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Abstract In this paper we propose a stable variant of Simpler GMRES. It
is based on the adaptive choice of the Krylov subspace basis at a given
iteration step using the intermediate residual norm decrease criterion. The
new direction vector is chosen as in the original implementation of Simpler
GMRES or it is equal to the normalized residual vector as in the GCR method.
We show that such an adaptive strategy leads to a well-conditioned basis of
the Krylov subspace and we support our theoretical results with illustrative
numerical examples.
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1 Introduction

We consider the solution of a large and sparse system of linear algebraic
equations

Ax = b , (1)

where A ∈ R
N×N is nonsingular and b ∈ R

N is a right-hand side vector. A
popular method for solving such a system is the GMRES method of Saad and
Schultz [13]. At the iteration step n it seeks the approximate solution xn in the
affine subspace x0 + Kn(A, r0), where

Kn(A, r0) := span{r0, Ar0, . . . , An−1r0}
is the nth Krylov subspace generated by the matrix A and the residual vector
r0 := b − Ax0 corresponding to the initial guess x0. The GMRES method is
based on the Arnoldi process [1] generating the orthonormal basis Qn of the
Krylov subspace Kn(A, r0) and minimizing the Euclidean norm of the residual
in r0 + AKn(A, r0), i.e.,

‖b − Axn‖ = ‖b − A(x0 + dn)‖ = min
d∈Kn(A,r0)

‖b − A(x0 + d)‖. (2)

If a stopping criterion is satisfied at some iteration step m, the coordinates
ym of dm in the orthogonal basis Qm are found by solving an (m + 1) × m
upper Hessenberg least squares problem and the approximate solution is
then computed as xm = x0 + dm = x0 + Qm ym. The GMRES method with the
Householder or modified Gram-Schmidt Arnoldi implementation was proved
to be backward stable in [3, 10] which means that there is an approximate
solution of (1) which can be interpreted as an exact solution of a system (1)
with slightly perturbed initial data A and b . See also the Higham’s book [6] for
details of the backward error concept.

In [16] Walker and Zhou proposed another implementation of the GM-
RES method. We will describe it in a slightly more general way. Let Zn :=
[z1, . . . , zn] be a matrix such that its columns form a basis of Kn(A, r0) and such
that R(Zk) = Kk(A, r0) for all k = 1, . . . , n and, in addition, we assume that
its columns are normalized, i.e., ‖zk‖ = 1 for k = 1, . . . , n. Here R(·) denotes
the range of the matrix. The minimum residual property (2) is equivalent to
the requirement of the residual vector rn := b − Axn being orthogonal to the
subspace AKn(A, r0):

rn ⊥ AKn(A, r0) = R(AZn). (3)
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The residual rn is then easily evaluated provided we have an orthonormal basis
Vn := [v1, . . . , vn] of AKn(A, r0) = R(AZn), which can be computed by the
QR factorization of the matrix AZn:

AZn = VnUn. (4)

The matrix Un ∈ R
n×n is upper triangular and nonsingular if and only if the

dimension of Kn(A, r0) is equal to n. The residual rn ∈ r0 + AKn(A, r0) =
r0 + R(Vn) satisfying the property (3) (and (2)) can then be computed as the
orthogonal projection of the initial residual r0:

rn = (
I − VnVT

n

)
r0 = (

I − vnv
T
n

)
rn−1 = rn−1 − αnvn, αn := vT

n rn−1. (5)

The approximate solution xn corresponding to the residual rn has the form
xn = x0 + Zntn, where tn is the solution of the upper triangular system

Untn = VT
n r0 = [α1, . . . , αn]T . (6)

Let r̃k := rk/‖rk‖ denote a normalized residual vector at the iteration step
k. In [16] the matrix Zn is chosen as [̃r0, Vn−1], i.e., the normalized initial
residual is extended by the first n − 1 vectors of the orthonormal basis Vn.
However, it was shown in [9, 16] that the condition number of [̃r0, Vn−1] is
proportional to the inverse of the relative residual norm, i.e., it grows as the
residual norm decreases. Therefore the original implementation of the Simpler
GMRES method [16] can suffer from numerical instability due to the ill-
conditioning of the basis which moreover leads to the severe ill-conditioning of
the upper triangular factor Un in (4) possibly affected also by ill-conditioning
of A; see the numerical experiments in [8, 16]. On the other hand, if the
residual norm (nearly) stagnates the Simpler GMRES basis [̃r0, Vn−1] remains
well-conditioned. As it was shown in [8] the matrix Zn consisting of the
normalized residuals [̃r0, . . . , r̃n−1] remains well-conditioned provided there is
a reasonable residual norm decrease at each iteration. The Simpler GMRES
method with such a residual basis, called RB-SGMRES in [8], was shown to be
conditionally backward stable. It is closely related to GCR by Eisenstat, Elman
and Schultz [4]. See [8] and [12] for more details.

It was shown in [8] that the condition number of Zn can affect the maximum
attainable accuracy of the computed approximation. In Section 2 we propose a
variant of the Simpler GMRES method (called the adaptive Simpler GMRES),
which keeps the condition number of the basis Zn at a reasonable level by
adaptive selection at each iteration of a suitable direction vector based on the
intermediate residual norm decrease. Whenever the residual norm (nearly)
stagnates at the iteration step n we use the vector vn−1. Otherwise, when we
observe a sufficient residual norm decrease, we set the new direction vector
equal to the normalized residual vector r̃n−1. A similar strategy is employed,
e.g., in [11], where the Orthomin method [15] is combined with Orthodir [17]
for solving saddle point problems in computational fluid dynamics. Here
we show that the adaptive choice of direction vectors keeps the basis well-
conditioned and that the condition number grows at most linearly with the
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iteration number. Finally, we illustrate our theoretical results with numerical
experiments in Section 3.

