NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2000; 00:1-6 Prepared using nlaauth.cls [Version: 2002/09/18 v1.02]

Preconditioner updates for solving sequences of linear systems in
matrix-free environment’

Jurjen Duintjer Tebbens and Miroslav Ttma*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Voddrenskou vézi 2, 18207
Praha 8, Czech Republic.

SUMMARY

We present two new ways for preconditioning of sequences of nonsymmetric linear systems in matrix-
free environment. Both approaches are fully algebraic, they are based on the general updates of
incomplete LU decompositions recently introduced in [1], and they may be directly embedded into
nonlinear algebraic solvers. The first of the approaches uses a new model of partial matrix estimation to
compute the updates. The second approach exploits separability of the function to apply the updated
factorized preconditioner via function evaluations with the discretized operator. The approaches based
on preconditioner updates are experimentally compared in matrix-free environment with two other
possibilities: preconditioner recomputation for each linear system of a sequence, or freezing of a
reference preconditioner. It is shown in our test cases, that updating is typically the best of the
three compared strategies.
Copyright (© 2000 John Wiley & Sons, Ltd.

KEY WORDS: preconditioned iterative methods, matrix-free environment, inexact Newton-Krylov
methods, factorization updates, incomplete factorizations

1. Introduction

We consider the solution of sequences of linear systems
AWy =p® j=1,..., (1.1)

where A®) € IR™™™ are general nonsingular sparse matrices and b(¥) € IR™ are corresponding
right-hand sides. Such sequences arise, for example, when a system of nonlinear equations is
solved by a Newton or Broyden-type method [2], [3]. Krylov subspace methods are among the
most successful approaches for solving the linear systems. These methods have the property
that the system matrix is needed only in the form of matrix-vector products, and the explicit

*Correspondence to: Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod
Voddarenskou vézi 2, 18207 Praha 8, Czech Republic. E-mail: {tebbens,tuma}@cs.cas.cz

TThis work was supported by the project No. IAA100300802 of the Grant Agency of the Academy of Sciences
of the Czech Republic. The work of the first author is also supported by project number KJB100300703 of the
Grant Agency of the Academy of Sciences of the Czech Republic.

Received 2008
Copyright © 2000 John Wiley & Sons, Ltd. Revised

2 J. DUINTJER TEBBENS AND M. TUMA

representation of the matrix is not necessary. If the matrix is not represented explicitly, we
often say that the method is matriz-free.

It is widely recognized that in most cases of practical interest, Krylov subspace methods
must be preconditioned in order to be efficient and robust. However most of the strong
preconditioners either require the system matrix explicitly, or their computation may be rather
expensive. In order to reduce the costs of the computation of preconditioners, we may reuse
a preconditioner over more systems of the given sequence of systems of linear equations. In
addition, the quality of the reused preconditioner may be further enhanced through updates
containing information extracted from the sequence of matrices, or from previous application
of the Krylov subspace method. In this paper we address the problem of solving a sequence
of general nonsymmetric systems by preconditioned Krylov subspace methods, where the
preconditioners are based on incomplete LU decompositions, they use general rank-n updates,
and all the computations are done in matrix-free environment. Due to the costs that are related
to the fact that the system matrix is not given explicitly, avoiding frequent recomputations of
the preconditioner from scratch seems to be even more important in matrix-free environment
than in the standard case. In the following, we will briefly summarize basic lines of previous
research on matrix-free preconditioning and on solving sequences of systems of linear equations
with preconditioner updates, that is, on the basic subproblems which we face.

A very popular and natural framework to solve large systems of nonlinear algebraic equations
is represented by Jacobian-free Newton-Krylov (JFNK) methods which combine Newton
iterations with Krylov subspace methods and assume that the Jacobian matrix is not explicitly
available. Let us first mention a couple of preconditioning strategies related to matrix-free
environment, many of which are targeted prevailingly for the JFNK methods. First, the
preconditioners can correspond to a discretization of an operator which is simpler than the
operator for evaluating the sparse system matrix, see, e.g., [4], [5], [6], [7], [8], [9]. Successful
preconditioners were also proposed for solving problems in applications which provide rather
dense Jacobian matrices [10], [11]. If a preconditioner is algebraic, then the fact that the
system matrix is not explicitly available often implies that the preconditioner is rather simple
and/or sparse. In some of such situations, the role of the preconditioner is played by the
matrix diagonal or its approximation. In other situations, the preconditioning employs more
sophisticated stationary iterative methods, fast FFT-based solvers, ADI methods, inner-outer
schemes etc., in order to be easily applied in matrix-free environment. An early important
paper which explicitly targets preconditioning in matrix-free environment is [12] with results
for a model nonlinear boundary value problem, see also the applications in CFD [13]. For
more details on JFNK methods and their modifications, see the overview in [8], but see also
[4], [14], [15]. If we know the sparsity structure of system matrices, these matrices can be always
estimated by matrix-vector multiplications, as we will explain later, and this estimation can be
efficient as well. Then more sophisticated preconditioners such as incomplete factorizations
can be based on the estimated matrices. It is also known that only a few matrix-vector
multiplications may be needed to obtain an approximate estimate that is sufficiently accurate
for the construction of a good preconditioner [16].

Preconditioner updates used for solving system sequences are traditionally based on
modifications by matrices of small rank. Early work which uses the Broyden formula to
update the preconditioner was introduced in [17]. The authors in [18] use rank-1 updates
for both Krylov and Newton parts of the solver and apply the resulting algorithm to power
system problems. Another recent combination of rank-one updated preconditioners with the

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 3

Newton method is [19], see also the references given there. A theoretically interesting approach
which may be useful especially if the system matrix changes very slowly was presented for the
conjugate gradient method in [20]. An important field which employs sequences of large and
sparse matrices where the matrices may not be explicitly available, is smooth optimization.
Limited-memory variable metric methods [21] are based on keeping an approximate Hessian
matrix (or its inverse) in the form of a truncated sequence of vector pairs, which represent
updates of small rank and allow to compute search vectors from linear combinations of these
vectors. Because of the memory restrictions, the limited-memory updates may be replaced
or enhanced by an additional simple matrix, which is regularly updated, see, e.g., [22], [23],
[24], [25]. Straightforward rank-2 updates of a previous preconditioner in the sequence were
proposed in [26], where the vectors involved in the updates were computed from the conjugate
gradient iterative method. Simple specific diagonal preconditioning for solving the sequence of
problems arising in the truncated Newton method was recently proposed in [27].

An important class of algebraically-motivated strategies to accelerate the convergence of
preconditioned iterative methods, and related to our goals, is based on constructing or
improving the preconditioner by adaptive spectral information obtained directly from the
Krylov subspace methods, see, e.g., [28], [29], [30]. These strategies are often problem specific,
but they are in general compatible with matrix-free implementations. The authors in [31] and
[32] determine an invariant subspace of the system matrix associated with the eigenvalues close
to the origin and remove the influence of those eigenvalues on the rate of convergence (see the
extension of the latter research for adaptive enhancement of preconditioners in a sequence of
systems in [33]). A similar approach has been proposed in [34]. There are a couple of other
techniques to improve the preconditioner based on deflated and augmented Krylov subspace
techniques, see, e.g., [34], [35], [36]. All of these techniques have also a significant potential to
be applied for solving sequences of systems. Recent results on solving the sequences of systems
of linear equations with explicit recycling of the information from Krylov subspaces can be
found, for example, in [37], [38], [39] for computational mechanics and material sciences, and
in [40] for tomographic imaging. Note that further interesting ideas which may be used for
solving general sequences of linear systems are used in solvers for sequences with the same
system matrix and different right-hand sides which are not simultaneously available, see, e.g.,
[41], [42].

