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Motivation – Computational mathematics

E. Study (1862-1930, Leipzig, Marburg, Göttingen, Greifswald, Bonn,
successor of Lipschitz) :

Mathematics is neither the art of calculation
nor the art of avoiding calculations.

Mathematics, however, entails the art
of avoiding superflous calculations

and conducting the necessary ones skilfully.
In this respect one could have learned

from the older authors.



Z. Strakoš 4

Motivation – Computational mathematics

B.J.C. Baxter, A. Iserles, On the foundations of computational math., in
Handbook of Numerical Analysis XI (P.G. Ciarlet and F. Cucker, eds),
North-Holland, Amsterdam (2003), 3-34 :

The purpose of computation is not
to produce a solution with least error

but to produce reliably, robustly and affordably
a solution which is within a user-specified tolerance.

It should be emphasized that there is really no boundary
between computational mathematics and statistics

see Section 2.5 of the paper above.
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Examples

● Singular value decomposition, numerically stable algorithms for
computing orthogonal decompositions and projections, various direct
and iterative methods and algorithms applicable to problems in
computational statistics.

● Linear regression and ordinary least squares, collinearity
(Stewart, Marquardt, Belsley, Thisted, Hadi and Velleman (1987)).

● Errors-in-variables modeling, orthogonal regression and total least
squares.

● Stochastic partial differential equations and their numerical solution.

● Statistical tools in solving ill-posed problems, information retrieval and
data mining, signal processing.

● . . . . . . . . .
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Outline

1. Common roots: Moments

2. Linear approximation problems

3. Singular value decomposition and model reduction

4. Matching moments model reduction and Krylov subspace methods

5. Bidiagonalization and linear regression

6. Bidiagonalization and orthogonal regression

7. Back to the roots (matching moments and model reduction)

8. Conclusions
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Chebyshev (1855), Heine (1861), Markov (1884)

Let p(λ) be a nonnegative function in (−∞,∞) . Given

∫ ∞

−∞

p(λ) λk dλ =

∫ ∞

−∞

e−λ2

λk dλ , k = 0, 1, . . . ,

can we conclude that p(λ) = e−λ2

or, as we say now, that the
distribution characterized by the function

∫ x

−∞

p(λ) dλ

is a normal one?

See Shohat and Tamarkin (1943), Akhiezer (1965).
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Stieltjes (1883-4)

Given a sequence of numbers ξk, k = 0, 1, . . . , a non-decreasing
distribution function ω(λ) is sought such that

∫ ∞

0

λk dω(λ) = ξk , k = 0, 1, . . . ,

where

∫ ∞

0

λk dω(λ)

represents the k-th (generalized) mechanical moment of the distribution
of positive mass on the half line λ ≥ 0 . Stieltjes based his investigation
on continued fractions; cf. Gantmacher and Krein (1950).
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Another formulation

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments given by the Riemann-Stieltjes integral

ξk =

∫ ∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase λ
(n)
i

i = 0, 1, . . . , which matches the first 2n moments for the distribution
function ω(λ) ,

∫ ∞

0

λk dω(n)(λ) ≡
n
∑

i=1

ω
(n)
i (λ

(n)
i )k = ξk, k = 0, 1, . . . , 2n − 1 .

This moment problem plays in modern NLA a fundamental role.
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1 : Gauss-Christoffel quadrature

Clearly,

∫ ∞

0

λk dω(λ) =
n
∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n − 1

represents the n-point Gauss-Christoffel quadrature, see

C. F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, (1814),

C. G. J. Jacobi, Über Gauss’ neue Methode, die Werthe der Integrale
näherungsweise zu finden, (1826),

and the description given in H. H. J. Goldstine, A History of Numerical
Analysis from the 16th through the 19th Century, (1977).

With no loss of generality we consider ξ0 = 1 .
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Forms of Ax ≈ b

● LE: A is square and numerically nonsingular, then A x = b .

● OLS (linear regresion): A is generally error free rectangular N by M
matrix and the right hand side (the observation vector) is significantly
affected by errors. Then

A x = b + r , min ‖r‖ .