Throughout the paper, we denote by ‖ · ‖ the Euclidean vector norm and
the induced matrix norm, and by ‖ · ‖F the Frobenius norm. For B ∈ R

N×n

(N ≥ n) of rank n, σ1(B) ≥ σn(B) > 0 are the extremal singular values of B and
κ(B) = σ1(B)/σn(B) is the spectral condition number. We denote by In the n ×
n unit matrix. If Xi ∈ R

ni×ni (i = 1, . . . , m) are square matrices, we denote by
diag(X1, . . . , Xm) the block diagonal matrix of the order

∑m
i=1 ni with diagonal

blocks X1, . . . , Xm. For a vector y ∈ R
n the notation diag(y) or diag(yT) is used

in a usual manner and defines the n × n diagonal matrix with the components
of y on the main diagonal and zeros elsewhere.

2 Adaptive Simpler GMRES

In this section we propose an adaptive variant of the Simpler GMRES method,
which computes the basis Zn in (4) such that its condition number is kept at
a reasonably small level. This is achieved by an adaptive switching between
the bases from Simpler GMRES and RB-SGMRES using an intermediate
residual decrease criterion. If the residual norm at a given step sufficiently
decreases the Krylov subspace basis is extended by the normalized residual
vector as in RB-SGMRES or GCR; otherwise we use the last available vector
of the orthonormal basis as in Simpler GMRES. In order to decide whether
the residual norm is sufficiently reduced we introduce the threshold parameter
ν ∈ [0, 1] and choose for n > 1 either the vector zn = r̃n−1 provided that
‖rn−1‖ ≤ ν‖rn−2‖ or zn = vn−1 otherwise. We sketch the algorithm of adaptive
Simpler GMRES as follows:

Algorithm 2.1 (Adaptive Simpler GMRES) Choose x0 and the threshold pa-
rameter ν ∈ [0, 1], compute r0 := b − Ax0, and for n = 1, . . . , m (until conver-
gence) do

1. compute zn:

zn =

⎧
⎪⎨

⎪⎩

r̃0 = r0/‖r0‖ if n = 1,

r̃n−1 = rn−1/‖rn−1‖ if n > 1 and ‖rn−1‖ ≤ ν‖rn−2‖,
vn−1 otherwise,

(7)

2. update the QR factorization AZn = VnUn,
3. compute αn = vT

n rn−1,
4. update rn := rn−1 − αnvn,

solve Umtm = [α1, . . . , αm]T, compute xm := x0 + Zmtm.

If ν = 0 then Zn = [̃r0, Vn−1] and Algorithm 2.1 is identical to Simpler GM-
RES [16]. The choice ν = 1 results in Zn = [̃r0, . . . , r̃n−1] which corresponds to
RB-SGMRES [8].
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Theorem 2.2 Let A in (1) be nonsingular and n be such that the dimension
of Kn(A, r0) is equal to n. If ν ∈ [0, 1) then the columns of Zn = [z1, . . . , zn]
computed in Algorithm 2.1 form a basis of Kn(A, r0) satisfying zk ∈ Kk(A, r0) \
Kk−1(A, r0) for all k = 1, . . . , n. In particular, adaptive Simpler GMRES does
not break down unless the exact solution of (1) is found.

Proof We proceed by induction on n. For n = 1 the statement is clearly satis-
fied by setting K0(A, r0) := {0}. Let n > 1 and Zn−1 be a basis of Kn−1(A, r0).
From (4) the columns of Vn−1 are an orthonormal basis of AKn−1(A, r0).
The vector vn−1 is computed from the vector Azn−1 ∈ Kn(A, r0) \ Kn−1(A, r0)

orthogonalizing it against the orthonormal basis Vn−2 of AKn−2(A, r0) and
thus belongs to Kn(A, r0) \ Kn−1(A, r0). We consider two cases: First let
‖rn−1‖ > ν‖rn−2‖ and hence by (7) zn = vn−1. The vector vn−1 extends the
basis Zn−1 of Kn−1(A, r0) to the basis of Kn(A, r0) as follows from the
discussion above. Otherwise, let ‖rn−1‖ ≤ ν‖rn−2‖. Since ‖rn−1‖ < ‖rn−2‖ and
rk ∈ r0 + AKk(A, r0) it follows that rn−1 = rn−2 − αn−1vn−1 with αn−1 �= 0 and
rn−1 ∈ Kn−1(A, r0) \ Kn−2(A, r0). Hence the columns of Zn = [Zn−1, r̃n−1] are
a basis of Kn(A, r0). �	

It is known that the residual basis can be linearly dependent if the minimum
residual method does not make any progress at a given step, in particular
when 0 belongs to the field of values of the matrix A it may happen that
αn = 0 resulting in rn = rn−1. Therefore we have excluded the case ν = 1 from
Theorem 2.2 which can lead to a breakdown of the RB-SGMRES or GCR
algorithms.