Although it is possible to analyze the spectral properties of sequences of preconditioned
matrices in some important special cases, in typical situations we know much less, as it is,
e.g., in general JENK methods. Updates of small rank are often restricted to specific classes of
problems or nonlinear schemes as well. Therefore, cheap and generally rank-n preconditioner
updates are strongly needed. Recently some new approaches to approximate preconditioner
updates were introduced, see e.g. [43]. The authors in [44] propose approximate diagonal
updates to solve parabolic PDEs, see also [45]. Nonsymmetric updates of general incomplete
LU decompositions were considered in [1, 46], see also some results in solving real-world
problems in [47]. So far, neither of these approaches have addressed the challenges related
to preconditioner updates in matrix-free environment.

This paper deals with matrix-free algorithms to solve the sequences of linear systems based
on the general triangular preconditioner updates introduced in [1]. In particular, two new
approaches for matrix-free updates of preconditioners are proposed. The first approach is
based on evaluating of all the structures needed to perform the update via an efficient matrix
estimation. In particular, a novel partial estimation procedure, which is targeted for the matrix-

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

4 J. DUINTJER TEBBENS AND M. TUMA

free triangular updates, is proposed. The second approach performs the updates by modifying
forward or backward solves with the preconditioner, inside the iterative method. It is shown
that both approaches may be efficient and robust in matrix-free environment.

The paper is organized as follows. In Section 2 the general preconditioner updates are briefly
recapped and the two basic approaches are introduced. They are presented in detail in the
subsequent Sections 3 and 4. Section 5 discusses numerical experiments for both approaches.
The paper is concluded by some finalizing remarks.

2. Basic update technique and the matrix-free algorithms

The triangular preconditioner updates for nonsymmetric sequences from [1] are defined with
the help of the difference between the matrix from the first (reference) linear system of a
sequence and the current system matrix. Let A be the system matrix of the reference system
and let AT be the current system matrix. If LDU is an incomplete triangular decomposition
of Aand B = A — AT is the difference matrix, then the triangularly updated preconditioners
for the current system are defined as

(LD —tril(B)) U, or L (DU — triu(B)), (2.2)

where tril and triu denote, respectively, lower and upper triangular part of a matrix. We
assume that (LD — tril(B)) or (DU — triu(B)), respectively, is nonsingular. Without loss of
generality, we will use the first type of update in (2.2) in our exposition. In practice, the type
of update is chosen dynamically [46, 47].

In matrix-free environment the factorization LDU has been obtained through estimating
the reference matrix A, and it is stored explicitly. The update needs in addition a part of
the difference matrix B, which is not given explicitly (only A has been estimated). Since the
straightforward estimation of the difference matrix may be expensive, one possible strategy
which we propose is based on modified matrix estimation that is reasonably cheap. In this case
we use an enhanced partial and approximate matrix estimation. This approach is described in
Section 3.

In Section 4 we will describe another strategy to use the triangular updates in matrix-
free environment. It applies the preconditioner (2.2) without running any matrix estimation
procedure other than for the reference matrix. However, this is recommendable only when
function components are separable. Let us explain what we mean by separability in our case
(cf. the concept of partial separability in optimization, e.g. in [48]). Consider a Krylov subspace
method where the product of the system matrix A with a vector v is replaced by the value
of a function F evaluated at v. We say that F is separable if the evaluation of F can be
easily separated in the evaluation of its function components. That is, if the components of
the function F : R™ — IR"™ can be written as F; : R" — IR, where e/ F(v) = F;(v), and
computing F;(v) costs about an n-th part of the full function evaluation F(v). Note that
in some cases, as they arise in complicated computations based on finite volumes or finite
elements, the contributions for each volume or element are computed simultaneously, and in
this case, the evaluation of a single function component costs more.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 5

3. Matrix-free triangular updates via partial matrix estimation

This subsection describes one possible way to compute and apply the triangular updates for
a sequence of linear systems. As mentioned above, in general, it is possible to get a matrix
or its desired submatrices by solving the matriz estimation problem. Let us shortly describe
the strategy and provide some basic references. The matrix estimation problem is the problem
to estimate a sparse matrix by a small number of well-chosen matrix-vector multiplications
(matvecs). Curtis, Powell and Reid [49] were the first to demonstrate that all nonzero entries
of a sparse matrix can be estimated, given the sparsity structure, using a number of matvecs
which is often much smaller than the matrix dimension. Direct computation of the entries of
a generally nonsymmetric matrix B can be formulated as the following problem.

Problem 3.1. Given the sparsity pattern of B find vectors di,...,d, such that for each
nonzero entry b; of B there is a vector di,1 < k < p, satisfying (Bdy); = b;j(dy);.

In practice, we need to have p as small as possible so that the number of matvecs needed
to obtain all nonzero entries is minimal. Subsequently, Coleman and Moré [50] demonstrated
the relation of the matrix estimation problem 3.1 to the vertex coloring of a related graph G
by a minimum number of colors. This minimum number is called the chromatic number of G.
So-called direct methods for solving the matrix estimation problem for a matrix B described
in Problem 3.1 use as G the intersection graph of B, that is the adjacency graph G (B B)
of BT B. Note that for an (undirected) adjacency graph G(C) of a square and symmetric
matrix C we define its set of vertices as V(G(C)) = {1,...,n} and its set of edges as
E(G(C)) = {{i,7}| cij is nonzero}. A vertex coloring of the intersection graph labels every
vertex with a color in such a way that no two adjacent vertices have the same color. The
number of groups of vertices of the related graph with the same color then corresponds to the
number of matvecs needed to estimate all entries of the matrix. A recent survey of theoretical
results and techniques in this field is [51] where one can find details on many standard matrix
estimation strategies. If we need to estimate only a part of a given matrix, we speak about the
partial matric estimation problem [51], [16].

Using the notation from above, consider matrices A and A" from a sequence. If we need to
compute a preconditioner directly from AT, then a straightforward strategy is to estimate AT
entirely. When the sparsity patterns of AT and A are the same, we can use the same graph G
to find, let us say, p color groups for both matrices (note that we typically need to use only
approximate algorithms for graph coloring since the related decision problem is NP-complete
[52]), and the graph coloring algorithm does not need to be rerun to estimate A™ if we have
estimated A. In this way, we need p matvecs for each estimation. If the matrix patterns in the
sequence differ too much, we may need to run the graph coloring algorithm for A* as well, but
its running time is typically smaller than the time needed for matvecs. It was demonstrated
in [16] that for AT we can use the results of the graph coloring algorithm for a matrix with a
“slightly different” sparsity pattern.

In order to use the triangular updates described above we only have to estimate, in addition
to A which was estimated earlier, the upper or the lower triangular part of A*. This leads to
a special partial matrix estimation problem. Without loss of generality, consider estimation
of the lower triangular part of AT. We will formulate this problem as a standard graph
coloring problem (called 1-distance graph coloring problem; the problem can be formulated
also differently using a different coloring paradigm) for a graph which is different from the

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

6 J. DUINTJER TEBBENS AND M. TUMA

intersection graph of A*. The following theorem describes this graph.
Theorem 3.1. Consider the graph
Gr(B) = G(LELg) UGk,

where G(LLLp) = (V, E) is the intersection graph of the lower triangular part of the matriz
B and Gg s defined as

Gk = Ui, Gj, Gi= Vi, E;)) = (V,{{k,j} bi #ONDbi; #ONk < i< j}).

If the graph G (B) can be colored by p colors, then the entries of the lower triangular part
Lp of B can be computed by p matvecs of B with vectors dy,...d, such that for each nonzero
entry l;; of Ly there is a vector di,1 < k < p, satisfying (Bdy); = l;j(d);.

