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Abstract. In this paper we present a new incomplete factorization of a square matrix into
triangular factors in which we get standard LU or LDLT factors (direct factors) and their inverses
(inverse factors) at the same time. Algorithmically, we derive this method from the approach based
on the Sherman-Morrison formula [18]. In contrast to the RIF algorithm [11], the direct and inverse
factors here directly influence each other throughout the computation. Consequently, the algorithm
to compute the approximate factors may mutually balance dropping in the factors and control their
conditioning in this way. For the symmetric positive definite case, we derive the theory and present
an algorithm for computing the incomplete LDLT factorization, and discuss experimental results.
We call this new approximate LDLT factorization the Balanced Incomplete Factorization (BIF). Our
experimental results confirm that this factorization is very robust and may be useful in solving difficult
ill-conditioned problems by preconditioned iterative methods. Moreover, the internal coupling of
computation of direct and inverse factors results in much shorter setup times (times to compute
approximate decomposition) than RIF, a method of a similar and very high level of robustness.
We also derive and present the theory for the general nonsymmetric case, but do not discuss its
implementation.

Key words. preconditioned iterative methods, sparse matrices, incomplete decompositions,
approximate inverses

1. Introduction. We consider the linear system

Ax = b, (1.1)

where A ∈ Rn×n is a large, sparse, regular and generally nonsymmetric matrix. One of
the intensively studied problems in scientific computing is the development of efficient
preconditioners for solving (1.1) by preconditioned iterative methods.

Incomplete factorizations represent a class of algebraic preconditioners which is
important from both theoretical and practical points of view. Their development
started by the work of Buleev at the end of fifties [19], [20]. Throughout the time, the
algorithms have achieved a considerable degree of efficiency and robustness. The first
incomplete factorizations were tightly connected to particular discretizations of partial
differential equations by finite differences and to special matrices [49], see also [22]
and [3]. An increasing amount of attention led to nice theoretical results for simple
model problems [28], [43], [31]. Solving more complicated problems and enhancing
the convergence of the preconditioned iterative method requires tools to improve the
robustness of preconditioners. To achieve this goal, a variety of approaches have
been proposed, such as techniques to increase matrix diagonal dominance, locally or
globally, by systematic or ad hoc modifications of the decomposition [37], [41], [1],
procedures to find a nearby matrix with a breakdown-free incomplete decomposition
[2], or symmetric permutations of the system matrix [27], [7]. Combining dropping
by value with additional enhancements (as balancing size of the preconditioner and
its efficiency by sorting computed factor entries and choosing a part of them [45])
can then provide preconditioners which are in many cases very powerful. A new
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decomposition which is in the SPD case inherently breakdown-free was proposed in
[48], see also [36]. Some other practical changes have significantly improved iterative
preconditioned methods by incomplete decompositions [35], [46] and led to efficient
implementations. New permutations forcing a strong diagonal of the system matrix
have become useful in this field as well [5], [32]. These permutations are based on
efficient sparse algorithms and implementations to perform this task [25], [26]. Note
that here we just sketched only a small fraction of the whole development in the field
of incomplete factorizations. For more detailed review of some of these developments
see the survey [3].

Increasing interest in approximate inverse preconditioners was mainly motivated
by the need to enhance efficiency of iterative methods on vector and parallel computer
architectures [24], [34]. Later it was found that sophisticated incomplete approximate
inverses [30], [38], [8] offer advantages for preconditioned iterative methods also for
uniprocessor and sequential implementations [9]. Further on we will mainly restrict
to factorized approximate inverses being aware that unfactorized approximate in-
verses can be in some cases the methods of choice. One of the explanations that
the state-of-the-art implementations of approximate inverse preconditioners can be
competitive even in sequential computational environment is that they may capture
long interactions among matrix entries more successfully than standard incomplete
decompositions [17], [10]. This motivates not only further development of sparse ap-
proximate inverses but also a search for direct incomplete decompositions which are
based on approximate inverses, or which use them as auxiliary structures. One step
along this line brought up a new robust incomplete decomposition RIF of symmetric
and positive definite matrices [11]. In this case, the triangular factor is computed
directly from the SAINV factorized approximate inverse [11]. Computation of this
approximate factorized inverse is breakdown-free for all SPD matrices. Progress in
solving difficult problems also indicates that considering the matrix inverse during the
factorization may be a right way to get better preconditioners [14], [47]. In particu-
lar, the authors show in these papers that computing estimates of the inverses of the
factors can significantly increase robustness of incomplete LU factorizations.

In this paper we present a new incomplete factorization which computes the
direct and inverse factors at the same time. This factorization is derived from the fac-
torized approximate decomposition AISM (Approximate Inverse Sherman-Morrison)
[18]. There is a subtle relation between the AISM algorithm and the AINV decompo-
sition [6], [8] on a larger matrix [15], but we do not follow this link here. Instead we
get a new surprising insight into the approximate inverse factors by closely watching
the factors produced by the AISM algorithm. Although we present the insight for de-
composition of general nonsymmetric matrices, later we restrict just to SPD matrices.
In this case we obtain, at the same time, the factors L, D and L−1 of the LDLT fac-
torization. Computation of all these factors is interleaved and they both symbolically
and numerically influence each other. Moreover, the order of the computation can be
used to mutually balance their conditioning by dropping, hence the name Balanced
Incomplete Factorization (BIF). In particular, we use the dropping rules introduced
by M. Bollhöfer and Y. Saad for LU factorizations and based on the theory developed
by them [14], [47].