● TLS (orthogonal regression): Significant errors contained both in the
generally rectangular N by M matrix A and the right hand side b .
Then

(A + E) x = b + r , min ‖[r, E]‖F ,

where ‖ · ‖F means the Frobenius norm of the given matrix, see Rao
and Toutenburg (1999), Section 3.12.
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Miminum norm OLS solution

Let b be orthogonally decomposed into parts b|R(A) in the range of
A and b|N (AT ) in the nullspace of AT ,

b = b|R(A) + b|N (AT ) .

Then the minimum norm solution x is given by

A x = b|R(A) , x ∈ R(AT ) , r = − b|N (AT ) .

The errors in b are assumed to be orthogonal to the subspace
generated by the columns of A . If A has full column rank,

AT A x = AT b .

In computational statistics x = (AT A)−1 AT b .
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Damped OLS solution

Let A represent a discrete ill-posed problem and the right hand side is
significantly affected by errors (noise). Then the OLS solution is useless.
Instead,

A x = b + r, min {‖r‖2 + α2 ‖x‖2} ,

which is nothing but the Tikhonov regularization (1963). Equivalently,

x = argmin

∥

∥

∥

∥

∥

(

A

α I

)

x −

(

b

0

)∥

∥

∥

∥

∥

.

Example - discretized Fredholm integral equations of the first order.
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Ridge regression

Using the normal equations,

(AT A + α2I) x = AT b .

In computational statistics this is known as the ridge regression (RR),
Rao and Toutenburg (1999), Section 3.10.2, Čížek (2004), Section 8.1.6,

x = (AT A + α2I)−1 AT b .

Caution. ’Ill-posed problems’ does not mean the same as
’ill-conditioned problems’.
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Spectral decomposition of a symmetric matrix

If A is symmetric N by N matrix, then A = UΛUT , Λ = diag (λj),
UUT = UT U = I, U = [u1, . . . , uN ] .

A

u1
λ1→ u1

u2
λ2→ u2

...

uN
λN→ uN

One dimensional mutually orthogonal invariant subspaces.
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Singular value decomposition (SVD)

Consider an N by M matrix A , with no loss of generality N ≥ M .
Then

A = S Σ W T = Sr Σr W T
r =

r
∑

ℓ=1

sℓ σℓ wT
ℓ ,

SST = ST S = I, WT W = WW T = I, Σ = diag (σ1, . . . , σr, 0) ,

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 ,

S = [ Sr, . . . ], W = [ Wr, . . . ], Σr = diag (σ1, . . . , σr) .
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Singular value decomposition

A AT

R(A) R(AT )

w1
σ1→ s1

σ1→ w1

w2
σ2→ s2

σ2→ w2

...
... . . .

...
...

wr
σr→ sr

σr→ wr

N (A)

wr+1

...
wM















→ 0 , N (AT )

sr+1

...
sN















→ 0 ,



Z. Strakoš 20

Singular value decomposition

Distance of the full rank matrix to a nearest singular matrix
(rank-deficient matrix):

‖A − AM−1‖ = σM ,
‖A − AM−1‖

‖A‖
=

σM

σ1
= 1/κ(A) .

Ill-conditioning means κ(A) large, ill-posedness means much more.
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SVD model reduction and PCR

When
σ1 ≥ σ2 ≥ · · · ≥ σk ≫ σk+1 ≥ · · · ≥ σr ,

we have a good rank-k approximation

A ≈ Ak =
k
∑

1

siσiw
T
i .

Please recall the Principal Components Regression (PCA, PCR),
where the solution x of the OLS problem is approximated by the so
called Truncated SVD approximation (TSVD)

x =
r
∑

ℓ=1

sT
ℓ b

σℓ

wℓ ≈ xPCR
k =

k
∑

ℓ=1

sT
ℓ b

σℓ

wℓ, k ≪ r .
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What is wrong with x = (AT
A)−1

A
T
b ??

In theory almost nothing. If the computation is done that way, then, apart
from some very special cases, almost everything.

See the analysis of the formula using the SVD of A :

x = (AT A)−1AT b = (W Σ2W T )−1W Σ ST b = W Σ−1ST b .

If the normal matrix is formed and then inverted, things will not cancel out
so nicely. Results computed by inverting the explicitly formed normal
matrix are generally expensive and inaccurate; in the worst case they can
be a total garbage. The requirements of Baxter and Iserles (2003). -
reliably, robustly and affordably - are violated.
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What is wrong with forming A
T
A ??