Proof: In other words, the theorem gives necessary conditions to solve a modified Problem
3.1 in which we have to estimate only the entries of Lp via matvecs with B. Assume that
Gr(B) was colored by p colors. Define the vectors dg, 1 < k < p, such that

(di); = 1 if the vertex j has the color k,
F)i 7 0 otherwise.

Consider a nonzero entry l;; of Lp. Since there are edges {i,I} in Gr(B) for each
1 < 1 < n such that b; is nonzero, we have (Bdy); = l;; and we have the result.
O

Note that the graph G (B) contains only a subset of edges of the adjacency graph G(BT B)
which should be considered to solve Problem 3.1. Consequently, in order to estimate only a
triangular part of AT we may need a smaller number of matvecs than in the case of estimation
of the whole B.

Another aspect of the estimation of a triangular part of a matrix is that it depends on the
matrix reordering since the graph construction depends on it. We will demonstrate it in the
following Example 3.1, where we show two differently reordered arrow matrices B, B(®) and
the corresponding graphs Gr(B™M), G7(B®)) from Theorem 3.1.

Example 3.1.

*

B — B®@ —

EEE R
L

* * X

2 2
1 3 1 3
GT(B(U) GT(B(Q))
4 4

Clearly, G7(B™) can be colored by two colors but G (B?) needs four colors. The next
theorem shows that sometimes we can increase our chances to decrease the number of matvecs

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 7

* %k
* % *
* * * %
* * *
* *
* % *

Figure 3.1. Matrix B after the Cuthill-McKee reordering for which its graph G (B) needs more colors
than the graph Gr(B), where B we get from B after the symmetric reversal of its columns and rows.

needed for the estimation of a triangular part of the matrix by an appropriate ordering of the
matrix. In the following we will compare the Cuthill-McKee and the Reverse Cuthill-McKee
(RCM) reorderings [53].

Theorem 3.2. Assume that the irreducible matrix B with symmetric sparsity pattern was
reordered by the Cuthill-McKee reordering. Further assume that the following condition applies:
if bi; # 0 for somei,j, 1 <j<i<nthenby #0 foralll, j <l <i (envelope assumption).
Denote by B the matriz which we obtain from B by reversing the order of rows and columns
with respect to B, that is, B corresponds to the original matriz reordered by the related RCM
reordering. Then the chromatic number of Gr(B) is not larger than the chromatic number
Gr(B).

Proof: We will use induction on 4. Let us first define f; = min{j| b;; # 0} for 1 <4 <n. If
B is reordered by the Cuthill-McKee reordering then we know that f; < f;if 1 <i<j<n
(monotone envelope property) and f; < i for 1 <i <mn [54].

The assertion is trivially valid for i = 1. Consider ¢ > 1. Assume that we border the matrix of
dimension i—1 by a row 4 from the bottom and a column ¢ from the right. Let j be the minimum
index such that b;; # 0. The nonzero entries in the i-th row induce a complete subgraph in
Gr(B). Because of the envelope assumption, this complete subgraph must be in GT(B) as
well since the nonzeros b;; for j <1 < ¢ induce a clique. Consequently, GT(B) has all edges
from Gr(B) and its chromatic number is not smaller than the chromatic number of Gr(B).

O

Note that CM/RCM reorderings are often used to preprocess a matrix of linear systems
solved by preconditioned iterative methods. One motivation in the nonsymmetric case is that
such reorderings may be very beneficial for the stability of the incomplete decomposition [55].
Nevertheless, Theorem 3.2 is not valid without the envelope assumption. Figure 3.1 shows an
example of a matrix B after the Cuthill-McKee reordering. The chromatic number of G (B)
is five. B reordered by the related RCM needs only four colors. Despite this counterexample,
Theorem 3.2 gives an idea of useful reorderings even when the envelope assumption does not
hold.

Another important component of the proposed strategy, in addition to the estimation
techniques, is the prefiltration of the matrix from which the preconditioner is computed. The
prefiltration is based on the sparsity pattern of the reference matrix.

Let us summarize crucial points of our approach. The complete matrix-free preconditioned
iterative method with the updates to solve a sequence of linear systems needs to estimate the
reference matrix, and the triangular parts of the remaining matrices, so that they could be

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

e

8 J. DUINTJER TEBBENS AND M. TUMA

used in the updates. These two tasks are performed via the following algorithm.

Algorithm 3.1. PARTIAL MATRIX ESTIMATION FOR TRIANGULAR PRECONDITIONER
UPDATES. Input: Matriz sequence A, AN A and the sparsity pattern S(A(O)).

Estimation. Estimate A using S(A).
Initial factorization. Factorize A such that A®) ~ LDU.
Sparsification. Filtrate A©) to get A©) and its sparsity pattern S(A©).

fork=0,....n
Estimate the lower triangular part of A% needed for the update based on
the coloring of Gr(AW©).

end for

Note that the triangular part of Ag is estimated twice. First, it is estimated with the original
sparsity pattern. Second, the filtrated pattern S(A(®) is used. The updates then use the
lower triangular part of the matrices B = A — A®) for i = 1,...,n computed with the
filtrated and approzimate sparsity pattern S(A(©)). Since the estimation adds some error to
the computed matrix entries, it is important to distribute this error in all the approximate
matrices in the same way. In addition, we observed experimentally that it is better to use in
the updates an estimate to A) obtained in Step 4 of Algorithm 3.1, under the same conditions
as the other estimates, than an estimate from Step 1. This is the reason to have the loop in
Step 4 starting from 0. As for the sequential graph coloring heuristic, it tries to balance the
error among the groups of columns of the same color as proposed in [16].

4. Matrix-free updates in the separable case

This section describes the approach for applying matrix-free triangular preconditioner updates
when the function components are separable, as described in Section 2. Assume for the moment
that the triangular part of the matrix A and its incomplete LU decomposition are available
explicitly (for simplicity, we hide the diagonal factor of the decomposition in L). In practice,
these quantities are computed for the reference system of the sequence. Let the current matrix
AT be given implicitly in the form of its action on vectors, expressed by the function evaluation
F*(), where F+ : R" — R™ and let F;" be the i-th component of F*. When the function
components are separable we show how to avoid most estimation of AT and thus keep memory
small at the same time. The strategy used to apply the updated preconditioner

(L — tril(B)) U (4.3)

is summarized in Algorithm 4.1.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 9

Algorithm 4.1. APPLICATION OF TRIANGULAR PRECONDITIONER UPDATES IN THE
SEPARABLE CASE. Input: Explicitly stored matrices L,U and tril(A) and the function
components of FT which represent AY implicitly.

. Initialization. Find the main diagonal {af,,...,al,} of AT before running the iterative
method. It can be found by computing
at = F(e;), 1<i<n.

. Forward solve in each iteration. Use the following mixed explicit-implicit strategy: Split
the lower triangular matriz of (4.3) as L —tril(B) = E + tril(A%). That is, E = L — tril(A)
is stored explicitly, and the implicit part tril(AT) contains entries of the new system matriz.
We then have to solve triangular systems of the form

(E+tril(AT)) z =y,
which yields the forward solve loop

_ . + ..
Yi Zj<ieUZJ Zj<iaijzﬂ

+
€ii + Ay

. i=1,2,...,n. (4.4)

Zi =

Note that the values e;; and af; in the denominator are known. In the numerator of (4.4),
the first sum can be computed explicitly and the second sum can be computed by the function
evaluation

Za:;z]:]-'f ((Zl,,Zifl,O,,O)T) (45)

j<i

. Backward solve in each iteration. This is a trivial step since the matriz U in (4.3) has
been stored explicitly.

The costs to find the main diagonal in Step 1 (initialization) correspond approximately to
the costs of one full function evaluation. Note that the diagonal of B = A — AT is known in
advance in some applications. In particular, if the diagonal does not change, diag(B) is the
zero matrix. Similarly, in Step 2, the whole forward-solve loop requires n partial evaluations
(4.5). In total, it approximately gives the cost of one additional full function evaluation per
solve step of the preconditioned iterative method.