Section 2 gives the insight into the inverse Sherman-Morrison (ISM) decompo-
sition, shows the structure of its factors and presents the main theoretical result of
the paper. Section 3 deals with some additional theory which may be useful for sta-
bilization of the approximate ISM (AISM) decomposition in general case. Section 4
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explains the way to stabilize the computation of the the new direct triangular factor
by balancing dropping rules and gives the algorithm in the form of pseudocode. Then
we present results of the numerical experiments showing very promising behaviour of
the new factorization, and conclude the paper by some additional notes.

2. Structure of the ISM decomposition. This section describes the new
factorization via the exact inverse Sherman-Morrison (ISM) decomposition. Suppose
that the general nonsymmetric matrix A can be written as

A = A0 +
n∑

k=1

xkyT
k

where A0 is a nonsingular matrix and {xk}n
k=1 and {yk}n

k=1 are two sets of vectors in
Rn. We recall that the inverse of a matrix when using the Sherman-Morrison formula
(see [18] for details), is given by

A−1
0 −A−1 = A−1

0 UA0
D−1

A0
V T

A0
A−1

0 ,

where UA0 and VA0 have the column vectors uk and vk given by

uk = xk −
k−1∑

i=1

vT
i A−1

0 xk

ri
ui and vk = yk −

k−1∑

i=1

yT
k A−1

0 ui

ri
vi,

respectively, and DA0 = diag(r1, . . . , rn), rk = 1 + yT
k A−1

0 uk = 1 + vT
k A−1

0 xk for
k = 1, 2, . . . , n.
When we choose, for simplicity,

A0 = sIn, s > 0, xk = ek and yk = (ak − ak
0)T ,

where ak stands for the k−th row of the matrix A and ak
0 stands for the k−th row of

the matrix A0, we obtain from above

uk = xk −
k−1∑

i=1

(vi)k

sri
ui and vk = yk −

k−1∑

i=1

yT
k ui

sri
vi, (2.1)

where (vi)k denotes the k−th component of the vector vi. Then we have

A−1 = s−1I − s−2UsD
−1
s V T

s ,

which expresses the inverse Sherman-Morrison (ISM) decomposition in the matrix
form, where the subscript s denotes the potential dependence of the factors on the
parameter s. The following lemma from [18] introduces an auxiliary unit upper trian-
gular matrix W which helps to provide a better insight into the ISM decomposition.

Lemma 2.1. [18] Let Us, Vs and Ds = diag(rs
1, . . . , r

s
n) be the matrices com-

puted by the exact factorization algorithm ISM for some s > 0. Let U , V and
D = diag(r1

1, . . . , r
1
n) be the matrices computed by the exact factorization algorithm

ISM for s = 1. Then,

Us = U, (2.2)

Vs = V − (s− 1)W, (2.3)
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Ds = s−1D, (2.4)

where the k−th column of W is

wk = xk −
k−1∑

i=1

yT
k ui

r1
i

wi. (2.5)

From the construction of matrices U and W it follows that both these matrices are
unit upper triangular. The following theorem shows the structure of the matrix Vs

more in detail.

Theorem 2.2. Let there exist the exact ISM decomposition

A−1 = s−1I − s−2UsD
−1
s V T

s (2.6)

for some s > 0. Let W be the upper triangular matrix defined above. Then V T
s =

DU−1 − sWT .
Proof. From (2.6) and Lemma 2.1 we get

s−1I −A−1 = s−2UsD
−1
s V T

s = U(s−1D−1
s )(s−1V T

s ) =
= UD−1(s−1V T − (1− s−1)WT ). (2.7)

Taking limit s →∞ we arrive at

A−1 = UD−1WT . (2.8)

From (2.6) and (2.8) we then get

UD−1WT = s−1I − s−1UD−1V T
s .

That is

UD−1V T
s = I − sUD−1WT .

Consequently,

V T
s = DU−1 − sWT . (2.9)

Using the introduced notation for the ISM factors U , V and W computed for
s = 1 we arrive at the following corollary.

Corollary 2.3. Let there exist the exact ISM decomposition (2.6) for some s
and and let A = L̄D̄Ū be the LDU decomposition of A. Moreover, let W be defined
as in (2.5). Then

L̄ = W−T and D̄Ū = DU−1. (2.10)

Moreover,

D̄ = D, Ū = U−1.
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Proof. Note that from (2.8) we have

A = W−T DU−1.

Then, the result easily follows from the uniqueness of the triangular decompositions
of A and the structure of Vs described in Theorem 2.2.

For clarity, the structure of Vs for a given s can be written as follows, using the
introduced notation and the assumption of Theorem 2.2.