Consider

A ≡







1 1

ǫ

ǫ






, AT A =

(

1+ǫ2 1

1 1+ǫ2

)

.

Whenever ǫ2 is smaller than machine precision,
the normal system matrix AT A is numerically singular!

Therefore the decomposition approach is numerically superior.

This example was given by Läuchli in 1961.
See also Björck (1996), Section 2.2.1 or
Watkins (2002), Example 3.5.25 and Section 4.4, pp. 285–286.
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Can normal equations ever be used ?

Yes! Recall, e.g., nonlinear regression and the Levenberg-Marquardt
method, see Čížek in Gentle, Härdle, and Mori (2004), Section 8.2.1.3.

For the tall skinny Jacobians Jk , the new direction vectors dk in the
Gauss-Newton method can be efficiently computed by solving

(JT
k Jk + α2I) dk = − JT

k rk

where it can be convenient to form JT
k Jk . Here we need only a rough

regularized approximation embedded in the outer iteration process.

Please note that seemingly similar tasks may require in nonlinear and
linear regression computations different approaches.
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Trouble with solution of the ill-posed problem

Consider the ill-posed problem

A x + η = b ,

where x is unknown and the observation vector b is corrupted by the
white noise η of the unknown size.

A naive solution, though computed in the most numerically stable way,
gives no useful information about x ,

xnaive =
r
∑

ℓ=1

sT
ℓ b

σℓ

wℓ =
r
∑

ℓ=1

sT
ℓ (b − η)

σℓ

wℓ +
r
∑

ℓ=1

sT
ℓ η

σℓ

wℓ = x +
r
∑

ℓ=1

sT
ℓ η

σℓ

wℓ .

For the singular values approaching zero (machine precision) the last
term will blow up.
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TSVD regularization and spectral filtering

The problem is resolved by truncation of the SVD expansion
(TSVD regularization)

x ≈
k
∑

ℓ=1

sT
ℓ b

σℓ

wℓ =
k
∑

ℓ=1

sT
ℓ (b − η)

σℓ

wℓ +
k
∑

ℓ=1

sT
ℓ η

σℓ

wℓ

at the price of loosing a part of the useful information about the true
solution

r
∑

ℓ=k+1

sT
ℓ (b − η)

σℓ

wℓ .
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Spectral filtering description of regularization

More sophisticated methods construct regularized solutions
which can be expressed as

xreg =
r
∑

ℓ=1

φℓ

sT
ℓ b

σℓ

wℓ ,

where the filter factors φℓ should be close to one for large singular
values and close to zero for small singular values. Such regularized
solution is not necessarily computed using the SVD decomposition.

It can be computed, among other techniques, by matching moments
model reductions represented by Krylov subspace methods.
For Tikhonov regularization

φℓ =
σ2

ℓ

σ2
ℓ + α2

.
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Example from image deblurring

Example (J. Nagy, Emory University)

Original image (the unknown x)
 x = true image
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Example from image deblurring

Observed image
(the right hand side b)

 b = blurred, noisy image

Matrix A describing
the Point Spread Function

 A = matrix
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Example from image deblurring

The naive exact solution
of Ax = b

 x = inverse solution

Regularized solution
via TSVD or CGLS

 659 iterations
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Example – Linear algebraic equation

Given Ax = b with an SPD matrix A , r0 = b − Ax0, v1 = r0/‖r0‖ .

Consider the spectral decomposition

A = U diag(λi) UT ,

where for clarity of exposition we assume that the eigenvalues are distinct,

0 < λ1 < . . . < λN , U = [u1, . . . , uN ] .

A and v1(b, x0) determine the distribution function ω(λ) with :

● N points of increase λi ,
● weights ωi = |(v1, ui)|2 , i = 1, . . . , N .
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Distribution function ω(λ)

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ
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Stieltjes recurrence for orthogonal polynomials

Let p1(λ) ≡ 1, p2(λ), . . . , pn+1(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Pn(λ) = (p1(λ), . . . , pn(λ))T ,

λPn(λ) = Tn Pn(λ) + δn+1 pn+1(λ) en

represents the Stieltjes recurrence (1883-4), with the Jacobi matrix

Tn ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δn

δn γn















, δl > 0 .
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Matrix formulation: Lanczos ≡ Stieltjes

In matrix computations, Tn results from the Lanczos process (1951)
applied to Tn starting with e1 . Therefore p1(λ) ≡ 1, p2(λ), . . . , pn(λ)
are orthonormal with respect to the inner product

(ps, pt) ≡
n
∑

i=1

|(e1, z
(n)
i )|2 ps(θ

(n)
i ) pt(θ

(n)
i ) ,

where z
(n)
i is the orthonormal eigenvector of Tn corresponding to the

eigenvalue θ
(n)
i , and pn+1(λ) has the roots θ

(n)
i , i = 1, . . . , n .