Let us compare this approach with the strategy which recomputes the preconditioner for
each system of a given sequence. With updates applied according to Algorithm 4.1, only the
main diagonal of AT needs to be estimated (in the initialization). If we would recompute the
preconditioner, on the other hand, we would have to estimate the matrix A", and also to
compute the incomplete factorization. However, application of the update using Algorithm 4.1
could be more expensive than applying a new factorization if we would need a similar number
of iterations since an extra full function evaluation in each forward solve is needed.

Let us mention that this additional function evaluation with Algorithm 4.1 can be in the
case of slow convergence of the preconditioned iterative method subsequently replaced by the
following explicit evaluations. Let stril denote the strict lower triangular part. To obtain the
entries of stril(A"), note that every forward solve with (4.5) gives us an equation in the

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

10 J. DUINTJER TEBBENS AND M. TUMA

Table 4.1. Costs of one non-matrix-free explicit preconditioning step

type initialization solve step memory
Recomp | AT ~ LTUT solves with LT, U+ AT LT, UT
Update — solves with L, U, tril(B) | AT, tril(A),L,U

unknowns a;’;, j < 4. Thus after the first complete forward solve cycle we have one equation
for the entries of all rows in stril(A1) and rows of stril(A") with one entry can be evaluated
(and merged with the corresponding rows of L as far as the entries are in the same columns).
Similarly, after the second complete forward solve cycle we get two equations for the entries
of all rows in stril(A™) and thus rows with two entries are explicitly known (and can possibly
be merged with rows of L). If a row of stril(AT) contains k entries then k forward solves
are needed to obtain enough linear equations to compute the entries of the row. Here we do
not address the problem of non-singularity of the system from which the entries of A* are
computed as well as other practical problems which may be faced during the implementation.

Let us return to the computation of A, which is the reference matrix of the given sequence. In
our experiments, A is estimated. But, for completeness, if the estimation of A is not efficient
and the decomposition has been obtained in a different way, or if the sparsity patterns of
tril(A) and L differ so much that the storage costs would grow unacceptably, one may also use
the function components of F to operate with tril(A) in the forward solve. Then, formally, the
explicit part E of the forward solve consists of L only. In (4.4) there are three sums of which
the last two are computed implicitly. The whole forward solve then would cost about two full
function evaluations in total (which can again be eliminated with the process described in the
previous paragraph).

Finally, note that the function separability could even motivate replacement of the graph
coloring-based estimation by direct evaluations of the non-zero entries according to the simple
formula

A5 = .7-'2(6]) (46)

In addition, specific preconditioners may not even need all matrix entries to be evaluated
[16]. Apart from a few experiments in the next section, we will not further follow the ideas
mentioned in the latest three paragraphs.

We conclude this section by an overview of costs for the described strategies. Let us
distinguish three cases. Table 4.1 summarizes the costs and memory for one preconditioning
step with recomputation (denoted as “Recomp”) and with the update (2.2) (“Update”),
respectively, in the standard, non matrix-free environment where the system matrices are
explicitly given. With the recomputation strategy, we denote the approximate LU factors of
At by Lt, UT. Tables 4.2 and 4.3 present the costs and memory for one preconditioning step
with recomputation and update, respectively, in matrix-free environment. Table 4.2 addresses
the approach from Section 3. We denote matrix estimations and function evaluations by est(.)
and eval(.), respectively. Table 4.3 summarizes the costs for the approach from Section 4 which
exploits the separability of F into components assuming that the function components can
be computed in about an nth part of the cost of a full function evaluation. To emphasize the
difference between the strategies, it is assumed that both tril(AT) and tril(A) are given only

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 11

Table 4.2. Costs of one matrix-free preconditioning step based on Algorithm 3.1

type initialization solve step memory
Recomp | est(A"), AT =~ LTUT solves with LT, U+ Lt Ut
Update est(tril(AT)) solves with L, U, tril(B) | tril(A"),tril(A), L,U

Table 4.3. Costs of one matrix-free preconditioning step based on Algorithm 4.1

type initialization solve step memory
Recomp | est(A"), AT~ LTUT solves with L+, U™ LT, U+
Update est(diag(A™)) solves with L, U, eval(F, FT) LU
implicitly.

The tables provide only a rough comparison. In particular, the amount of overlap between
the sparsity patterns of L and tril(B) may have an important influence on the storage and
application costs. In some cases A and AT may have not only somewhat different sparsity
patterns, but also completely different sizes. Our second example in Section 5 shows that the
updates can be efficient even in such a situation.

5. Numerical experiments

This section is devoted to numerical experiments illustrating the techniques from Section 3
and 4. In particular, we consider two test problems for experiments with the approach based
on partial matrix estimation and two problems covering the separable case. We attempted to
use a variety of ILU decompositions and we performed tests with GMRES as well as with
BiCGSTAB. The first two problems consider fixed sequences of linear systems generated from
nonlinear solvers. The next two problems result from a Newton-type method with a flexible
stopping criterion for the linear system solution. Here the preconditioners with the triangular
updates were fully embedded into the nonlinear solver. The convergence of the resulting matrix-
free Newton-Krylov method strongly depends on the accuracy of linear system solution and
varies with the type of preconditioner that is used. All experiments were implemented in
Fortran 95 on Intel Pentium-based machines.

In all experiments we use the standard difference approximation of the Jacobian of the
function F' that is to be minimized to avoid storage of the Jacobian. L.e., a matvec with the
Jacobian, Av, is replaced by

€

for some small € > 0, where z is the vector at which the Jacobian is approximated.

The first set of experiments is devoted to solving a sequence of linear problems arising during
the computation of a constitutive model from structural mechanics provided by Karsten Quint.
More precisely, a small strain metal viscoplasticity model was developed for a rectangular plate

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

12 J. DUINTJER TEBBENS AND M. TUMA

of length 100, width 21.2 and height 9.62 cm with a hole in the middle. When applying the
Multilevel-Newton algorithm, every time-step contains an inner loop that requires the solution
of nonlinear systems. For more details on the parameters of the material and of the Multilevel-
Newton algorithm which were used, we refer to the description of the first application in [56].
We consider here a sequence of linear systems from a randomly chosen time-step in the middle
of the simulation process and discretization with 1350 quadratic elements in most of the
domain with a somewhat finer grid in the center. This sequence consists of 8 linear systems of
dimension 4 936 with matrices containing about 315000 nonzeros.

In this case, separate computation of the function components would be expensive, and
we used the strategy based on partial matrix estimations. To solve the problem, we use the
GMRES(40) method preconditioned by ILUT [57]. We present results of several experiments
differing in parameters provided to the preconditioner. In particular, we would like to show
that the matrix-free strategy from Algorithm 3.1 is successful over large variations in the
preconditioner density. Let us remind that Algorithm 3.1 evaluates in its loop also a less
accurate approximation of the triangular part of A(®) using the filtrated pattern S(A(®)) which
we use to compute the updates, although we have a more accurate A available. A was
filtrated in Algorithm 3.1 such that all the entries with magnitude smaller than half of the
magnitude of the largest entry in their rows were dropped.