Corollary 2.4. We have

Vs = ŪT D̄ − sL̄−T . (2.11)

In particular, for SPD A we have

Vs = L̄D̄ − sL̄−T . (2.12)

Pictorially, we have (separately for the strict triangular parts of Vs and its diagonal)

Vs =




. . . −sWT ≡ −sL̄−T

. . .

ŪT D̄
. . .




, diag (Vs) = D̄ − sI. (2.13)

Hence, we arrived at a surprising result related to the structure of Vs. It stores
both inverse and direct triangular factors of the matrix A. One of them is scaled by
a scalar, the other is scaled by the diagonal matrix D ≡ D̄. This fact and the way
how we get them together inside the ISM algorithm have important consequences for
preconditioning iterative methods. Moreover, for an SPD matrix A we have all the
information from U in V as well.

The following section will briefly discuss the approximate ISM decomposition. In
particular, we will mention the role of the parameter s which provides an additional
degree of freedom which we have in the ISM framework. We are motivated to discuss
this subject here since the AISM procedure is guaranteed to be breakdown-free only
for M -matrices and H-matrices [18], [21]. Such results are parallel to those related
to the existence of ILU, see [43] and [42]. Although the main line of this paper covers
stabilization of a special case of the algorithm by sophisticated dropping rules, we are
also interested in further ways which may contribute to the efficiency of the method,
especially in the nonsymmetric case.

3. Approximate ISM decomposition. As mentioned above, this section is
devoted to getting more insight into the role of the parameter s in the exact and
approximate ISM (AISM) decompositions. First, note that a redefinition of s > 0 does
not influence the breakdown-free property of the exact ISM decomposition. Namely,
we have the following simple proposition which is a corollary of Lemma 2.1.

Proposition 3.1. Let A be a square matrix. The ISM decomposition of A exists
for the positive parameter s if and only if the ISM exists for any other parameter
t > 0.
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Proof. Observe from (2.4) that for every two positive values of the ISM parameter

Dt =
s

t
Ds. (3.1)

Therefore, if the ISM decomposition exists for some s > 0, then it exists for any
positive parameter t. Moreover, the smaller s, the bigger diagonal entries (pivots).

The real hint for the choice of s in the ISM method follows from the structure of
Vs in (2.13). Namely, the parameter s influences mutual scaling of the factors stored
in the lower and upper triangles of Vs, respectively. The rule to equate approximately
norms of both triangular factors, which we will call the scaling rule, can be used
to compute the value of s. Although we express this fact, we will not follow its
implications here. Instead, we prefer to show the potential of the new approach in its
most basic form.

When constructing the AISM preconditioner a dropping is used to obtain factors
U , Ds and Vs. Consider now two AISM decompositions with different parameters s
and t and with the same dropping rules. Further, we assume that we do not drop the
diagonal entries of the factors U and V . The following Theorem is easy to be proved.

Theorem 3.2. Let A be a square matrix such that there exist the AISM de-
composition, with the same dropping rules, Ã−1

s = s−1I − s−2ŨsD̃
−1
s Ṽ T

s and Ã−1
t =

t−1I − t−2ŨtD̃
−1
t Ṽ T

t for two parameters s and t, respectively. Then,

Ũs = Ũt, sD̃s = tD̃t and tril (Ṽs) = tril (Ṽt)

where tril means the strict lower triangular part of the corresponding matrix.
Using Theorem 3.2 we can bound the difference between two approximate inverses

of A induced by the two different parameters s and t for the AISM decomposition,
and observe where the dependence on the parameter takes place. We can write for
the two computed inverses

Ã−1
s = s−1I − s−2ŨsD̃

−1
s Ṽ T

s and Ã−1
t = t−1I − t−2ŨtD̃

−1
t Ṽ T

t

Recall the relations in Theorem 3.2 and note that from equation (2.9) we have

Ṽ T
s = D̃Ũ−1 − Zs and Ṽ T

t = D̃Ũ−1 − Zt, (3.2)

where Zt and Zs represent the lower triangular part of Ṽ T
t and Ṽ T

s , respectively. Here
diag Zt = tI and diag Zs = sI. Then we can write

Ã−1
t − Ã−1

s =
(

1
t
− 1

s

)
I − 1

t
Ũtt

−1D̃−1
t Ṽ T

t +
1
s
Ũss

−1D̃−1
s Ṽ T

s

=
(

1
t
− 1

s

)
I − 1

t
ŨD̃−1Ṽ T

t +
1
s
ŨD̃−1Ṽ T

s

=
(

1
t
− 1

s

)
I − ŨD̃−1

(
1
t
Ṽ T

t − 1
s
Ṽ T

s

)

by equation (3.2)

= ŨD̃−1

(
1
t
Z̃t − 1

s
Z̃s

)
.
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Taking norms we arrive at

‖Ã−1
t − Ã−1

s ‖ ≤ ‖Ũ‖‖D̃−1‖
∥∥∥∥

1
t
Z̃t − 1

s
Z̃s

∥∥∥∥ .