Consequently,

ω
(n)
i = |(e1, z

(n)
i )|2 , λ

(n)
i = θ

(n)
i ,

Golub and Welsh (1969), . . . . . . . . . ,
Meurant and S, Acta Numerica (2006).



Z. Strakoš 36

Lanczos method ≡ matching moments

∫ ∞

0

λk dω(λ) =
N
∑

j=1

ωj (λj)
k = vT

1 Ak v1 ,

n
∑

i=1

ω
(n)
i (λ

(n)
i )k =

n
∑

i=1

ω
(n)
i (θ

(n)
i )k = eT

1 T k
n e1 .

matching the first 2n moments therefore means

vT
1 Ak v1 ≡ eT

1 T k
n e1 , k = 0, 1, . . . , 2n − 1 .
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Conjugate gradients m. ≡ matching moments

The CG method, Hestenes and Stiefel (1952), constructs the sequence of
approximations

xn ∈ x0 + Kn(A, r0), Kn(A, r0) ≡ span {r0, Ar0, . . . , A
n−1r0} ,

such that
‖x − xn‖A = min

u∈x0+Kn(A,r0)
‖x − u‖A

which is equivalent to the (Galerkin) orthogonality condition

A(x − xn) ⊥ Kn(A, r0) .

Using the Lanczos orthogonalization process,

Tn yn = ‖r0‖ e1 , xn = x0 + Vn yn .
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Matching moments model reduction

CG (Lanczos) reduces for A SPD at the step n the original model

A x = b , r0 = b − Ax0

to
Tn yn = ‖r0‖ e1 ,

such that the first 2n moments are matched,

v∗1 Ak v1 = eT
1 T k

n e1 , k = 0, 1, . . . , 2n − 1 .

Krylov subspace methods in general represent
matching moment model reduction.
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Linear regression and OLS

Recall

A x = b|R(A) , x ∈ R(AT ) ,

AT A x = AT b .

Apply CG to the system of normal equations with the matrix AT A and
the right hand side AT b ?
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Hestenes and Stiefel CGLS (1952)

Let q1, . . . , qk be an orthonormal basis of the Krylov subspace

Kk (AT A, AT b) ≡ span {AT b, (AT A)AT b, . . . , (AT A)k−1AT b} .

Considering xk = Qk yk ∈ Kk(AT A, AT b) , we get xk ∈ R(AT ) .
Then

‖x − xk‖AT A = min
u∈x0+Kk(AT A,AT b)

‖x − u‖AT A

represents CG applied to AT Ax = AT b . It gives the approximation to
the OLS minimum norm solution

A (Qk yk) = b + r̂k , min ‖r̂k‖ .
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Golub and Kahan bidiagonalization (1965)

Starting from p1 = b/‖b‖ , compute two sequences of orthonormal
vectors p1, p2, . . . , pk+1 and q1, . . . , qk such that, in the matrix form,

AT Pk = Qk BT
k , A Qk = Pk+1 Bk+ ,

Bk =















α1

β2
. . .
. . .

. . .

βk αk















, Bk+ =





















α1

β2
. . .
. . .

. . .

. . . αk

βk+1





















,

where the matrices Pk+1 ≡ [p1, . . . , pk+1] and Qk ≡ [q1, . . . , qk] have
orthonormal columns, and αℓ ≥ 0, βℓ ≥ 0, ℓ = 1, . . . .
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Paige and Saunders LSQR (1982)

Using the Golub and Kahan iterative bidiagonalization,

A (Qk yk) = b + r̂k , min ‖r̂k‖

gives

Pk+1 (Bk+ yk − ‖b‖ e1) ≡ Pk+1 rk = r̂k , ‖rk‖ = ‖r̂k‖ .