We recall the results on the maximum attainable accuracy of algorithms
based on (4) studied in [8], which apply also for adaptive Simpler GMRES.
We assume that the QR factorization at Step 2 of Algorithm 2.1 is constructed
such that the upper triangular matrix Un is computed in a backward stable
way; see, e.g., [8, Equations (2.1) and (2.2)]. This is true in particular for
Householder QR factorization, modified Gram-Schmidt algorithm, and (clas-
sical and modified) Gram-Schmidt algorithms with reorthogonalization. Let x̂n

be an approximate solution computed at iteration n of Algorithm 2.1 in finite
precision arithmetic with the unit roundoff u. In addition let cuκ(A)κ(Zn) < 1,
where the constant c is a low-order polynomial in n and N, which guarantees
that AZn and Un are of full numerical rank. Then the gap between the true
residual b − Ax̂n and the updated residual rn can be estimated as

‖b − Ax̂n − rn‖ ≤ cuκ(A)

1 − cuκ(A)κ(Zn)

n∑

k=1

‖rk−1‖
σk(Zk)

. (8)

When looking at the accuracy in terms of the normwise backward error
‖b − Ax̂n‖/(‖A‖‖x̂n‖), see, e.g., [6], it follows from [8, Theorem 2.1] that

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖ ≤ cuκ(Zn)

(
1 + ‖x0‖

‖x̂n‖
)

. (9)
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Since the norm of the updated residual rn usually becomes orders of magnitude
smaller than the norm of the true residual b − Ax̂n, the right-hand sides of (8)
and (9) represent then the bounds on the maximum attainable accuracy in
terms of the residual norm and the backward error, respectively. The condition
number of the basis Zn plays therefore an important role in the numerical
stability of algorithms based on (4). In the following we analyze the condition
number of Zn produced by adaptive Simpler GMRES. First we prove three
auxiliary propositions, where the nonincreasing sequence {ρk} represents the
sequence of residual norms ρk = ‖rk‖. Note that the sequence {αk} defined
as α2

k = ρ2
k−1 − ρ2

k coincides then (up to the sign) with the orthogonalization
coefficients in (5).

Lemma 2.3 Let p and q be two integers such that 1 ≤ p < q and let B̃p,q ∈
R

(q−p+1)×(q−p+1) be a lower Hessenberg matrix defined by

B̃p,q :=
[
α p,q−1/ρp−1 Iq−p

ρq−1/ρp−1 0

]
,

where α p,q−1 := [αp, . . . , αq−1]T, α2
k = ρ2

k−1 − ρ2
k for k = p, . . . , q − 1, and

0 < ρq−1 ≤ ρq−2 ≤ . . . ≤ ρp−1. Then

ρp−1

ρq−1
≤ κ(B̃p,q) = δp,q :=

ρp−1 +
(
ρ2

p−1 − ρ2
q−1

) 1
2

ρq−1
≤ 2

ρp−1

ρq−1
.

Proof The proof uses a similar technique as in [9, Theorem 2.3]. By direct
computation we obtain

B̃T
p,q B̃p,q =

[
(ρ2

q−1 + ‖α p,q−1‖2)/ρ2
p−1 αT

p,q−1/ρp−1

α p,q−1/ρp−1 Iq−p

]

=
[

1 αT
p,q−1/ρp−1

α p,q−1/ρp−1 Iq−p

]
.

There exists an orthonormal matrix U ∈ R
(q−p)×(q−p) such that

Uα p,q−1 = ‖α p,q−1‖e1 = (
ρ2

p−1 − ρ2
q−1

) 1
2 e1 = ρp−1βe1

and hence
[

1 0
0 U

]
B̃T

p,q B̃p,q

[
1 0
0 U T

]
=
[

1 βeT
1

βe1 Iq−p

]
=: G,

where β := (1 − ρ2
q−1/ρ

2
p−1)

1
2 . The eigenvalues of G are equal to the eigen-

values of its leading principal 2 × 2 submatrix together with 1 of multiplicity
q − p − 1. Since G is (orthogonally) similar to B̃T

p,q B̃p,q, the square roots of

its eigenvalues are equal to the singular values of B̃p,q. The extremal singular
values of B̃p,q can be given as

σ 2
1 (B̃p,q) = 1 + β, σ 2

q−p+1(B̃p,q) = 1 − β. (10)
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Note that 0 ≤ β < 1 and 1 is neither minimal nor maximal eigenvalue of G
unless β = 0. A simple algebraic manipulation gives

κ(B̃p,q) = ρp−1 + (
ρ2

p−1 − ρ2
q−1

) 1
2

ρq−1
= δp,q.

The upper and lower bounds for δp,q follow directly from its definition. �	

Lemma 2.4 Let q and m be two integers such that 1 ≤ q < m and C̃q,m ∈
R

(m−q+1)×(m−q+1) be a lower triangular matrix

C̃q,m := diag
([

αT
q,m−1, ρm−1

])
L−1

m−q+1diag(ρq−1,m−1)
−1,

where αq,m−1 := [αq, . . . , αm−1]T, ρq−1,m−1 := [ρq−1, . . . , ρm−1]T, α2
k = ρ2

k−1 −
ρ2

k for k = q, . . . , m − 1, 0 < ρm−1 < ρm−2 < . . . < ρq−1. The matrix Lm−q+1 of
the order m − q + 1 is lower bidiagonal with 1 on the main diagonal and −1 on
the first subdiagonal. Then

γ
q,m

≤ κ(C̃q,m) ≤ γ q,m,

where

γ
q,m

:= max
k=q,...,m−1

(
ρ2

k−1 + ρ2
k

ρ2
k−1 − ρ2

k

) 1
2

,

γ q,m := (m − q + 1)
1
2

⎛

⎝1 +
m−1∑

k=q

ρ2
k−1 + ρ2

k

ρ2
k−1 − ρ2

k

⎞

⎠

1
2

.