It means that the proximity of the approximated inverses for two parameters is
related to the difference betweeen the lower triangular parts of Ṽ T

t and Ṽ T
s (which

can be expressed via the matrix WT ) divided by the corresponding parameter. As
above, this confirms the scaling role of the parameter s.

As we have seen above, if we face a breakdown, the new choice of s may not be
sufficient to get a successful decomposition even if it influences a different dropping.
We typically need to use stronger modifications of A. Nevertheless, based on the
strong connection between ILU and AISM decompositions, we can proceed similarly
as in [42] for ILU, as stated in the following simple result.

Lemma 3.3. Let A be a square matrix such that the AISM decomposition does
not exist. Then, the matrix A(α) = A + αI has AISM decomposition for some α > 0
large enough.

The result implies that in practice, the decomposition can be based on an iterative
process in which we may increase the parameter α until a given maximum value,
since the quality of the preconditioner could be adversely affected for large α. A
contemporary use of this iterative strategy for incomplete decompositions can be
found in [40] where the quality of the preconditioner is analyzed as a function of
the shift value. Note this iterative process enables to apply easily the scaling rule
mentioned above if we keep track of the norms of computed factors. Further potential
improvement based on the dynamic choice of the scaling parameter is out of scope of
this paper. In our experiments we used another way for improving incomplete factors,
which is described below.

4. Balancing Incomplete Factorization in the SPD case. In this and the
subsequent section we will restrict ourselves to the symmetric and positive case. Later,
we will give a few comments on practical issues related to solving general nonsym-
metric problems. Our restriction is motivated by the desire to describe one particular
preconditioning approach more in detail.

Balanced incomplete factorization (BIF) L̂D̂L̂T of an SPD matrix is called the
algorithm to construct the lower triangular matrix L̂ and the diagonal matrix D̂ which
approximate the matrices L̄ and D̄, respectively, using incompletely the formulas
(2.1) for k = 1, . . . , n. Both the incomplete factors D̂ and L̂ are stored via the
approximation V̂s to the matrix Vs as shown in (2.13). In addition, we compute in
this way the matrix L̂−1 which is an approximation to L̄−1. The incompleteness is
controlled by the dropping rules described below which mutually balance magnitudes
of entries in the approximate direct and inverse triangular factors L̂ and L̂−1. Note
that the scaled entries of the approximation Û to U are also contained in V̂s and can be
retrieved from there. Once the matrix V̂s is computed, only its scaled lower triangular
part and diagonal, which represent L̂ and D̂, are used in the iterative method.

Let us describe our balancing dual dropping rules. Relations between direct
factors from LU decomposition and inverse factors from sparse factorized inverses
were studied by M. Bollhöfer and Y. Saad in [16]. Robust dropping rules based on
the resulting analysis were used in [13] and [14]. Suppose we have an incomplete
decomposition A ≈ L̂D̂L̂T , and we intend to apply it as a preconditioner for the
conjugate gradient (CG) method. It is well known, that an important role in the
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preconditioned method is played by the transformed matrix which can be written as
L̂−1AL̂−T . Consider dropping by value and denote the drop tolerance by τ . In [16]
it is justified to drop the entries l̂jk of a column k of L̂ if they satisfy

|l̂jk| ‖ eT
k L̄−1 ‖≤ τ. (4.1)

Namely, for dropping in the k−th column of L̂ we need to know the norm of the k−th
row of L̄−1. This dropping rule then implies that the entries of the exact inverse L̂−1

of the computed incomplete factor L̂ of the incomplete LDLT factorization are close
to the corresponding entries of the directly computed factorized approximate inverse.

As mentioned above, the BIF algorithm applied to the SPD matrix A computes
at the same time, in addition to D̂, both the incomplete factors L̂ and L̂−1. Consider
for a moment, that our goal is to use also L̂−1. Denote ˆ̀

jk = (L̂−1)jk. Then (4.1)
applied to direct computation of the incomplete inverse factor L̂−1 implies that we
drop entries ˆ̀

jk of the column k of L̂−1 if they satisfy

|ˆ̀jk| ‖ eT
k L̄ ‖≤ τ (4.2)

Theorem 2.2 enables us to apply both dropping rules (4.1) and (4.2) directly if
we replace the exact quantities inside the norms by their approximations computed
throughout.

The basic scheme of the dense left-looking implementation of the BIF algorithm
with the dropping rules based on (4.1) and (4.2) is given below as Algorithm 4.1.

