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Jacobi matrices

TN ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δN

δN γN















, δl > 0 .

Fully determined by the spectrum and the top (bottom) entries of the
normalized eigenvectors.

Are the entries sensitive to small changes of the spectral data?



Z. Strakoš 3

Outline

1. Lanczos, CG and the Gauss-Christoffel quadrature

2. Reconstruction of Jacobi matrices from the spectral data

3. Another problem

4. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

5. Lanczos and CG in finite precision arithmetic
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1 : Lanczos tridiagonalization (1950, 1952)

A ∈ R
N,N , large and sparse, SPD, w1 (≡ r0/‖r0‖, r0 ≡ b−Ax0) ,

AWn = WnTn + δn+1wn+1e
T
n , W T

n Wn = I, WT
n wn+1 = 0, n = 1, 2, . . . ,

Tn ≡
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, δl > 0 .

Consider, for clarity, that the process does not stop until n = N .
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1 : Lanczos, CG and Gauss-Ch. quadrature

Ax = b , x0 −→

∫ ξ

ζ

f(λ) dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n

∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

xn = x0 + Wnyn

ω(n)(λ) −→ ω(λ)
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1 : Literature (beginning)

Sensitivity of the map from the nodes and weights of the computed
quadrature to the recurrence coefficients of the corresponding
orthonormal polynomials:

Gautschi (1968, 1970, 1978, 1982, 2004),

Nevai (1979), H. J. Fischer (1998),
Elhay, Golub, Kautsky (1991, 1992),
Beckermann and Bourreau (1998),

Laurie (1999, 2001).
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1 : Sensitivity of the Lanczos recurrences

A, E ∈ R
N,N diagonal SPD,

A, w1 −→ Tn −→ TN = W T
NAWN

A + E, w1 + e −→ T̃n −→ T̃N = W̃ T
N (A + E) W̃N

Strongly nonlinear relationship TN (A, w1) = W T
N (A, w1) A WN (A, w1) .

T̃N has all its eigenvalues close to that of A.

Is T̃n for sufficiently small perturbations of A, w1 close to Tn?
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1 : Literature (continuation)

Sensitivity of the Lanczos recurrences:

Gelfand and Levitan (1951), Burridge (1980),
Natterer (1989),

Xu (1993), Druskin, Borcea and Knizhnermann (2005),

Carpraux, Godunov and Kuznetsov (1996), Kuznetsov (1997),
Paige and van Dooren (1999);

Here, however, sensitivity of Krylov subspaces has to be investigated
as a part of the problem!
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2 : Literature (continuation)

Computation of the inverse eigenvalue problem - reconstruction of TN

from the nodes and weights:

Stieltjes (1884),

de Boor and Golub (1978), Gautschi (1982, 1983, 2004, 2005),

Gragg and Harrod (1984),

Boley and Golub (1987), Reichel (1991), H. J. Fischer (1998),
Rutishauser (1957, 1963, 1990), Fernando and Parlett (1994), Parlett
(1995), Parlett and Dhillon (97),

Laurie (99, 01);
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2 : Literature (final part)

Computation of nodes (eigenvalues) and weights (squared top elements
of the normalized eigenvectors) from Tn :

Wilkinson (1965),

Kahan (19??), Demmel and Kahan (1990), Demmel, Gu, Eisenstat,
Slapničar, Veselič and Drmač (1999),

Dhillon (1997), Li (1997), Parlett and Dhillon (2000), Laurie (2000), Dhillon
and Parlett (2003, 2004), Dopico, Molera and Moro (2003), Grosser and
Lang (2005), Willems, Lang and Vömel (2005).

Some summary in Meurant and S (2006), O’Leary, S and Tichý (2007).
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2 : Accurate recovery of recursion coefficients

Laurie (99): A constructive proof of the following statement:

Given the weights and the N − 1 positive differences between the
consecutive nodes, the main diagonal entries of the corresponding Jacobi
matrix (shifted by the smallest node) and the off-diagonal entries can be
computed in 9

2N2 + O(N) arithmetic operations, all of which can involve
only addition, multiplication and division of positive numbers.

Consequently, in finite precision arithmetic they can be computed to a
relative accuracy no worse than 9

2N2ε + O(Nε), where ε denotes machine
precision.
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2 : Sensitivity result

Laurie (99, 01): This result bounds also the conditioning of the problem:

If the weights and the N − 1 positive differences between the consecutive
nodes are perturbed, with the size of the relative perturbations of the
individual entries bounded by some small ǫ, then such perturbation can
cause a relative change of the individual entries of the shifted main
diagonal and of the individual off-diagonal entries of the Jacobi matrix not
larger than 9

2N2ǫ + O(Nǫ).

The resulting algorithm combines ideas from earlier works from
approximation theory, orthogonal polynomials, and numerical linear
algebra.
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3 : An example – basic problem

A ∈ R
N×N is diagonal positive definite (SPD),

S (91), Greenbaum, S (92),

λi = λ1 +
i− 1

n− 1
(λn − λ1) γn−i , i = 2, . . . , n− 1,

In the experiment we take λ1 = 0.1 , λn = 100 , n = 24 , γ = 0.55 .
Starting vector w1 ∈ R

N has been generated randomly.
Lanczos process:

A, w1 −→ Tn −→ TN = W T
N A WN
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3 : A particular larger problem

Â ∈ R
2N×2N diagonal SPD, ŵ1 ∈ R

2N , obtained by replacing each
eigenvalue of A by a pair of very close eigenvalues of Â sharing the
weight of the original eigenvalue. In terms of the distribution functions,
ω̂(λ) has doubled points of increase but it is very close to ω(λ).