Tables 5.4-5.8 present the results in terms of number of iterations and needed matrix-
vector multiplications (that is, the function evaluations (5.7)). We compare the three
possible computational strategies: preconditioner recomputation by matrix estimation for each
system (Recomp), preconditioner computation only for the reference matrix (Freeze), and
preconditioning with the triangular updates based on Algorithm 3.1. The average number of
nonzeros of the factorizations is denoted with “Psize”. The column “fevals” gives the number
of function evaluations needed for matrix estimation and “overall fevals” presents the number
of iterations plus the number of fevals for estimations. The two fevals numbers for A© in the
column “Updated” correspond to its estimation with full and filtrated pattern. The first fact
which we observe is that the updating strategy works very well in terms of iteration counts,
and it seems from this point of view to be the best option. Let us also remind the experimental
dependence of timings and iteration counts presented for the triangular updates in [1] if we
assume similar sizes of preconditioners used in the compared strategies. Consequently, it is
clear that the updates are very often able to recover a lot of the information missing in the LU
decomposition of the reference matrix. Except for Table 5.8, both recomputation and updates
are much better than the freezing strategy. Table 5.8 shows the reversed situation, where the
freezing strategy is the best of all. But note that in this case the preconditioner is rather dense.
One could assume that the additional information provided by the sparsified difference matrix
does not seem to be sufficient to improve the preconditioner in this case.

For the next set of experiments we have chosen a sequence of problems provided by Reijo
Kouhia. The sequence represents linear systems from the discretization of nonlinear heat
transfer on a 50x 50 quadrilateral mesh discretized with 9-node Lagrange biquadratic elements.
The system matrices are of dimension 9801 with 152881 nonzero entries. In this case, the
individual matrices of the sequence are numerically strongly different. Consequently, the sizes
of the ILUT preconditioners differ strongly as well. Table 5.9 presents in the column denoted
by “Psize” the sizes of the recomputed preconditioner. In order to have the comparison fair to
all the options, we compute the preconditioner as follows. The option “Recomp” estimates
the matrix and computes the ILUT(0.5,10) preconditioner in the form AT ~ LTUT for

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 13

Table 5.4. Number of iterations and function evaluations for solving preconditioned linear systems
from the structural mechanics problem with ILUT(0.01,5).

ILUT(0.01,5), Psize ~ 260 000
Matrix Recomp Freeze Updated
its | fevals | its | fevals | its fevals
A© 343 | 89 [343 | 89 | 343 | 89+25
AD 172 | 89 | 623 0 237 25
A® 201 | 89 | 694 0 298 25
A®) 294 | 89 | 723 0 285 25
A® 298 | 89 | 799 0 334 25
AG) 38 | 89 | 708 0 320 25
A©) 348 | 89 | 714 0 318 25
A 317 | 89 | 717 0 318 25
overall fevals 3071 5321 2942

from the structural mechanics problem with ILUT(0.001,20).

ILUT(0.001,20), Psize ~ 404 000
Matrix Recomp Freeze Updated
its | fevals | its | fevals | its fevals
A© 187 | 89 [187 | 89 | 187 | 89+25
A 89 89 | 393 0 146 25
A®) 126 | 89 | 448 0 182 25
AB) 221 | 89 | 480 0 184 25
AW 234 | 89 | 513 0 190 25
A®) 193 | 89 | 487 0 196 25
A©) 178 | 89 | 521 0 196 25
A 246 | 89 | 521 0 196 25
overall fevals 2186 3639 1966

Table 5.5. Number of iterations and function evaluations for solving preconditioned linear systems

each linear system. The other options use the ILUT(«,10) decomposition of AO) where o
is chosen such that the decomposition is of similar size as the decomposition AT ~ LTU™T.
This strategy was chosen because the sizes of ILUT(0.5,10) decompositions for the matrices
in the sequence significantly change, and we are interested in evaluating the power of the
updated preconditioners which would contain a similar amount of information, measured by
the preconditioner size. These experiments use the BiCGStab iterative method and the “overall
fevals” row sums together the following items: twice the number of iterations, and the number
of matvecs needed for estimations.

As mentioned above, the next two test problems cover the separable function case. In

Copyright © 2000 John Wiley & Sons, Ltd.
Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2000; 00:1-6

J. DUINTJER TEBBENS AND M. TUMA

Table 5.6. Number of iterations and function evaluations for solving preconditioned linear systems

from the structural mechanics problem with ILUT(10™%,30).

ILUT(10~ %, 30), Psize ~ 550 000
Matrix Recomp Freeze Updated
its | fevals | its | fevals | its fevals
A© 85 | 89 85 89 85 | 89+25
A 50 [89 | 233 0 78 25
A® 72| 89 | 313 0 84 25
AB) 78 | 89 | 344 0 85 25
A® 78 | 89 | 289 0 108 25
AG) 78 | 89 | 289 0 108 25
A©) 79 [89 | 318 0 108 25
A 86 | 89 | 318 0 108 | 25
overall fevals 1327 2278 1253

Table 5.7. Number of iterations and function evaluations for solving preconditioned linear systems

from the structural mechanics problem with ILUT(1075,50).

ILUT(10 7, 50), Psize ~ 812000
Matrix Recomp Freeze Updated
its | fevals | its | fevals | its | fevals
A© 65| 89 65 89 | 65 | 89+25
A 31| 89 | 128 0 52 25
A® 35| 89 | 163 0 45 25
AB) 35 | 89 | 237 0 45 25
AW 37| 89 | 167 0 52 25
AB) 38 [89 | 169 0 51 25
A©) 37| 89 | 168 0 51 25
A 50 | 89 | 168 0 51 25
overall fevals 1040 1354 901

the first example, the function with easily separable components is represented by a two-
dimensional nonlinear convection-diffusion model problem with finite difference discretization.
The convection-diffusion model problem has the form (see, e.g. [2])

ou Ou

—Au+ Cu (+ > = f(z,y), f(z,y)=2000z(1—z)y(1—1y),

5% " 5 (5.8)

where C' > 0 is the Reynold number, and it is discretized on the unit square. The standard
five-point discretization stencil (central difference) provides separable components of F' of the

Copyright © 2000 John Wiley & Sons, Ltd.
Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2000; 00:1-6

MATRIX-FREE PRECONDITIONER UPDATES 15

Table 5.8. Number of iterations and function evaluations for solving preconditioned linear systems
from the structural mechanics problem with ILUT (1075, 70).

ILUT(10-%,70), Psize ~ 950 000
Matrix Recomp Freeze Updated
its | fevals | its | fevals | its | fevals
A©) 32 | 89 32 89 | 32 | 89+25
A 21 | 89 78 0 54 25
A® 28 | 89 88 0 38 25
A®) 24 | 89 | 101 0 39 25
AD 26 | 89 92 0 38 25
AG) 26 | 89 87 0 38 25
A© 26 | 89 86 0 38 25
A 28 | 89 86 0 38 25
overall fevals 923 739 804

Table 5.9. Number of iterations and function evaluations for solving preconditioned linear systems

from nonlinear heat transfer problem. Recomputed factorizations for each matriz use ILUT(0.5,10),

frozen and updated preconditioners use an ILUT (e, 10) preconditioner of the reference problem which
has similar size as the recomputed preconditioner.

ILUT preconditioner as described
Matrix | Psize Recomp Freeze Updated
its | matvecs its matvecs | its | matvecs

A© 129271 | 97 29 97 29 97 | 29412
AM 172916 | 121 29 2363 0 112 12
A®@ 161115 | 117 29 1207 0 110 12
AB) 156239 | 126 29 729 0 122 12
A@ 153644 | 116 29 525 0 122 12
AG) [52510 | 127 29 322 0 128 12
A©® 152146 | 116 29 263 0 130 12
AD 152067 | 130 29 164 0 141 12
A®) 152063 | 142 29 223 0 144 12
A®) 152063 | 139 29 223 0 137 12
AT 152063 | 136 29 222 0 131 12
AOD 152024 | 140 29 222 0 131 12

overall matvecs 3710 5410 3183

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6

Prepared using nlaauth.cls

16 J. DUINTJER TEBBENS AND M. TUMA

simple form

4T) — Th—1 — Tht1 — Tt N — Th—N
12
- fk7 1 S k S n,

Fy(z) =

Tkh—1 + Tht1 + Th4N + Tp—N

—Cl‘k h

where fi is the discretization of f and N is the number of inner nodes. To solve F(z) = 0
we use the inexact Newton-Krylov method where the Krylov subspace method is BICGSTAB
and the stopping criterion of the iterative method is chosen adaptively; for details about this
inexact Newton-Krylov method, see [58]. The final matrix-free solver was embedded into the
UFO-software [58] for nonlinear problems. The initial approximation is the discretization of
Uo (.23, y) =0.