Algorithm 4.1. BIF algorithm

Input: A = (ai,j) (SPD matrix), dropv (drop tolerance for the auxiliary matrix
V̂ = (vi,j)), dropu (drop tolerance for the auxiliary matrix Û = (ui,j)), s (scaling
parameter)
Output: Factors L̂ and D̂ of incomplete LDLT factorization of A.
norm l1:n = 0 (initialize norms of rows of L̂)
Û = I (initialize Û)
for k = 1, . . . , n

v1:n,k = aT
k,1:n, vk,k = vk,k − s (initialize the k-th column of V̂ )

for i = 1, . . . , k − 1 (update the k-th columns of Û and V̂ )
v1:n,k = v1:n,k − ak,1:nu1:n,i

sdi
v1:n,i

u1:n,k = u1:n,k − vk,i

sdi
u1:n,i

end for
dk = vk,k/s + 1.0

norm invlk =
√

vT
1:k−1,kv1:k−1,k + s2/s

temp = 1.0/(dkdk)
for i = k + 1, . . . , n (update norms of rows of L)

norm li = norm li + vi,kvi,k temp
end for
norm lk =

√
norm lk + 1.0

Keep in u1:n,k only the entries with absolute value larger than dropu

( standard dropping in Û)
Keep in v1:k−1,k only the entries vik with magnitudes larger than dropv/norm li
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( first part of BIF dropping in V̂ )
Keep in vk+1:n,k only the entries with magnitudes larger than dropv∗dk/norm invlk

( second part of BIF dropping in V̂ )
end for

Return D̂ = diag(V̂ + sI) and L̂, which is the lower triangular part of V̂ + sI scaled
by D̂−1 from the right.

In Algorithm 4.1 we also explicitly deal with the auxiliary matrix Û which is
an approximation to U . As mentioned in Section 2, the vector u1:n,i used to update
v1:n,k can be equivalently replaced by the vector col = −[vT

1:i−1,i/s,−1.0, zerosT
i+1:n]T ,

where zeros is the vector of all zeros of the dimension n. If we do this substitution, the
matrix Û is not needed at all. Even when in our experiments we obtained the same
results with or without Û , we mention it here for explanatory reasons and possible
future floating-point analysis of the two different algorithmic possibilities. The vector
of norms of the rows of L̂, which is denoted by norm l, is updated throughout the
algorithm. The vector of norms of the rows of L̂−1 denoted by norm invl is computed
throughout from the upper triangular part of V̂s.

Let us give some details on the sparse implementation which we used in our
experiments. Note that we will not discuss the use of matrix Û which does not need
to be used. In each major step, for k = 1, . . . , n, we compute one column of the
matrix V̂s. In order to have fully sparse implementation of the BIF algorithm we
need to store sparse V̂s such that we have a fast access to both its columns and rows.
The access to its columns is needed since the update of v1:n,k for i = 1, . . . , k − 1
is performed by substracting a linear combination of the previous columns of V̂s. In
order to avoid the full loop from 1 to k − 1 in this update we need to know which of
these previous columns have at least one nonzero entry in the same position as ak,1:n,
which is the k-th row of A. Note that ak,1:n is accessed in the dot products used for
the update of columns of V̂s. Such information is easy to get if we have a fast access
to the rows of V̂s. More in detail, we get the indices of the columns of V̂s with a
nonzero contribution to v1:n,k by unifying the structures of the rows of the current V̂s

which correspond to the indices of nonzero entries of ak,1:k−1 being less than k.
Consequently, we store V̂s by columns in a standard compressed sparse by row

(CSR) format [33], cf. also [44]. This data structure is reallocated if needed. In
addition, we store at most lsize entries with largest magnitudes of each row of V̂s

(having thus the space for V̂s stored by rows bounded by n ∗ lsize). Once a column
vk is evaluated and sparsified by dropping we check its nonzero entries, compare their
magnitudes with those which are stored in their rows and keep only those with largest
magnitudes. Clearly, the two different data structures which store V̂s by columns and
rows, respectively, do not necessarily contain the same information. Once the com-
putation of columns of V̂s, dropping its entries and update of the incomplete rowwise
representation of V̂s are explained, the sparse implementation of the remaining lines
of Algorithm 4.1 is straightforward.

The coupled computation of direct and inverse factors reflects the accumulated
experience with AISM that Û and V̂s may profit from different drop tolerances used
for them since they store mathematically rather different quantities. Taking into
account the theory above, different drop tolerances should be used for different parts
of columns of V̂s, if simpler dropping rules would be applied.

If we compare the direct and inverse factors computed by the left-looking im-
plementation of the BIF algorithm with the factors which are obtained by RIF [11],
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we observe important differences. RIF provides in each step different quantities than
BIF. Namely, a row of the approximation L̂−1 to L̄−1 and a row of the approximation
L̂ to L̄, are evaluated in each step of the left-looking RIF algorithm. The factor L̂
obtained in RIF as a side-product of the SAINV algorithm [11] does not have any
influence on the computation of the factor L̂−1. In contrast, computation of direct
and inverse factors in BIF is coupled, both factors L̂−1 and L̂ use information from
each other during the whole computation and can positively influence each other.

In the following section we will present a few experimental results showing the
great potential of the new algorithm. Even when we do not cover here the nonsym-
metric case let us give a few comments on its implementation. First, to get both
incomplete lower and upper triangular factors of the LU decomposition, we need to
run the process for both A and AT , similarly as in getting approximate inverses by
biconjugation [8]. If we interleave these processes, we have always available partially
formed approximate factors and approximations of their inverses. Consequently, drop-
ping rules motivated by [13] could be then applied, but we potentially double memory
demands. Or, we can compute the incomplete upper triangular factor from A, the
incomplete lower triangular factor from AT , and propose a different dropping strat-
egy. Our preliminary experience points out that the scaling rule may be taken into
account.