Proof The inverse of Lm−q+1 is the matrix with ones on the main diagonal
and below and with zeros elsewhere, i.e., the lower triangular matrix with all
elements in the lower triangular equal to one. By direct computation it can be
verified that the columns of the matrix C̃q,m have unit norms and thus

‖C̃q,m‖ ≤ ‖C̃q,m‖F = (m − q + 1)
1
2 , (11)

The lower bound follows by considering the definition of the matrix norm

‖C̃q,m‖ = max
‖z‖=1

‖C̃q,mz‖ ≥ max
k=1,...,m−q+1

‖C̃q,mek‖ = 1, (12)

where ek denotes the k-th column of the unit matrix. The inverse of C̃q,m exists,
since αk �= 0 for k = q, . . . , m − 1 and ρm−1 �= 0, and it is a lower bidiagonal
matrix

C̃−1
q,m = diag(ρq−1,m−1)Lm+q−1diag

([
αT

q,m−1, ρm−1
])−1

.



Numer Algor

The minimal singular value of C̃q,m can be estimated from below and above in
the similar way by considering the inverse of C̃q,m leading to

max
k=q,...,m−1

(
ρ2

k−1 + ρ2
k

ρ2
k−1 − ρ2

k

) 1
2

≤ ‖C̃−1
q,m‖ ≤ ‖C̃−1

q,m‖F =
⎛

⎝1 +
m−1∑

k=q

ρ2
k−1 + ρ2

k

ρ2
k−1 − ρ2

k

⎞

⎠

1
2

,

which together with (11) and (12) concludes the proof. �	

The proof of the previous lemma was already given (for q = 1) in [8, Theo-
rem 3.4] in the context of RB-SGMRES, which was shown to be conditionally
backward stable provided that the upper bound γ 1,m is reasonably small. An-
other estimate on the condition number of the residual basis can be established
using the Gershgorin theorem [5] (see also, e.g., [14, Theorem 1.11]).

Lemma 2.5 Let the assumptions of Lemma 2.4 be satisfied and let

λk :=

⎧
⎪⎨

⎪⎩

ρk
ρk+1+ρk

for k = q − 1,
ρk

ρk+1+ρk
− ρk

ρk+ρk−1
for k = q, . . . , m − 2,

ρk−1
ρk+ρk−1

for k = m − 1,

λk :=

⎧
⎪⎨

⎪⎩

ρk
ρk−ρk+1

for k = q − 1,
ρk

ρk−1−ρk
+ ρk

ρk−ρk+1
for k = q, . . . , m − 2,

ρk−1
ρk−1−ρk

for k = m − 1.

Then

κ(C̃q,m) ≤
⎛

⎜
⎝

max
k=q−1,...,m−1

λk

min
k=q−1,...,m−1

λk

⎞

⎟
⎠

1
2

.

Proof The matrix C̃−1
q,mC̃−T

q,m can be written in the form

C̃−1
q,mC̃−T

q,m = diag(ρq−1,m−1) T diag(ρq−1,m−1),

where

T =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

1
α2

q
− 1

α2
q

− 1
α2

q

1
α2

q
+ 1

α2
q+1

. . .

. . .
. . .

. . .
1

α2
m−2

+ 1
α2

m−1
− 1

α2
m−1− 1

α2
m−1

1
α2

m−1
+ 1

ρ2
m−1

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

.
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It is straightforward to show that the matrix C̃−1
q,mC̃−T

q,m is diagonally dominant.
Let ηq−1, . . . , ηm−1 and δq−1, . . . , δm−1 denote the diagonal entries and the sum
of absolute values of the off-diagonal entries in rows 1, . . . , m − q + 1. Note
that the diagonal entries are positive, while the off-diagonal ones are negative.
Since C̃−1

q,mC̃−T
q,m is symmetric, its eigenvalues are real and belong to ∪m−1

k=q−1[ηk −
δk, ηk + δk] due to the Gershgorin theorem [5]. We find that ηk − δk = λk and
ηk + δk = λk and the proof of the statement is finished. �	

The bound using the Gershgorin theorem will be employed below in order
to establish the a priori estimate on the condition number of the basis provided
we have a prescribed value of the threshold parameter ν. Whenever we want to
explain the local contributions of intermediate residual norm decreases to the
condition number of the Krylov subspace basis, the estimate in Lemma 2.4
is however more useful. We exploit it in the following theorem where we
consider the case where at the steps n = 2, . . . , q of Algorithm 2.1 the vector
zn is chosen as in Simpler GMRES, i.e., zn = vn−1, and zn = r̃n−1 as in RB-
SGMRES for n = q + 1, . . . , m. It corresponds to adaptive Simpler GMRES
applied to a problem with some initial stagnation of the minimum residual
norm and a fast convergence afterwards.

Theorem 2.6 Let Zm = [̃r0, v1, . . . , vq−1, r̃q, . . . , r̃m−1] for some integer q such
that 1 < q < m and let 0 < ‖rm−1‖ < · · · < ‖rq−1‖. Then

Zm = [Vm−1, r̃m−1]Hm, (13)

with Hm = Cm Bm, Bm := diag(B̃1,q, Im−q), Cm := diag(Iq−1, C̃q,m). The vectors
α1,q−1, αq,m−1, and ρq−1,m−1 and the matrices B̃1,q and C̃q,m are defined as in
Lemmas 2.3 and 2.4 (with p = 1 and with ρk := ‖rk‖). The condition number of
Zm can then be bounded as follows:

max

{

1,
δ1,q

γ q,m
,
γ

q,m

δ1,q

}

≤ κ(Zm) ≤ δ1,qγ q,m (14)

with δ1,q, γ q,m, and γ
q,m

defined in Lemmas 2.3 and 2.4.