Consequently,

Bk+ yk = ‖b‖ e1 + rk , min ‖rk‖ , xk = Qk yk .

CGLS (1952) ≡ LSQR (1982) ≡ PLS of Wold (1975)
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Does the implementation matter? It does!

Loss of orthogonality among the computed Lanczos vectors
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Orthogonal regression may not have a solution!

The data A , b can suffer from

● multiplicities – the solution may not be unique. Look for the solution
minimal in norm.

● conceptual difficulties – when there are stronger colinearities
among the columns of A than
between the columnspace of A
and the right hand side b ,
the OR (TLS) solution does not exist.

An extreme example: A not of full column rank and b /∈ R(A) .

We need a clear concept of the TLS problem and of its solution which
covers all cases, see Paige and S (2002, 2006). It would be ideal to
separate the information necessary and sufficient for solving the problem
from the rest.
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Fundamental block structure

Orthogonal invariance gives P T A Q (QT x) ≈ P T b . Assume the
structure

P T [ b , A Q ] =

[

b1 A11 0
0 0 A22

]

.

The problem A x ≈ b can be rewritten as two independent
approximation problems

A11 x1 ≈ b1 ,

A22 x2 ≈ 0 ,

with the solution x = Q

[

x1

x2

]

.
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A meaningful solution

But A22 x2 ≈ 0 says x2 lies approximately in the null space of A22 ,
and no more. Thus, unless there is a reason not to, we can set x2 = 0 .

Now since we have obtained b with the intent to estimate x , and since
x2 does not contribute to b in any way,

the best we can do is estimate x1 from A11 x1 ≈ b1 ,
giving

x = Q

[

x1

0

]

.
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The transformation (compatible case)

Such an orthogonal transformation is given by the Golub-Kahan
bidiagonalization. In fact, A22 need not be bidiagonalized, [b1, A11] has
nonzero bidiagonal elements and is either

[b1, A11] =











β1 α1

β2 α2

· ·

βp αp











, βiαi 6= 0, i = 1, . . . , p

if βp+1 = 0 or p = N , (where A is N × M ), or
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The transformation (incompatible case)

[b1, A11] =















β1 α1

β2 α2

· ·

βp αp

βp+1















, βiαi 6= 0 , βp+1 6= 0

if αp+1 = 0 or p = M (where A is N × M ).
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Core problem theorem

(a) A11 has no zero or multiple singular values, so any zero singular values
or repeats that A has must appear in A22 .

(b) A11 has minimal dimensions, and A22 maximal dimensions, over all
orthogonal transformations of the form given above.

(c) All components of b1 in the left singular vector subspaces of A11 are
nonzero. Consequently, the solution of the TLS problem A11x1 ≈ b1

can be obtained by the standard algorithm of Golub and Van Loan
(1980), see also Rao and Toutenburg (1999).
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Core problem significance

Any left upper part of the core problem can be seen as a result o f the
moment matching model reduction.

All information contained in the reduced model is necessary for
solving the original problem.

The full core problem contains necessary and sufficient information
for solving the original problem.
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Main points of the lecture

(1) Moments, moment matching model reduction.
Krylov subspace methods represent the matrix formulation of the
moment problem.

(2) Convergence – accuracy of the approximation.
Numerical stability – reliability of the result.
Complexity – how much does it cost.

(3) Golub-Kahan orthogonal bidiagonalization.
Decomposition of data, OLS, TLS, regularization,
noise revealing, see Hnětynková, Plešinger and S (2008).

(4) Orthogonality as a fundamental principle.
Theoretical and computational.
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Noise revealing in G-K bidiagonalization

Entries of the left bidiagonalization vectors pℓ
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Noise level determination based on moments!

Singular values
of the reduced model
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The corresponding weights
in the reduced model
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Must orthogonality be always preserved ? No!

Loss of orthogonality between the computed Lanczos vectors
and the computed Ritz vectors
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Outline

1. Common roots: Moments

2. Linear approximation problems

3. Singular value decomposition and model reduction

4. Matching moments model reduction and Krylov subspace methods

5. Bidiagonalization and linear regression

6. Bidiagonalization and orthogonal regression

7. Back to the roots

8. Conclusions
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Software

B.J.C. Baxter, A. Iserles, On the foundations of computational
mathematics, in Handbook of Numerical Analysis XI (P.G. Ciarlet and F.
Cucker, eds), North-Holland, Amsterdam (2003), 3-34 :

The attitude of “don’t think, the software will do it for you”,
comforting as it might be to some, will not do.