5. Numerical experiments. This section is devoted to numerical experiments
with the new factorization which is used as a preconditioner for the CG method.
In particular, we are interested in solving large and ill-conditioned problems. The
main goal of this section is to show that the new approach is practically robust for
solving these problems, and rather cheap to compute. We will see that, in general,
the new approach provides better results compared to those obtained with the RIF
preconditioner.

As a baseline method we report results for Jacobi preconditioning which may
give an idea of difficulty of the test problems. A natural competitor of the new
approach used in our comparison is the RIF preconditioner, which may be considered
as one of the methods of choice among robust approaches [11]. Moreover, the RIF
preconditioner is also based on factorized approximate inverses, and the comparison
may be useful in order to find similarities and contrasts between both approaches.
Note that standard preconditioners based on drop tolerances failed on most of the
problems, or we were not able to find parameters which would force them to run.
Standard level-based preconditioners including IC(0) also failed or were extremely
inefficient, and we do not report results with them as well. Note that for most of the
test problems the factor L̂ from IC(0), which has the same sparsity pattern as the
lower triangular part of A, may be a very poor approximation of the exact Cholesky
factor L̄ of A. This can result in the preconditioned iterative method which would be
rather inefficient. In addition, if A is not M -matrix or H-matrix, the decomposition
can even break down. In this case, the Jacobi preconditioner may be often preferred,
especially in parallel environment, and/or if we perform only a few iterations, since the
Jacobi preconditioned conjugate gradient method is known to converge under weak
assumptions (in exact arithmetic), and it often converges in a reasonable amount
of iterations. In some sense, our experiments present a focused extension of that
considered in [11].

Our sparse left-looking implementation was described in the previous Section.
Note that in all our experiments we chose lsize = 10. To our surprise, the number
of iterations of the preconditioned CG (PCG) method was largely insensitive to the
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Table 1
Test problems

Matrix n nz Application Source

BCSSTK35 30,237 1,450,163 Automobile seat frame U. of Florida [23]
VANBODY 47,072 1,191,985 Van body model The PARASOL project
CT20STIF 52,329 1,375,396 Engine block U. of Florida [23]
CFD1 70,656 949,510 CFD pressure matrix U. of Florida [23]
OILPAN 73,752 1,835,470 Car olipan The PARASOL project
X104 108,384 5,138,004 Beam joint The PARASOL project
CFD2 123,440 1,605,669 CFD pressure matrix U. of Florida [23]
ENGINE 143,571 2,424,822 Engine head R. Kouhia [39]
PWTK 217,918 5,926,171 Pressurize wind tunnel U. of Florida [23]
HOOD 220,542 5,494,489 Car hood The PARASOL project
INLINE 1 503,712 18,660,027 Inline skater The PARASOL project
LDOOR 952,203 23,737,339 Large door The PARASOL project

choice of lsize. Note that this fact is in contrast with dual dropping in the AINV
decomposition [8], where we typically get very different numbers of nonzero entries
in the factor rows. Uniform bound lsize on these numbers may spoil the efficiency of
AINV. The fact that the parameter lsize is used only for an auxiliary data structure
in BIF seems to be crucial for the difference in behavior between BIF and AINV.
As a further simplification in our implementation, we always use s = 1, and this
corresponds to our goal not to optimize the performance of the preconditioners in
the other way than by balancing. Our matrices used natural ordering and were not
initially scaled.

The test matrices are listed in Table 1. Many of them are quite ill-conditioned.
Note that we have considered here some test problems used in [11] and extended this
choice by larger problems. For each matrix we provide the problem size n, the number
nz of nonzeros in the lower triangular part, the application field in which the matrix
was created, and the source. Note that the matrices from the Parasol project are
currently available from a depository in RAL described in [29].

Each problem was solved by the preconditioned conjugate gradient method for a
relative decrease 10−6 of the system backward error, allowing a maximum of 2,000
iterations. For the experiments we used an artificial right-hand side computed as
b = Ae, where e is the vector of all ones. The initial guess was the vector of all zeros.
The computations have been performed using one processor Intel Pentium 4 (3GHz,
1GB RAM). The codes written in Fortran 90, have been compiled with Compaq Visual
Fortran 6.6a.

In Table 2 we present results obtained with the Jacobi preconditioner, that is
solving the diagonally-scaled problem. For each problem we provide the number of
iterations of the preconditioned conjugate gradient method as well as the elapsed user
time for the computation obtained with a system function etime.

Table 3 presents the results obtained with RIF and BIF preconditioners. For
each method we report the ratio which we get if the number of nonzero entries in
the approximate factor L̂ is divided by the number of nonzero entries in the lower
triangular part of A. This ratio is denoted by relsize. Further we show the time
for constructing the preconditioner (t p), the number of PCG iterations (its) and the
time for the iterative solution phase (t it).