Proof From (5) we have

r̃0 = [Vq−1, r̃q−1]
[
α1,q−1/ρ0
ρq−1/ρ0

]
.

Hence [̃r0, Vq−1] = [Vq−1, r̃q−1]B̃1,q and

Zm = [Vq−1, r̃q−1, . . . , r̃m−1]Bm. (15)

Again using (5) we find that [̃rq−1, . . . , r̃m−1] = [vq, . . . , vm−1, r̃m−1]C̃q,m and

[Vq−1, r̃q−1, . . . , r̃m−1] = [Vm−1, r̃m−1]Cm. (16)
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Combining (15) and (16) proves (13) and since [Vm−1, r̃m−1] has orthogo-
nal columns, the singular values of Zm are equal to the singular values of
Hm = Cm Bm. Assumptions of the theorem imply that Cm and Bm are
nonsingular. Using the definition of the condition number κ(Hm) =
σ1(Cm Bm)/σm(Cm Bm) and the inequalities for the singular values (see, e.g.,
[7, Theorem 3.3.16]), we obtain

max
{

κ(Bm)

κ(Cm)
,
κ(Cm)

κ(Bm)

}
≤ κ(Hm) ≤ κ(Bm)κ(Cm).

Applying Lemmas 2.3 and 2.4 concludes the proof. �	

Corollary 2.7 Let the assumptions of Theorem 2.6 be satisfied. In addition, let
‖rk‖ > ν‖rk−1‖ for k = 1, . . . , q − 1 and ‖rk‖ ≤ ν‖rk−1‖ for k = q, . . . , m − 1
for some ν < 1. Then

κ(Zm) ≤ 2
√

2
νq−1

1 + ν

1 − ν
. (17)

Proof From ‖rk‖ ≤ ν‖rk−1‖ it follows:

1
(1 + ν)‖rk−1‖ ≤ 1

‖rk−1‖ + ‖rk‖ ≤ 1
2‖rk‖

and

1
‖rk−1‖ ≤ 1

‖rk−1‖ − ‖rk‖ ≤ 1
(1 − ν)‖rk−1‖ ,

and therefore

1
2

1 − ν

1 + ν
≤ λk ≤ λk ≤ 1 + ν

1 − ν

for k = q − 1, . . . , m − 1. Then the result follows from Theorem 2.6 and
Lemma 2.5 (with ρk = ‖rk‖) and from the assumption ‖rk‖ > ν‖rk−1‖ (k =
1, . . . , q − 1), which implies that ‖rq−1‖ > νq−1‖r0‖ and 1 ≤ δ1,q ≤ 2/νq−1. �	

Theorem 2.6 and Corollary 2.7 indicate that at the iteration steps where
the residual norm (nearly) stagnates, the contribution of vectors from Simpler
GMRES to the condition number of Zm is given approximately by the inverse
of the relative residual norm decrease during the (near) stagnation. At steps
where the residual norm is sufficiently reduced, the condition number of
corresponding vectors in Zm is bounded by the stagnation factors γ

q,m
and

γ q,m from below and above. Considering (9) and (17) we can estimate the
backward error of adaptive Simpler GMRES from

‖b − Ax̂m − rm‖
‖A‖‖x̂m‖ ≤ cu

1
νq−1

1 + ν

1 − ν

(
1 + ‖x0‖

‖x̂m‖
)

.
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Provided that the factor dependent on ν in the right-hand side of the inequality
is not large, the adaptive variant of Simpler GMRES is backward stable.
Ultimately it means that the approximate solution x̂m is an exact solution
of (A + ΔA)xm = b with slightly perturbed data A + ΔA, where ‖ΔA‖ =
O(u)‖A‖.

In the inequality (17) of Corollary 2.7 we can find a quasi-optimal value of
ν = νopt minimizing the right-hand side of the bound (i.e., not the actual value
of κ(Zm)). It is clear that q − 1 ≤ m, so

κ(Zm) ≤ 2
√

2
νm

1 + ν

1 − ν
. (18)

The value of ν minimizing the right-hand side of (18) is given by

νopt(m) =
√

1 + m2 − 1
m

.

It can be shown that the first term [νopt(m)]−m in (18) grows with m and
approaches e ≈ 2.7183 as m → ∞. For the second term we have 1+νopt(m)

1−νopt(m)
∼ 2m

with m → ∞. Hence the quasi-optimal bound in (18) behaves like κ(Zm) �
4
√

2 e m for m → ∞. The threshold parameter νopt(m) is asymptotically reach-
ing the value 1 for growing m, where m can be associated with the maximum
number of iterations or the restart parameter. We observed in numerical
experiments that νopt(m) minimizing the right-hand side of (18) does not
always lead to optimal condition number of the basis and the smaller value,
say ν = 0.9, can do better. On the other hand, we have shown that the quasi-
optimal value νopt(m) leads to at worst linearly growing κ(Zm).

Theorem 2.6 can be generalized to the case with multiple switching between
the bases from Simpler GMRES basis and RB-SGMRES. Such situation is
more realistic since it can happen that there are intermediate stagnations of the
residual norm followed by a fast convergence phase. Therefore we introduce
the sequences of indices {q j}
j=1 and {m j}
j=1 corresponding to 
 stagnation and
convergence phases; see Fig. 1 for the illustration and the explanation of the
notation in the theorem below. The quantities δ, γ , and γ play a similar role as
the factors δ1,q, γ

q,m
, and γ q,m in Theorem 2.6.

