by contradiction. Let A admit an optimal (s + 2)-term
recurrence and A not be normal(s).

Then there exists a starting vector v such that hy 4 # 0.

22



|dea of the second proof (2)

V. Faber, J. Liesen and P. Tichy, 2008

Proof by contradiction. Let A admit an optimal (s + 2)-term
recurrence and A not be normal(s).

Then there exists a starting vector v such that hy 4 # 0.

A(VG) = (VG)G* e
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|dea of the second proof (2)

V. Faber, J. Liesen and P. Tichy, 2008

Proof by contradiction. Let A admit an optimal (s + 2)-term
recurrence and A not be normal(s).

Then there exists a starting vector v such that hy 4 # 0.

(06 .- o Q]
A(VG) = (VG)G* " %e

Find unitary G (a product of Givens rotations) such that H is
unreduced upper Hessenberg, but H is not (s + 2)-band (up to the
last column) - contradiction.

22



|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.
Choose Givens rotation G7g.

e o o o
e o o o O

Grg

e ¢ o o O O
e 6 6 06 O O O
e 6 06 06 O O O O

23
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V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.
Choose Givens rotation G7g.

e o o o
e o o o O

*
G7,8

e ¢ o o O O

e 6 6 o O O O
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.
Choose Givens rotation G7g.

e o o o
e o o o O

Ge 7
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.
Choose Givens rotation G7g.

e o o o
e o o o O

*
G6,7
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

e o o o
e o o o O

Gse

e 6 o o o O O
e 6 o o o o o
e 6 6 o6 o o o o
e 6 6 o o o o o
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

e o o o
e o o o O

*
Gs6
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

Gyps

e 6 o o o O
e 6 o6 o o o
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

*
Gis
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

Gs4
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

*
G3,4
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

Go3
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

*
G
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

G
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

*

1,2
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|dea of the second proof (3)

V. Faber, J. Liesen and P. Tichy, 2008

Let v be a starting vector such that hyg # 0.

Choose Givens rotation G7g.

e o o o

e © o o O

®e ¢ ¢ ¢ O O
®e € ¢ ¢ O O O
® ¢ ¢ ¢ O O O O
e 6 6 o6 o o o o

G = G778G677...G172, ﬁ =G'HG.
We proved: It is possible to choose G7 g such that

h178 75 0 = ;L177 75 0 or ;L277 75 0.
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Summary

Generating of orthogonal basis of K4(A,v) via short recurrences

@ When is A normal(s)?
Arnoldi-type recurrence (s)

(s + 2)-term

0

A is normal(s)
A" =p(A)
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Summary

Generating of orthogonal basis of K4(A,v) via short recurrences

@ When is A normal(s)?
Arnoldi-type recurrence (s)

(s + 2)-term

® A is normal and
[Faber and Manteuffel, 1984],
1} [Khavinson and Swiatek, 2003]
[Liesen and Strakos$, 2008]
1. s =1 if and only if the
eigenvalues of A lie on
a line in C.
2. If the eigenvalues of A

are not on a line, then
dmin(A) S 3s — 2.

A is normal(s)
A" =p(A)
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Summary

Generating of orthogonal basis of K4(A,v) via short recurrences

@ When is A normal(s)?
Arnoldi-type recurrence (s)

(s + 2)-term @ A is normal and

[Faber and Manteuffel, 1984],

1} [Khavinson and Swiatek, 2003]
[Liesen and Strakos$, 2008]

1. s =1 if and only if the

A is normal(s)

A* =p(A) eigenvalues of A lie on
a line in C.
] 2. If the eigenvalues of A
are not on a line, then
the only interesting case dmin(A) < 3s — 2.
iss=1,

collinear eigenvalues
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Summary

Generating of orthogonal basis of K4(A,v) via short recurrences

@ When is A normal(s)?
Arnoldi-type recurrence (s)

(s + 2)-term

@ A is normal and

[Faber and Manteuffel, 1984],
1} [Khavinson and Swiatek, 2003]
[Liesen and Strakos$, 2008]

A is normal(s) 1. s =1 if and only if the

A* =p(A) eigenvalues of A lie on
a line in C.

] 2. If the eigenvalues of A

are not on a line, then

the only interesting case dmin(A) < 3s — 2.

iss=1,

collinear eigenvalues @ All classes of “interesting”

matrices are known.
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Related papers

@ J. Liesen and Z. Strakoé, [On optimal short recurrences for generating
orthogonal Krylov subspace bases, to appear in SIAM Review, 2008].
Completely reworked theory of short recurrences for generating
orthogonal Krylov subspace bases

@ V. Faber, J. Liesen and P. Tichy, [The Faber-Manteuffel Theorem for
Linear Operators, SIAM J. Numer. Anal., 2008, 46, 1323-1337].
New proofs of the fundamental theorem of Faber and Manteuffel

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/ liesen
http://www.cs.cas.cz/strakos

25



Related papers
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orthogonal Krylov subspace bases, to appear in SIAM Review, 2008].
Completely reworked theory of short recurrences for generating
orthogonal Krylov subspace bases

@ V. Faber, J. Liesen and P. Tichy, [The Faber-Manteuffel Theorem for
Linear Operators, SIAM J. Numer. Anal., 2008, 46, 1323-1337].
New proofs of the fundamental theorem of Faber and Manteuffel

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/ liesen
http://www.cs.cas.cz/strakos

Thank you for your attention
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