The parameters to apply the dropping rules for both RIF and BIF were chosen so
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Table 2
JCG preconditioning

Matrix JCG its JCG time
BCSSTK35 464 2.38
VANBODY 605 4.81
CT20STIF 389 3.69

CFD1 814 6.20
OILPAN 736 8.95

X104 1100 33.4
CFD2 854 10.8

ENGINE 686 13.8
PWTK 1178 44.8
HOOD 666 27.7

INLINE 1 764 101.
LDOOR 810 145.

Table 3
Comparison of the RIF and BIF preconditioners

Matrix RIF BIF
relsize t p its t it relsize t p its t it

BCSSTK35 0.18 0.50 60 0.47 0.18 0.16 45 0.38
VANBODY 0.07 0.75 8 0.09 0.07 0.08 7 0.08
CT20STIF 0.05 1.00 62 0.69 0.05 0.06 61 0.67

CFD1 0.74 11.5 287 4.08 0.77 0.83 291 4.38
OILPAN 0.08 1.20 134 1.92 0.17 0.17 141 1.97

X104 † † † † 0.24 0.88 44 1.89
CFD2 0.50 5.40 372 8.40 0.55 0.62 389 8.55

ENGINE 0.06 1.48 213 4.95 0.06 0.25 208 4.88
PWTK 0.21 4.03 14 0.81 0.20 1.01 26 1.39
HOOD 0.07 3.36 320 16.1 0.06 0.60 319 16.3

INLINE 1 0.04 16.4 149 22.4 0.04 1.65 156 23.3
LDOOR 0.05 13.9 167 34.9 0.05 2.27 168 36.0

as to obtain preconditioners with very similar size. In all cases we considered rather
sparse preconditioners in order to show that a reasonable efficiency can be obtained
even with a small amount of additional information extracted from the matrix. Note
that we did not do any tuning of preconditioners for optimal performance. We can see
that both preconditioners seem to be similarly robust. Apart from one case when the
computation of RIF failed (for a wide spectrum of parameters) since the underlying
SAINV process [4] needed excessive amount of memory, we consider both approaches
efficient, having similar degree of robustness. As for the timings, the new precondi-
tioner is much cheaper to compute. This can be possibly explained by combination
of two effects. First, BIF is based on cache-efficient, and primarily, columnwise im-
plementation whereas in RIF we switch between two matrices stored in different data
structures. The BIF implementation is principially much simpler. Second, we believe
that it is mainly caused by the dropping rules which make the factors more stable,
producing larger diagonal entries and generating thus less fill-in. If we would consider
total timings, the new BIF approach would be a clear overall winner. Note that we do
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not consider here the intermediate memory for the SAINV process hidden inside RIF
computation. We observed that this intermediate memory is typically larger than the
additional memory needed for the new approach. But note that in addition to the
new dropping we used additional dropping, especially for the entries related to the
upper triangular part of V .

We also performed some experiments with a direct method. For this purpose
we used the MA57 code from the Harwell Subroutine Library with the native AMD
reordering. The code was able to solve all our linear systems except for the two largest
ones. Even when this particular direct method provided larger timings in most test
cases, we believe that one can tune both approaches to get very similar results from
the efficiency point of view for the considered problem sizes. But we also believe that
the classes of direct and iterative methods offer very different merits. They are in
many senses complementary, and their comparison should be always purpose-oriented.
Note that one of the principial features of the direct methods is that they can get the
solution with a small backward error. In contrast, in the case of the preconditioned
conjugate gradients we typically need and get only a rough approximation of the
solution, where its approximativeness is measured relatively, e.g., with respect to the
original backward error norm or the original residual norm.

Comparison of preconditioners is always a multivariate problem. The results
represented via a table, even if the corresponding numbers are carefully selected, may
not tell us the whole story. In the following we will pay attention at the results
obtained for the matrix PWTK.

Figure 5.1 shows the time to compute the preconditioners of different sizes.
Clearly, the setup time is much smaller for all sizes of preconditioners. While we
were able to choose parameters for RIF to make the preconditioner density even
larger (following the increase in the setup time) this was not the case of BIF. Its
density is naturally limited by the size of the row structures of V̂s on one side, and by
the dropping rules based on the norms of rows of L̂ and L̂−1 on the other side.

Figure 5.2 shows the dependence of the number of iterations of the PCG method
on the size of the preconditioner. We can see that there are regions of sizes of the
preconditioners for which the RIF preconditioner is more efficient than the BIF pre-
conditioner in terms of the number of iterations for the same size. The other effect
visible in Figure 5.2 is the more uniform behavior of the curve for BIF. The jumps
in the curve seem to have more limited amplitudes. We believe that this may be
attributed to the relative dropping used in BIF. In contrast to the results presented
in Table 3, the intervals of preconditioner sizes for which RIF and BIF have a very
small number of PCG iterations are rather different for this matrix.