Theorem 2.8 Let Zm has the block form Zm = [Z̃1, . . . , Z̃
, r̃m−1], where

Z̃ j := [̃rm j−1−1, vm j−1 , . . . , vq j−1, r̃q j, . . . , r̃m j−2] ∈ R
N×(m j−m j−1),

m0 = 1, m
 = m, m j−1 < q j < m j and 0 < ‖rm j−1‖ < · · · < ‖rq j−1‖ for j =
1, . . . , 
. Then

max
{

1,
δ

γ
,
γ

δ

}
≤ κ(Zm) ≤ γ δ, (19)
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Fig. 1 Multiple switching between the Simpler GMRES basis and the residual basis in the case of
the occurrence of local stagnations in the residual norm. In the run of adaptive Simpler GMRES,
the white areas correspond to the Simpler GMRES basis, while the gray areas correspond to the
normalized residual basis of RB-SGMRES

where

δ := max
j=1,...,


‖rm j−1‖ + (‖rm j−1‖2 − ‖rq j‖2
) 1

2

‖rq j‖
,

γ := max
j=1,...,


max
i=q j,...,m j−1

(‖ri−1‖2 + ‖ri‖2

‖ri−1‖2 − ‖ri‖2

) 1
2

,

γ :=
⎛

⎝1 +

∑

j=1

(m j − q j)

⎞

⎠

1
2
⎛

⎝1 +

∑

j=1

m j−1∑

i=q j

‖ri−1‖2 + ‖ri‖2

‖ri−1‖2 − ‖ri‖2

⎞

⎠

1
2

.

Proof As in Theorem 2.6 we use (5) repeatedly in order to relate Zm (which
forms the basis of Km(A, r0) due to the assumptions of the theorem) to the
orthonormal basis [Vm−1, r̃m−1]. In each Z̃ j we relate the first residual r̃m j−1−1
to r̃q j−1 using the vectors vm j−1 , . . . , vq j−1. Thus we obtain

Z̃ j = [̃rm j−1−1, vm j−1 , . . . , vq j−1, r̃q j, . . . , r̃m j−2]
= [vm j−1 , . . . , vq j−1, r̃q j−1, r̃q j, . . . , r̃m j−2]diag(B̃m j−1,q j, Im j−q j−1)

= Ỹ jBm j−1,q j,
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where Ỹ j := [vm j−1 , . . . , vq j−1, r̃q j−1, r̃q j, . . . , r̃m j−2], B̃m j−1,q j is defined in
Lemma 2.3 (with ρk = ‖rk‖), and Bm j−1,q j := diag(B̃m j−1,q j, Im j−q j−1). Hence it
follows that

Zm = [Ỹ1, . . . , Ỹ
, r̃m−1]Bm, (20)

with the matrix Bm defined by Bm := diag(Bm0,q1 , . . . , Bm
−1,q

, 1). We now

relate [Ỹ1, . . . , Ỹ
, r̃m−1] to [Vm−1, r̃m−1]. More precisely, we express the
columns of [Vm−1, r̃m−1] = [Ṽ1, . . . , Ṽ
, r̃m−1] in terms of [Ỹ1, . . . , Ỹ
, r̃m−1],
where Ṽ j := [vm j−1, . . . , vm j−1]. From (5) we have

[rq j−1, . . . , rm j−1]Lm j−q j+1,m j−q j = [vq j, . . . , vm j−1]diag(αq j,m j−1). (21)

Here Lm j−q j+1,m j−q j is defined as Lm j−q j+1,m j−q1 := [LT
m j−q j

, −em j−q j]T , where
em j−q j stands for the last column of Im j−q j . From (21) it follows that

[vq j, . . . , vm j−1] = [̃rq j−1, . . . , r̃m j−2]G̃q j,m j −
1

αm j−1
rm j−1eT

m j−q j
, (22)

with G̃q j,m j defined by G̃q j,m j := diag(ρq j−1,m j−2)Lm j−q j[diag(αq j,m j−1)]−1. Since
rm j−1 (or r̃m j−1) is not in [Y1, . . . , Y
, r̃m−1] (for j = 1, . . . , 
 − 1), we express it
in terms of the residual rq j+1−1 and the vectors vm j, . . . , vq j+1−1 as

rm j−1 = rq j+1−1 + [vm j, . . . , vq j+1−1]αm j,q j+1−1 = Ỹ j+1

⎡

⎣
αm j,q j+1−1

ρq j+1−1

0m j+1−q j+1−1

⎤

⎦

for j = 1, . . . , 
 − 1. Here 0m j+1−q j+1−1 denotes the column zero vector of the
given dimension. From (22) we hence obtain

Ṽ j = Ỹ j diag(Iq j−m j−1, G̃q j,m j) − 1
αm j−1

rm j−1eT
m j−m j−1

= Ỹ j diag(Iq j−m j−1, G̃q j,m j) − 1
αm j−1

Ỹ j+1

⎡

⎣
αm j,q j+1−1

ρq j+1−1

0m j+1−q j+1−1

⎤

⎦ eT
m j−m j−1

= Ỹ jD̃ j, j + Ỹ j+1 D̃ j+1, j, j = 1, . . . , 
 − 1, (23)

and

Ṽ
 = Ỹ
 diag(Iq
−m
−1, G̃q
,m

) − ρm
−1

αm
−1
r̃m
−1eT

m
−m
−1

= Ỹ
 D̃
,
 + r̃m−1 D̃
+1,
. (24)

Combining (23) and (24), we get

[Vm−1, r̃m−1] = [Ỹ1, . . . , Ỹ
, r̃m−1]Dm, (25)
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where Dm is a lower block bidiagonal matrix

Dm :=

⎡

⎢
⎢⎢
⎢
⎢
⎣

D̃1,1

D̃2,1 D̃2,2
. . .