The preconditioner we use in the experiments is ILU(0), which has the same sparsity pattern
as the matrix it preconditions. Note that with an ILU(0)-factorization the triangular factors
L and U have exactly the same sparsity pattern as tril(B) and triu(B). We will exploit this
when applying the updates (see below). In our experiments, ILU(0) was computed by rows by
adapting Saad’s ILUT code, see [57].

In the tables 5.10-5.15 we display results for several choices of C' and different grid sizes.
As before, 'Freeze’ denotes the case where the ILU(0) factorization is computed for the
reference linear system only, and it is reused for all the subsequent linear systems. In the
column “Recomp”, ILU(0) is computed for each linear system separately. The last two columns
present results with preconditioners updated by lower or upper triangular updates. For these
experiments we present timings for the individual strategies because it would be difficult to
present a fair comparison without them (the number of function evaluations cannot be used
because the evaluations are split into function component evaluations).

The ILU(0) factorizations are computed from the estimations of Jacobians obtained by
direct function component evaluations according to (4.6). We observed that in our case this
is slightly faster than running the graph coloring estimation. However, in this model example
the difference is marginal. The graph coloring algorithm yields 7 colors, hence the matrix
is estimated with about 7n function component evaluations. With (4.6) we need nnz =~ 5n
function component evaluations. In addition, the graph coloring algorithm for this problem is
very fast. For the largest problem we tested, n = 96 100, the average time for estimation with
graph coloring is 0.27 seconds, for estimation with (4.6) we need 0.13 seconds on average and
the graph coloring algorithm, which needs to be run only once, takes 0.3 seconds. These are
negligible time savings compared to the duration of the whole solution process. However, with
more complex sparsity patterns the situation may be different.

The triangular parts tril(B) and triu(B) have been obtained directly by (4.6) as well and
they are merged with L or U before the iterative solver is applied. We observed experimentally
that this is about as fast as performing two steps of mixed explicit-implicit solves with
Algorithm 4.1 and merging the entries computed from the two-by-two linear systems provided
by the implicit matvecs (4.5) as described in Section 4. However, using mixed explicit-implicit
solves throughout the whole linear solution process is clearly slower. One mixed explicit-implicit
solve in the dimension n = 96100 costs about 0.07 seconds whereas a solve where entries
are merged takes about 0.02 seconds. This difference may become smaller when updating a
factorization which has the sparsity pattern very different from that of ¢ril(B) or triu(B).
The main difference is probably caused by the fact that a function component evaluation as

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES

17

Table 5.10. Preconditioning strategies for convection-diffusion problem (5.8) withn = 8182 and C' = 10

Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 159 124 129 160
Newton iterations 7 7 7 7
FCE (in thousands) 2956 2630 2615 3117
overall time in seconds 1.98 3.55 1.92 2.36

Table 5.11. Preconditioning strategies for convection-diffusion problem (5.8) withn = 8182 and C' = 50

Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 410 122 153 186
Newton iterations 9 9 9 9
FCE (in thousands) 7168 2824 3198 3732
overall time in seconds | 4.39 4.29 2.25 2.73

in (4.5) is more expensive than the explicit sum »_,_; €;;2; in (4.4). Nevertheless, there may
be applications where one cannot afford to store tril(B) or triu(B) in addition to the factors
L and U and using mixed explicit-implicit solves would be the only option available.

The results are expressed by the total number of BiCGStab iterations, the total number
of nonlinear Newton steps and the total time in seconds needed to reduce ||F(x)| to the
value 107!, For smaller dimensions we also display the total number of function component
evaluations (denoted by FCE) in thousands. The results show that recomputation always yields
the smallest number of BiCGStab iterations but it is clearly outperformed by the strategy
which uses the updates when the time is considered. Even the freezing strategy, for which
BiCGStab performs poorly, is faster than recomputation in many test cases. The repeated
computation of the ILU(0) factorization seems to be relatively expensive in this example of a
matrix-free implementation. For example, with n = 44 521 the average time to compute ILU(0)
is 3.7 seconds. This represents a considerable part of the total solution time. The important
time losses caused by recomputation are already observed in Table 5.10: Recomputation and
the lower triangular updates yield nearly the same number of BiCGStab iterations but the
updates make the strategy close to twice as fast. As is the case with the number of BiCGStab
steps, the number of function component evaluations does not seem to influence significantly
the overall performance either (note that additional function evaluations are performed after
the solution of the linear system during the line search). The influence of the Reynold number
C seems to be modest. Only the freezing strategy is rather sensitive to the choice of C. In
order to have the experiments realistic from the physical point of view, we did not experiment
with the choice of C for larger problems and used the value of the Reynold number from the
case where the updates performed worst for n = 8182, i.e. C' = 100. As for the difference
between lower and upper triangular updates, we display here both strategies but in practice
one would choose between these two adaptively according to the triangular part of B with
larger magnitude of its norm, see also [1].

Copyright © 2000 John Wiley & Sons, Ltd.
Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2000; 00:1-6

18

Table 5.12. Preconditioning strategies for convection-diffusion problem (5.8) with n = 8182 and

J. DUINTJER TEBBENS AND M. TUMA

C =100
Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations | 1648 111 261 1203
Newton iterations 11 10 10 11
FCE (in thousands) 27361 2750 5036 20 386
overall time in seconds | 15.85 4.69 3.42 13.62

Table 5.13. Preconditioning strategies for convection-diffusion problem (5.8) with n = 22801 and

C =100
Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations | 1550 228 289 334
Newton iterations 10 9 9 9
FCE (in thousands) 72393 12808 15228 17280
overall time in seconds 44.7 194 11.7 12.7

Table 5.14. Preconditioning strategies for convection-diffusion problem (5.8) with n = 44521 and

C =100

Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 740 400 432 528
Newton iterations 9 9 9 9
overall time in seconds 45.9 56.3 31.1 39.1

Table 5.15. Preconditioning strategies for convection-diffusion problem (5.8) with n = 96100 and

C =100
Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 1369 704 911 778
Newton iterations 9 9 9 9
overall time in seconds 176 190 133 121

Our last test problem illustrates some further effects of the preconditioner updates in matrix-
free environment with separable function components. This problem is also taken from the
UFO-test software and represents a two-dimensional driven cavity problem of the form
Oou 0Au Ou 0Au
Oy Ox dr Oy

on the unit square, discretized by 13-point finite differences on a shifted uniform grid [59].

=0 (5.9)

)

AAu+C(

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6

Prepared using nlaauth.cls

MATRIX-FREE PRECONDITIONER UPDATES 19

The boundary conditions are given by u = 0 on 99 and du(0,y)/0x = 0, du(l,y)/0xz = 0,
Ou(x,0)/0x = 0 and Ou(x,1)/0x = 1. The initial approximation is the discretization of
Uo (JC, y) =0.