Finally, Figure 5.3 shows dependence of the total time on the sizes of precondi-
tioners for RIF and BIF. Here, by the total time we denote the sum of the time to
compute the preconditioner and the time for PCG. Due to the very small setup time,
BIF is here better, and sometimes much better, for most of its sizes. What we consider
even more important is that its behavior is more uniform. The main goal of this sec-
tion was to point out that the new approach is practically robust for solving difficult
problems. BIF seems to satisfy this, even when not proved to be breakdown-free. We
believe that this behaviour is also due to the robust dropping based on the results of
M. Böllhofer and Y. Saad. We can thus obtain a high-quality preconditioner even in
the case when the SAINV process hidden inside the RIF computation generates very
high fill-in as in the case of matrix X104. We believe that the favourable properties of
BIF experimentally shown for solving symmetric and positive definite systems may be
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Fig. 5.1. Sizes of RIF and BIF preconditioners (in numbers of their nonzeros) versus time to
construct them (in seconds) for the matrix PWTK.

very important in future extensions to nonsymmetric systems, block implementations
and iterative solvers of linear least-squares problems (cf. [12]).

6. Conclusions and future work. We have introduced a new incomplete
LDLT factorization of symmetric and positive definite systems by carefully examining
the AISM preconditioner. The new factorization is surprisingly simple. The algorithm
of this new factorization closely couples computation of both the approximate factors
L̂ and L̂−1 which influence each other during the course of computation. We have
shown that the dropping rules developed by M. Böllhofer and Y. Saad can be easily
applied into the computational algorithm, and therefore the growth in both L̂ and L̂−1

can be balanced. This balancing gives the name to the new approach: balanced in-
complete factorization (BIF). Numerical experiments suggest that the new technique
is reliable and can be considered as a complementary method to the RIF precondi-
tioner, but having much faster setup than RIF. The extensions to preconditioning
nonsymmetric systems and linear least squares are currently under investigation.

7. Acknowledgment. We would like to thank to the anonymous referees and
to Michele Benzi for their comments on the previous version which helped to improve
the paper.
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[21] J. Cerdán, T. Faraj, J. Maŕın, and J Mas. A block approximate inverse preconditioner for

sparse nonsymmetric linear systems. Technical Report No. TR-IMM2005/04, Polytechnic
University of Valencia, Spain, 2005.

[22] T. F. Chan and H. A. van der Vorst. Approximate and incomplete factorizations. In Parallel
Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering
IV. Centenary Conference, D.E. Keyes, A. Sameh and V. Venkatakrishnan, eds., pages
167–202, Dordrecht, 1997. Kluver Academic Publishers.

[23] T. A. Davis. The University of Florida Sparse Matrix Collection. Tech. Report REP-2007-298,
CISE, University of Florida, 2007. Available online at http://www.cise.ufl.edu/∼davis.

[24] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approximating the inverse of a matrix for
use on iterative algorithms on vector processors. Computing, 22:257–268, 1979.



BALANCED INCOMPLETE FACTORIZATION 17

[25] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Anal., 20:889–901, 1999.

[26] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. Matrix Anal., 22:973–996, 2001.

[27] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT, 29:635–657, 1989.

[28] T. Dupont, R. P. Kendall, and H. H. Jr. Rachford. An approximate factorization procedure
for the solving self-adjoint elliptic difference equations. SIAM J. Numer. Anal., 5:559–573,
1968.

[29] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct solvers for
the solution of large sparse symmetric linear systems of equations. ACM Trans. Math.
Software, article 10 (electronic), 33(2), 2007.

[30] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses. SIAM
J. Sci. Comput., 18(3):838–853, 1997.

[31] I. Gustafsson. A class of first order factorization methods. BIT, 18(2):142–156, 1978.
[32] M. Hagemann and O. Schenk. Weighted matchings for preconditioning symmetric indefinite

linear systems. SIAM J. Sci. Comput., 28(2):403–420, 2006.
[33] A. Jennings. A compact storage scheme for the solution of symmetric linear simultaneous

equations. Computing J., 9:281–285, 1966.
[34] O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditioners for conjugate gradient

calculations. SIAM J. Numer. Anal., 20(2):362–376, 1983.
[35] M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky factorization. ACM

Trans. Math. Software, 21(1):5–17, 1995.
[36] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix

based on its UT U + UT R + RT U decomposition. Numer. Linear Algebra Appl., 5:483–
509, 1998.

[37] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution
of systems of linear equations. J. Comp. Phys., 26:43–65, 1978.

[38] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse preconditionings.
I. Theory. SIAM J. Matrix Anal. Appl., 14(1):45–58, 1993.

[39] R. Kouhia. Sparse matrices web page. available online at
http://www.hut.fi/∼kouhia/sparse.html, 2001.

[40] I. Lee, P. Raghavan, and E. G. Ng. Effective preconditioning through ordering interleaved with
incomplete factorization. SIAM J. Matrix Anal. Appl., 27(4):1069–1088, 2006.

[41] T. A. Manteuffel. Shifted incomplete Cholesky factorization. In I.S. Duff and G. W. Stewart,
editors, Sparse Matrix Proceedings 1978, Philadelphia, PA, 1979. SIAM Publications.

[42] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Math. Comp., 34:473–497, 1980.

[43] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.

[44] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90–20,
Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffet
Field, CA, 1990.

[45] Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl.,
1(4):387–402, 1994.

[46] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston, 1996.
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