. . .

D̃
,


D̃
+1,
 1

⎤

⎥
⎥⎥
⎥
⎥
⎦

.

Using (20) and (25) we get the desired relation Zm = [Vm−1, r̃m−1]D−1
m Bm.

Since [Vm−1, r̃m−1] has orthonormal columns, it follows that

max
{

κ(Bm)

κ(Dm)
,
κ(Dm)

κ(Bm)

}
≤ κ(Zm) ≤ κ(Dm)κ(Bm). (26)

Due to Lemma 2.3 and (10) we have

κ(Bm) = max
j=1,...,


κ(B̃m j−1,q j) = max
j=1,...,


δm j−1,q j = δ. (27)

To estimate the norm of Dm we find a permutation matrix Π such that

Π DmΠT =
[

I 0
0 D̃m

]
, (28)

where we moved the identities from the matrices D̃ j, j into the leading prin-
cipal identity matrix of Π DmΠT . It follows that ‖Dm‖ = max{1, ‖D̃m‖} ≤
max{1, ‖D̃m‖F}. Since

‖D̃m‖2
F = 1 +


∑

j=1

(‖G̃q j,m j‖2
F + ‖D̃ j+1, j‖2

F

)

= 1 +

∑

j=1

m j−1∑

i=q j

ρ2
i−1 + ρ2

i

ρ2
i−1 − ρ2

i

,

and ‖D̃m‖F ≥ 1, we can bound the norm of the matrix Dm as

‖Dm‖2 ≤ 1 +

∑

j=1

m j−1∑

i=q j

ρ2
i−1 + ρ2

i

ρ2
i−1 − ρ2

i

. (29)

The inverse of Dm can be computed either directly from Dm or by making
the relation between [Ỹ1, . . . , Ỹ
, r̃m−1] and [Vm−1, r̃m−1] in the opposite direc-
tion, which is simpler. Taking into account (5) we can express the residuals
r̃k in Ỹ j ( j = 1, . . . , 
) using r̃m−1 and the corresponding direction vectors
vk+1, . . . , vm−1 from Vm−1. But since [Vm−1, r̃m−1] has orthonormal columns
and the residuals in Ỹ j are normalized, it follows that their coordinates in the
basis [Vm−1, r̃m−1] have unit norms. Considering the same permutation matrix



Numer Algor

Π as in (28) we can show that the columns of the lower triangular matrix D̃−1
m

contain the permuted coordinates of the residuals in Ỹ j ( j = 1, . . . , 
) in the
basis [Vm−1, r̃m−1], and thus they have unit norms. Hence we obtain the bound

‖D−1
m ‖2 ≤ 1 +


∑

i=1

(m j − q j). (30)

Similarly as in Lemma 2.4 we get the lower bounds

‖Dm‖ ≥ max
j=1,...,


max
i=q j,...,m j−1

(
ρ2

i−1 + ρ2
i

ρ2
i−1 − ρ2

i

) 1
2

, ‖D−1
m ‖ ≥ 1. (31)

Combining (26), (27), (29), (30), and (31) concludes the proof. �	

3 Numerical experiments

We illustrate our theoretical results on numerical examples selected from
the Matrix Market [2] and performed in MATLAB using double precision
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Fig. 2 Test problem with FS1836 and b = A[1, . . . , 1]T solved by Simpler GMRES (ν = 0):
backward errors (bold solid line) and condition numbers uκ(Zn) (bold dashed line) and uκ(Un)

(bold dash-dotted line); GMRES: normwise backward errors (solid line) and condition numbers
uκ(Qn) (dashed line) and uκ(AQn) (dash-dotted line); uκ(A) (dotted line)
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arithmetic with u ≈ 10−16. Results for the adaptive Simpler GMRES and mod-
ified Gram-Schmidt implementation of GMRES applied to the system with the
matrix FS1836 (N = 183, ‖A‖ ≈ 1.2 · 109, κ(A) ≈ 1.7 · 1011) are illustrated on
Figs. 2, 3, 4 and 5. The right-hand side vector b is equal either to A[1, . . . , 1]T

(Figs. 2 and 3) or to the left singular vector corresponding to the smallest
singular value of A (Figs. 4 and 5). On each plot we show the backward error
‖b − Axn‖/(‖A‖‖xn‖ + ‖b‖) (bold solid lines) associated to the approximate
solutions xn computed by adaptive Simpler GMRES with three considered
values of the threshold parameter: ν = 0 (Fig. 2) where adaptive Simpler
GMRES is equivalent to Simpler GMRES of Walker and Zhou [16], ν = 1
(Fig. 4) leading to RB-SGMRES [8], and ν = 0.9 (Figs. 3 and 5). We also plot
the backward errors of approximate solutions computed by GMRES of Saad
and Schultz [13] (solid lines). The actual values of condition numbers of Zn and
Un (multiplied by the unit roundoff u) are plotted by bold dashed and bold
dash-dotted lines, respectively. For comparison we report also the condition
numbers of Qn and AQn from GMRES (dashed and dash-dotted lines). The
condition number of the system matrix A multiplied by the unit roundoff u is
depicted by dotted lines.
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Fig. 3 Test problem with FS1836 and b = A[1, . . . , 1]T solved by adaptive Simpler GMRES with
ν = 0.9: normwise backward errors (bold solid line) and condition numbers uκ(Zn) (bold dashed
line) and uκ(Un) (bold dash-dotted line); GMRES: backward errors (solid line) and condition
numbers uκ(Qn) (dashed line) and uκ(AQn) (dash-dotted line); uκ(A) (dotted line). The steps
where the Simpler GMRES basis is used are denoted by plus signs
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Fig. 4 Test problem with FS1836 and b equal to the left singular vector corresponding to the
smallest singular value of A solved by RB-SGMRES (ν = 1): backward errors (bold solid line)
and condition numbers uκ(Zn) (bold dashed line) and uκ(Un) (bold dash-dotted line); GMRES:
normwise backward errors (solid line) and condition numbers uκ(Qn) (dashed line) and uκ(AQn)