If one wish to compute,
probably the best initial step is to learn the underlying mathematics,

rather than rushing to a book of numerical recipes.

Even the best software can fail to produce good results if used improperly.
Computational modeling requires mastering necessary computational
mathematics.
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Literature

Rao, R. C. and Toutenburg, H. (1999). Linear models: least squares and
alternatives, second edition, Springer.

Givens, G. H. and Hoeting, J. A. (2005). Computational Statistics, J. Wiley.

Martinez, W. L. and Martinez, A. R. (2002). Computational Statistics
Handbook with Matlab, Chapman&Hall.

Gentle, J. E., Härdle, W. and Mori, Y. (eds) (2004). Handbook of
Computational statistics, Concepts and Methods, Springer.

Basics of numerical linear algebra is included, but is seems somehow
isolated from description of particular topics in computational statistics.
References to relevant NLA literature are very rare. Parallel developments
lasting for decades without a single reference to the other field. Some
serious computational misconceptions can be found even in very recent
monographs.
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The philosophical message

● Our world seems to prefer fast and shallow to slow but deep. General
trends, also in science, lead to narrow specialization and fragmentation,
even within individual disciplines.

● True interdisciplinary approaches mean a new quality which is deeply
rooted in different disciplines and which makes bridges between them.
A bridge with shallow foundations will not stay for long.

● All fields need mutual transfer of knowledge, which is impossible without
building up deep mutual understanding all across the mathematical
landscape. This is not always supported by the way the science is
financed these days, but it is worth the struggle.
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Overlap in our talk

● Moments in statistics, moments in modern NLA.
● PCA and SVD model reduction.
● Ridge regression and regularization.
● Nonlinear regression and optimization.
● PLS and LSQR.
● Orthogonal regression and TLS.

Despite their different focus, a context for application and data analysis on
one side and development of generally applicable, reliable, robust and
efficient methods and algorithms on the other, computational statistics and
numerical linear algebra can enormously benefit from recalling their
common roots and developing further their mutual overlap.
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Thank you!


	
	Motivation -- redComputational mathematics
	Motivation -- redComputational mathematics
	Examples 
	Outline
	Chebyshev (1855), Heine (1861), Markov (1884)
	Stieltjes (1883-4)
	Another formulation
	1 :  Gauss-Christoffel quadrature
	Outline
	Forms of  A  x   b 
	redMiminum norm OLS solution 
	redDamped OLS solution 
	Ridge regression 
	Outline
	Spectral decomposition of a symmetric matrix
	Singular value decomposition red(SVD)
	Singular value decomposition
	Singular value decomposition
	SVD model reduction and PCR
	What is wrong with  red x  =  (ATA)-1AT b  ??
	What is wrong with forming redATA  ??
	Can normal equations ever be used ?
	Trouble with solution of the ill-posed problem
	TSVD regularization and spectral filtering
	Spectral filtering description of regularization
	Example from image deblurring
	Example from image deblurring
	Example from image deblurring
	Outline
	Example -- Linear algebraic equation
	 Distribution function  ()
	Stieltjes recurrence for redorthogonal polynomials
	Matrix formulation: Lanczos    Stieltjes
	Lanczos method  matching moments
	Conjugate gradients m. matching moments
	Matching moments model reduction
	Outline
	 Linear regression and OLS 
	blueHestenes and Stiefel CGLS (1952)
	blueGolub and Kahan bidiagonalization (1965)
	bluePaige and Saunders LSQR (1982)
	Does the implementation matter?  redIt does!
	Outline
	Orthogonal regression may not have a solution!
	Fundamental block structure
	A meaningful solution
	The transformation (compatible case)
	The transformation (incompatible case)
	Core problem theorem
	Core problem significance
	Outline
	Main points of the lecture
	Noise revealing in G-K bidiagonalization
	Noise level determination redbased on moments!
	Must orthogonality be always preserved ?  redNo!
	Outline
	Software
	Literature
	The philosophical message
	Overlap in our talk
	