In this example the main problem with recomputing the preconditioner is that it becomes
unstable as the Newton iteration proceeds (this is caused by the nature of this nonlinear
problem). The first system matrix leads to the most stable factorization, hence freezing or
updating it may be a better idea than recomputing. We show this for two choices of parameters:
In Table 5.16 the dimension is 3364 and C' = 100, in Table 5.17 the dimension is 3721 and
C = 50 (for larger problems the initial preconditioner is also unstable). The recomputed
preconditioners are too unstable for convergence of the Newton process. We did not use
here TLU(0) but allowed changes of the sparsity pattern and adding more fill-in into the
incomplete factors. These tables use ILUT(1,0.01); this yields a factorization with 49 185 non-
zeros for Table 5.16 where the system matrices have 42576 non-zero entries. In Table 5.17
the system matrices have 47157 non-zeros and ILUT(1,0.01) has 54474. Both frozen and
updated preconditioners are able to solve the nonlinear problem; updating the lower triangular
factor performs a little worse than freezing, but updating the upper triangular factor of the
preconditioner performs better than freezing.

In the driven cavity problem we also compare the performance of the mixed implicit/explicit
forward solves from Algorithm 4.1 with fully explicit solves where the entries of tril(A™) were
obtained from (4.6). Recall that in the previous example, mixed implicit/explicit forward
solves were clearly slower than explicit solves. Here we use ILU-factorizations different from
ILU(0). The overall cost of a forward solve, composed of solves with L and with ¢ril(B),
starts to be dominated by the solves with L as the size of L grows. We demonstrate this
effect in Table 5.18 for the case n = 3721 with C' = 50 using lower triangular preconditioner
updates. The table displays the total number of iterations and the overall timing in seconds
(in the same column) to solve the whole sequence in dependence of the size of the initial
factorization. We observe that the mixed implicit/explicit strategy is in general only slightly
slower than the explicit strategy. Sometimes it is even faster (the ILU(14,0.01)-factorization
yields a BiCGStab breakdown). Note that for the ILU(1,0.01)-factorization from Table 5.17
the difference between the two strategies is more significant: For instance, the explicit upper
triangular updates from the table needed 2.28 seconds to solve the nonlinear problem with 557
BiCGStab iterations whereas the mixed implicit/explicit solves needed 3.82 seconds for 592
BiCGStab iterations. Let us also mention that to guarantee convergence of BiCGStab with
preconditioners recomputed from scratch it is necessary to use rather dense factorizations. In
our test cases, the sparsest factorization for which BiCGStab with recomputed preconditioners
converges is ILUT(20,0.01). The number of its nonzeros is in this case about four times that
of the system matrix.

As in the previous example, we measured the difference between matrix estimation with
graph coloring and estimation with (4.6). The structure of the system matrices is more
complicated than for the five-diagonal matrices of the previous test problem; the number
of computed color groups is 18, hence we need about 18n against 13n function component
evaluations with (4.6). Still the difference for the overall computation time is negligible. For
instance, solving the sequence from Table 5.16 with upper triangular updates and with graph
color estimation takes 1.6 seconds, i.e. only 0.1 seconds more than estimation with (4.6).

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

20

Table 5.16. Preconditioning strategies for driven cavity problem (5.9) with ILUT(1,0.01), n = 3364

J. DUINTJER TEBBENS AND M. TUMA

and C' =100
Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 1212 div. 1305 436
Newton iterations 5 div. 5 5
overall time in seconds 3.3 - 4.1 1.5

Table 5.17. Preconditioning strategies for driven cavity problem (5.9) with ILUT(1,0.01), n = 3721

and C' =50
Freeze | Recomp. | Lower tr. update | Upper tr. update
linear solver iterations 743 div. 1328 557
Newton iterations 5 div. 6 5
overall time in seconds 2.5 — 5.2 2.3

Table 5.18. Explicit and implicit solves with lower triangular preconditioner updates for driven cavity

problem (5.9) with n = 3721 and C = 50

Psize | Explicit solves | Mixed explicit/implicit solves

ILUT(10,0.01) | 120837 312/2.18 199/1.97
ILUT(12,0.01) | 135552 159/1.41 151/1.69
ILUT(14,0.01) | 150268 — —

ILUT(16,0.01) | 164961 127/1.41 128/1.68
ILUT(18,0.01) | 179655 119/1.43 115/1.64
ILUT(20,0.01) | 194330 134/1.65 142/2.03
ILUT(22,0.01) | 209009 107/1.53 103/1.69

6. Conclusions

We have presented theoretical results and numerical experiments related to matrix-free
strategies for solving sequences of linear systems by preconditioned iterative methods. In
particular, we introduced two new approaches to apply triangular updates for enhancing the
solver of the sequences. The experiments in matrix-free environment appear to confirm that the
proposed strategies are typically the best of all compared possibilities. Moreover, the updates
can be easily embedded into matrix-free nonlinear solvers.

Copyright © 2000 John Wiley & Sons, Ltd.
Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2000; 00:1-6

MATRIX-FREE PRECONDITIONER UPDATES 21

7. Acknowledgment

We would like to gratefully acknowledge the help of Stefan Hartmann, Reijo Kouhia and
Karsten Quint who provided the test problems. We are also very much indebted to Ladislav
Luksan for helping us to embed the updated preconditioners into the UFO software.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

REFERENCES

. Duintjer Tebbens J, Tuma M. Efficient preconditioning of sequences of nonsymmetric linear systems.

SIAM J. Sci. Comput. 2007; 29(5):1918-1941.

. Kelley CT. Iterative Methods for Linear and Nonlinear Equations. STAM: Philadelphia, 1995.
. Kelley CT. Solving nonlinear equations with Newton’s method. Fundamentals of Algorithms, Society for

Industrial and Applied Mathematics (STAM): Philadelphia, PA, 2003.

. Brown PN, Saad Y. Hybrid Krylov methods for solving systems of nonlinear equations. SIAM J. Sci. Stat.

Comput. 1990; 11:450-481.

. Mousseau VA, Knoll DA, Rider WJ. Physics-based preconditioning and the Newton-Krylov method for

non-equilibrium radiation diffusion. J. Comput. Phys. 2000; 160:743-765.

. Keyes D. Terascale implicit methods for partial differential equations. Contemporary Methematics, AMS,

Providence 2001; 306:29-84.

. Reisner J, Mousseau VA, Wyszogrodzki AA, Knoll DA. An efficient physics-based preconditioner for the

fully implicit solution of small-scale thermally driven atmospheric flows. J. Comput. Phys. 2003; 189:30—
44.

. Knoll DA, Keyes D. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J.

Comp. Phys. 2004; 193:357-397.

. Bernsen E, Dijkstra HA, Wubs FW. A method to reduce the spin-up time of ocean models. Ocean Modell.

2008; 20:380-392.

Li X, Primeau F. A fast Newton-Krylov solver for seasonally varying global ocean biogeochemistry models.
Ocean Modell. 2008; to appear.

Khatiwala S. Fast spin up of ocean biogeochemical models using matrix-free Newton-Krylov. Ocean
Modelling 2008; 23:121-129.

Chan TF, Jackson KR. Nonlinearly preconditioned Krylov subspace methods for discrete Newton
algorithms. SIAM J. Sci. Statist. Comput. 1984; 5(3):533-542.

Luo H, Baum JD, Léhner R. A fast, matrix-free implicit method for compressible flows on unstructured
grids. J. Comp. Physics 1998; 146(2):664-690.

Knoll DA, McHugh PR. Newton-Krylov methods applied to a system of convection-reaction-diffusion
equations. Comput. Phys. Commun. 1995; 88:141-160.

Knoll DA, McHugh PR, Keyes DE. Newton-Krylov methods for low Mach number compresible combustion.
AIAA Journal 1996; 34:961-967.

Cullum J, Tama M. Matrix-free preconditioning using partial matrix estimation. BIT Numer. Math. 2006;
46:711-729.