(dash-dotted line); uκ(A) (dotted line)

It is clear from our experiments that both Simpler GMRES and RB-
SGMRES may lead to low accuracy of the computed approximate solution
due to the ill-conditioning of Zn in the case of a rapid initial convergence
with b = A[1, . . . , 1]T or in the case of a long initial stagnation in the residual
norm with b equal to the left singular vector corresponding to the smallest
singular value, respectively; see Figs. 2 and 4. However, as it can be observed
from Figs. 3 and 5, the adaptive version of Simpler GMRES with the threshold
value ν = 0.9 leads to reasonably conditioned bases for both right-hand sides.
In Figs. 3 and 5 we denote by plus signs the steps where the Simpler GMRES
basis is used instead of the normalized residual.

When we keep the condition number of the basis Zn small, one can observe
that κ(Zn) ≈ κ(Qn) and κ(Un) ≈ κ(AQn) � κ(A). Indeed, by reducing the
condition number of Zn, the proposed adaptive strategy tries to imitate the
ideal basis generated by GMRES. This ensures that the condition number of
the matrix Un (or AZn) in (4) is less than or equal to κ(A)κ(Zn) (see Figs. 3
and 5) and therefore guarantees the validity of the bounds (8) and (9), which
rely on the assumption of the numerical nonsingularity of the basis AZn.

Figure 6 shows the dependence of κ(Zm) with respect to the threshold
parameter ν for several real problems with various condition numbers and
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Fig. 5 Test problem with FS1836 and b equal to the left singular vector corresponding to the
smallest singular value of A solved by adaptive Simpler GMRES with ν = 0.9: backward errors
(bold solid line) and condition numbers uκ(Zn) (bold dashed line) and uκ(Un) (bold dash-dotted
line); GMRES: normwise backward errors (solid line) and condition numbers uκ(Qn) (dashed line)
and uκ(AQn) (dash-dotted line); uκ(A) (dotted line), The steps where the Simpler GMRES basis
is used are denoted by plus signs

dimensions from 225 up to 1080. For each problem we stop the method at
the iteration step m, where the normwise backward error dropped below the
level 10−14. Note that for each problem and each value of ν varying between
0 and 1, the adaptive version of Simpler GMRES was able to reach such a
high accuracy and thus the ill-conditioning of the basis does not necessarily
lead to a poor accuracy in terms of the backward error. This phenomenon can
be explained using (8), which shows that large κ(Zk) can be damped with the
small residual norm ‖rk−1‖. However, we were not able to prove this for the
normwise backward error in [8]. Nevertheless, as we have shown there are
examples where ill-conditioning of Zm leads to low attainable accuracy of the
computed approximate solution; cf. Figs. 2 and 4. It is therefore reasonable to
keep the condition number of the basis Zm at a reasonably small level and
consequently to keep the columns of AZm linearly independent as well as
the matrix Um numerically nonsingular. It is clear from Fig. 6 that, for our
examples, the value of ν close (but not equal) to 1 leads to a nearly optimal
condition number of Zm in adaptive Simpler GMRES and, therefore, the
residual vectors should be preferred in Zm even for a moderate intermediate
residual norm decrease.
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Fig. 6 The dependence of the condition number of Zm on the choice of the threshold parameter
ν for various matrices and right-hand sides taken from Matrix Market

4 Concluding remarks

The classical GMRES method [13] with Householder QR or modified Gram-
Schmidt implementation of the Arnoldi process was shown to be backward
stable in [3, 10] and in this sense should be the method of choice. The
numerical stability of minimum residual methods based on (4) is strongly
influenced by the condition number of the Krylov subspace basis Zn. The
Simpler GMRES method (with Zn = [̃r0, Vn−1] by Walker and Zhou [16]
is not backward stable due to the relation of κ(Zn) to the inverse of the
relative residual norm [9, 16]. Indeed, the rapid residual norm decrease leads
to an ill-conditioned Krylov subspace basis and vice versa. On the other hand,
the normalized residuals Zn = [̃r0, . . . , r̃n−1] form a well-conditioned basis of
the Krylov subspace provided there is a sufficient residual norm decrease at
each iteration step. This choice leads to a backward stable variant of Simpler
GMRES–RB-SGMRES [8], which in almost all cases computes very accurate
approximate solutions (actually it is very difficult to find a problem where
RB-SGMRES or GCR behaves poorly). To overcome the potential weakness
caused by the initial or intermediate stagnation of the residual, in this paper
we proposed the adaptive variant of Simpler GMRES, which keeps the basis
well-conditioned leading to a maximum attainable accuracy similar to classical
GMRES method of Saad and Schultz [13].
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