Â, ŵ1 −→ T̂n −→ T̂2N = Ŵ T
2N Â Ŵ2N

T̂2N has all its eigenvalues close to those of A.

However, T̂n can be for n ≤ N very different from Tn .
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Exact arithmetic !
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3 : Lanczos results for A,w1 and Â, ŵ1 :
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3 : CG results for A,w1 and Â, ŵ1 :
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3 : Observations

● Replacing single eigenvalues by two close ones causes large delays.

● The presence of close eigenvalues causes an irregular staircase-like
behaviour.

● Local decrease of error says nothing about the total error.

● Stopping criteria must be based on the global information.
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3 : Ritz values in the presence of close eig-s

In the presence of very close eigenvalues, a Ritz value in the exact
Lanczos or CG method initially converges to the cluster as fast as if the
cluster were replaced by a single eigenvalue with the combined weight.

Within a few further steps it converges very fast to one of the eigenvalues,
with another Ritz value converging simultaneously to approximate the rest
of the cluster. In the presence of more than two eigenvalues in a cluster,
the story repeats until all eigenvalues in a cluster are approximated by
individual Ritz values.

The ’additional’ Ritz values in the clusters are, however missing in the
other part of the spectrum, and the convergence of CG is delayed, in
comparison to the single eigenvalues case, by the number of steps
needed to provide the ’missing’ Ritz values.
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3 : Published explanations

The fact that the presence of close eigenvalues affects the convergence of
Ritz values and therefore the rate of convergence of the conjugate
gradient method is well known; see the beautiful explanation given by

van der Sluis and van der Vorst (1986, 1987).

It is closely related to the convergence of the Rayleigh quotient in the
power method and to the so-called ‘misconvergence phenomenon’ in the
Lanczos method, see

O’Leary, Stewart and Vandergraft (1979),
Parlett, Simon and Stringer (1982).
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3 : Caution

Kratzer, Parter and Steuerwalt, Block splittings for the conjugate gradient
method, Computers and Fluids 11, (1983), pp. 255-279. The statement
on p. 261, second paragraph, in our notation says:

The convergence of CG for A, w1 and Â, ŵ1 ought to be similar;
at least ‖x̂− x̂N‖Â should be small.

Similar statements can be found in several later papers and some books.
The arguments are based on relating the CG minimizing polynomial to the
minimal polynomial of A. For some distribution of eigenvalues of A ,
however, its minimal polynomial (normalized to one at zero) can have
extremely large gradients and therefore it can be very large at points even
very close to its roots (here at the eigenvalues of Â ) .



Z. Strakoš 24

3 : CG results for A,w1 and Â, ŵ1 , γ = 0.8 :
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4 : CG and Gauss-Ch. quadrature errors

At any iteration step n , CG represents the matrix formulation of the
n-point Gauss quadrature of the R-S integral determined by A and r0 ,

∫ ξ

ζ

f(λ) dω(λ) =
n

∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2
.

This was a base for the CG error estimation in
[DaGoNa-78, GoFi-93, GoMe-94, GoSt-94, GoMe-97, . . . ]
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4 : Sensitivity of the Gauss-Ch. Quadrature

0 5 10 15 20
10

−10

10
−5

10
0

iteration n

 

 

quadrature error − perturbed integral
quadrature error − original integral

0 5 10 15 20
10

−10

10
−5

10
0

iteration n

 

 

difference − estimates
difference − integrals



Z. Strakoš 28

4 : Simplified problem
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4 : Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) on [a, b] . Let
pn(x) = (x− x1) . . . (x− xn) and p̃n(x) = (x− x̃1) . . . (x− x̃n) be the
nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with p̂s(x) = (x− ξ1) . . . (x− ξs) their least common multiple.

If f ′′ is continuous on [a, b] , then the difference ∆n
ω,ω̃ between the

approximation In
ω to Iω and the approximation In

ω̃ to Iω̃ , obtained
from the k-point Gauss-Christoffel quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣

∣

∣

∣

∣

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω(x) −

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω̃(x)

∣

∣

∣

∣

∣

+

∣

∣
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∣
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∣

∣

∣

∣

.
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4 : Modified moments do not help
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4 : Summary

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function.
In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions and with no singularity close to the interval of
integration.
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4 : CG applied to the basic problem
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4 : Observations - FP CG

● Rounding errors can cause large delays.

● They may cause an irregular staircase-like behaviour.

● Local decrease of error says nothing about the total error.

● Stopping criteria must be based on global information.

● It must be justified by rigorous rounding error analysis.

Golub and S (1994),
S and Tichý (2002, 2005),

Comput. Methods Appl. Mech. Engrg. (2003).
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4 : Close to the exact CG for Â x̂ = b̂ ???

Finite precision Lanczos and CG computations as exact computations for
a different problem

Paige (71–80), Greenbaum (89).

Parlett, Scott, Simon, Grcar, Cullum, S, Golub, Notay, Druskin,
Knizhnerman, Meurant, Tichý, Wúlling, Zemke ...

Recent review and update Meurant and S, Acta Numerica,
(06), Meurant (06).
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Conclusions

● It is good to look for interdisciplinary links and for different lines of
thought. Such as linking the Krylov subspace methods with model
reduction and matching moments.

● Rounding error analysis of Krylov subspace methods has had
unexpected side effects such as understanding of general mathematical
phenomena independent of any numerical stability issues.

● Analysis of Krylov subspace methods for solving linear problems
has to deal with highly nonlinear finite dimensional phenomena.

● The pieces of the mosaic fit together.
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Thank you!
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