Choquet R. A matrix-free preconditioner applied to CFD. Technical Report No. 940, INRIA, France 1995.
Chen Y, Shen C. A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its
application for power flow calculations. IEEE Transactions on Power Systems 2006; 21(3):1096-1103.
Bergamaschi L, Bru R, Martinez A, Putti M. Quasi-Newton preconditioners for the inexact Newton
method. ETNA 2006; 23:63-74.

Dunagan J, Harvey NJA. Iteratively constructing preconditioners via the conjugate gradient method.
STOC’07 (89th annual ACM Symposium on Theory of Computing, San Diego, CA, 2007). ACM: New
York, 2007; 207-216.

Nocedal J. Updating quasi-Newton matrices with limited storage. Math. Comp. 1980; 35(151):773-782.
Gilbert JC, Lemaréchal C. Some numerical experiments with variable-storage quasi-Newton algorithms.
Math. Programming 1989; 45(3, (Ser. B)):407-435.

Zhu M, Nazareth JL, Wolkowicz H. The quasi-Cauchy relation and diagonal updating. SIAM J. Optim.
1999; 9(4):1192-1204.

Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math. Programming
1989; 45(3, (Ser. B)):503-528.

Veersé F, Auroux D, Fisher M. Limited memory BFGS diagonal preconditioners for a data assimilation
problem in meteorology. Optimization and Engineering 2000; 1(3):323-339.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

22

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

J. DUINTJER TEBBENS AND M. TUMA

Morales JL, Nocedal J. Automatic preconditioning by limited memory quasi-Newton updating. SIAM J.
Optim. 2000; 10(4):1079-1096 (electronic).

Roma M. Dynamic scaling based preconditioning for truncated Newton methods in large scale
unconstrained optimization. Optimization Methods and Software 2006; 20:693—713.

Serra Capizzano S, Tablino Possio C. High-order finite difference schemes and Toeplitz based
preconditioners for elliptic problems. Electron. Trans. Numer. Anal. 2000; 11:55-84 (electronic).

Serra Capizzano S, Tablino Possio C. Preconditioning strategies for 2D finite difference matrix sequences.
Electron. Trans. Numer. Anal. 2003; 16:1-29 (electronic).

Bertaccini D, Golub GH, Serra Capizzano S, Tablino Possio C. Preconditioned HSS methods for the
solution of non-Hermitian positive definite linear systems and applications to the discrete convection-
diffusion equation. Numer. Math. 2005; 99(3):441-484.

Kharchenko SA, Yeremin AY. Eigenvalue translation based preconditioners for the GMRES(k) method.
Numer. Linear Algebra Appl. 1995; 2(1):51-77.

Baglama J, Calvetti D, Golub GH, Reichel L. Adaptively preconditioned GMRES algorithms. SIAM J.
Sci. Comput. 1998; 20:243-269.

Loghin D, Ruiz D, Touhami A. Adaptive preconditioners for nonlinear systems of equations. J. Comput.
Appl. Math. 2006; 189(1-2):362-374.

Erhel J, Burrage K, Pohl B. Restarted GMRES preconditioned by deflation. J. Comput. Appl. Math. 1996;
69(2):303-318.

Morgan RB. A restarted GMRES method augmented with eigenvectors. SIAM J. Matriz Anal. Appl.
1995; 16(4):1154-1171.

Saad Y, Yeung M, Erhel J, Guyomarc’h F. A deflated version of the conjugate gradient algorithm. STAM J.
Sci. Comput. 2000; 21(5). Iterative methods for solving systems of algebraic equations (Copper Mountain,
CO, 1998).

Parks ML, de Sturler E, Mackey G, Johnson DD, Maiti S. Recycling Krylov subspaces for sequences of
linear systems. Technical Report UIUCDCS-R-2004-2421, University of Illinois 2004.

Wang S, de Sturler E, Paulino GH. Large-scale topology optimization using preconditioned Krylov
subspace methods with recycling. Internat. J. Numer. Methods Engrg. 2007; 69(12):2441-2468.

de Sturler E, Le C, Wang S, Paulino G. Large scale topology optimization using preconditioned Krylov
subspace recycling and continuous approximation of material distribution. Multiscale and Functionally
Graded Materials 2006 (M&FGM 2006), Oahu Island (Hawait), 15-18 October 2006, G H Paulino, M-J
Pindera, R H Dodds, Jr, F A Rochinha, E Dave, and L Chen, (ed.). AIP Conference Proceedings, 2008;
279-284.

Kilmer ME, de Sturler E. Recycling subspace information for diffuse optical tomography. SIAM J. Sci.
Comput. 2006; 27(6):2140-2166 (electronic).

Golub GH, Ruiz D, Touhami A. A hybrid approach combining Chebyshev filter and conjugate gradient for
solving linear systems with multiple right-hand sides. STAM J. Matriz Anal. Appl. 2007; 29(3):774-795
(electronic).

Giraud L, Gratton S, Martin E. Incremental spectral preconditioners for sequences of linear systems. Appl.
Numer. Math. 2007; 57(11-12):1164-1180.

Meurant G. On the incomplete Cholesky decomposition of a class of perturbed matrices. SIAM J. Sci.
Comput. 2001; 23(2):419-429 (electronic). Copper Mountain Conference (2000).

Benzi M, Bertaccini D. Approximate inverse preconditioning for shifted linear systems. BIT 2003;
43(2):231-244.

Bertaccini D. Efficient preconditioning for sequences of parametric complex symmetric linear systems.
Electronic Transactions on Numerical Mathematics 2004; 18:49—64.

Duintjer Tebbens J, Tuma M. Improving triangular preconditioner updates for nonsymmetric linear
systems. LNCS 2008; 4818:737—744.

Birken P, Duintjer Tebbens J, Meister A, Tuma M. Preconditioner updates applied to CFD model
problems. Appl. Num. Math. 2008; 58(11):1628-1641.

Griewank A, Toint PL. On the unconstrained optimization of partially separable functions. Nonlinear
optimization, 1981 (Cambridge, 1981). NATO Conf. Ser. II: Systems Sci., Academic Press: London, 1982;
301-312.

Curtis AR, Powell MJD, Reid JK. On the estimation of sparse Jacobian matrices. J. Inst. Maths. Applics.
1974; 13:117-119.

Coleman TF, Moré JJ. Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J.
Numer. Anal. 1983; 20:187-209.

Gebremedhin AH, Manne F, Pothen A. What color is your Jacobian? Graph coloring for computing
derivatives. SIAM Review 2005; 47:629-705.

Garey MR, Johnson DS. Computers and Intractability : A Guide to the Theory of NP-Completeness.
Freeman & Co., 1979.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

53.

54.

55.

56.

57.

58.

59.

MATRIX-FREE PRECONDITIONER UPDATES 23

Cuthill EH, McKee J. Reducing the bandwidth of sparse symmetric matrices. Proc. 24" National
Conference of the ACM, ACM Press, 1969; 157-172.

Liu JWH, Sherman AH. Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee
ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 1976; 13:198—213.

Benzi M, Szyld DB, van Duin A. Orderings for incomplete factorization preconditioning of nonsymmetric
problems. SIAM J. Sci. Comput. 1999; 20(5):1652-1670.

Hartmann S, Duintjer Tebbens J, Quint K, Meister A. Iterative solvers within sequences of large linear
systems in non-linear structural mechanics. Prepint submitted in 2008.

Saad Y. ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1994; 1(4):387—
402.

Luksan L, Tama M, Viéek J, RameSova N, Siska M, Hartman J, Matonoha C. UFO 2004 - interactive
system for universal functional optimization. Technical Report V-923, ICS AS CR 2004.

Kaporin IE, Axelsson O. On a class of nonlinear equation solvers based on the residual norm reduction
over a sequence of affine subspaces. SIAM J. Sci. Comput. 1995; 16(1):228-249.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1-6
Prepared using nlaauth.cls

