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tavovacie kritériá
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Introduction

You cannot depend on your eyes when your imagination is out of focus.
Mark Twain

With the advent of the digital era, many of the modern as well as
classical scientific disciplines, such as astronomy, radiology or archaeol-
ogy, have come to depend greatly on the use of digital imaging devices.
Since recording of the input image data by telescope, magnetic resonance,
etc., may lead to unwanted changes in the image information, including
blurring and pollution by noise, this progress has stimulated the devel-
opment of digital image restoration techniques. In this thesis, we shall
concentrate on the image deblurring methods proposed by the numerical
linear algebra.

Here, the process of deblurring digital images is based on the nu-
merical treatment of the linear system Ax = b, with A standing for the
blurring operator representing an imaging device acting on the exact im-
age data x and yielding a blurred image b. Often, this problem belongs
to the class of the so-called ill-posed problems [12], where the severe ill-
conditioning of the blurring operator prevents the use of direct solution
methods, e.g. Gaussian elimination. Hence the regularization methods
are introduced [4], [12], [14]. These attempt to rid the solution of noise
and obtain a desired sharp image. In order to do so, the regularization
methods can either directly filter the singular value decomposition com-
ponents of the blurring operator (e.g. TSVD, Tikhonov regularization;
[4], [12], [14]) or work iteratively by projecting the large problem onto a
Krylov subspace of the smaller dimensions (e.g. CGLS, LSQR; [4], [6],
[16], [22], [23]). The use of the regularization methods requires a choice
of a suitable value of the regularization parameter that would lead to a
desirable approximation of the exact solution (sharp image). The pop-
ular parameter-choice methods include the L-curve [2], [11], [12], [15],
GCV [7], [28] and the discrepancy principle [12], [18], etc.

This thesis provides a brief overview of the above-mentioned regular-
ization and paremeter-choice methods. The discussion shall be accom-
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panied by references for further reading, and numerical experiments.
We shall begin our discussion by presenting the fundamentals of the

image deblurring problems in Chapter 1. This involves gray-scale and
colour digital image representation, formulation of the mathematical
model simulating the image recording and the construction of the blur-
ring operator. The ill-posed nature of the deblurring problems shall be
revealed by examining the singular value decomposition of the blurring
operator.

In Chapter 2, we summarize the numerical techniques aimed at de-
blurring digital images. We shall present representatives of two classes
of the regularization methods – direct (TSVD, Tikhonov regularization)
and iterative ones (CGLS, LSQR). Consequently, the pertinent stopping
criteria (parameter-choice methods) will be outlined – this includes the
L-curve, GCV and the discrepancy principle.

Chapter 3 provides the numerical experiments, carried out in MAT-
LAB, trying to illustrate the application of the techniques in question to
the real-life image data.
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Chapter 1

Image Deblurring Problems

1.1 Introduction to the Problem

1.1.1 Digital Image Representation

Digital image, as a discrete record of a continuous reality, consists of pic-
ture elements (pixels) capturing small rectangular areas of a recorded
scene. In gray-scale images, each pixel carries information about the light
intensity denoted by a value from range 0 (black) to 255 (white). In or-
der to be able to process these digital images by means of mathematical
techniques, we need a way to represent them as arrays of numbers.



43 44 45 46 47 48 49 50
42 21 22 23 24 25 26 51
41 20 7 8 9 10 27 52
40 19 6 1 2 11 28 53
39 18 5 4 3 12 29 54
38 17 16 15 14 13 30 55
37 36 35 34 33 32 31 56
64 63 62 61 60 59 58 57
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Figure 1.1 Matrix representation of a gray-scale image.

To begin with, consider first a black and white image of the size
8 × 8 pixels. Figure 1.1 shows the correspondence between the image
and its underlying mathematical structure, a real 8 × 8 matrix. Note
that the matrix was displayed using MATLAB imagesc function; this
means the matrix elements were scaled onto [0, 1] before being depicted
as the light intensity levels.

Similarly, a colour image is handled as a 3-dimensional matrix of the
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size n × m × 3 with each 2-dimensional n × m array storing intensity
information about one of the three colour channels (usually red, green
and blue).



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Red



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Green

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Figure 1.2 3-D matrix representation of a colour image.

1.1.2 Linear Deblurring Model

Gray-scale Images

Translating the digital image construction into mathematical language,
we shall use a slightly different representation than the one described in
the previous section – namely, digital images will be dealt with as vectors
rather than matrices. Consider a gray-scale image of the size n × m
pixels. The image vector x ∈ Rnm will be created by rearrangement
of column elements xi ∈ Rn of the coincident matrix X ∈ Rn×m, in
such a way that x = (xT1 , x

T
2 , ..., x

T
m)T ∈ Rnm. Given a sharp real image
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Figure 1.3 (Left) Recorded blurred image b = bexact+bnoise, [14, Challenge 2].
(Right) Naive solution x = A+(bexact + bnoise) completely dominated by noise.

x ∈ Rnm and an optical system (telescope, tomograph, etc.) represented
by A ∈ Rnm×nm acting upon the input image data x, we obtain a new
recorded image b ∈ Rnm. In practice, only the vector b is known and
thus the goal is to find the corresponding “model” image x. Assuming
A to be linear, the problem can be formulated as

Ax = b, (1.1)

where A ∈ Rnm×nm, x ∈ Rnm relates to the wanted model image and
b ∈ Rnm stands for the recorded image.

During recording, transformation of the data leads to addition of re-
dundant information and often blurring of the image occurs. The mod-
ification of the data is unavoidable – be it numerical noise caused by
the discretization of the problem or impact of inherent physical phe-
nomena (such as gas movements in the atmosphere, motion blur, cor-
rupted / defocussed lens of a recording device, etc.) that corrupts the data.
Therefore, the system in question is in fact given by

Ax = b = bexact + bnoise, (1.2)

where A stands for the blurring operator, properties of which will be
discussed in Section 1.2, and the vectors bexact ∈ Rnm and bnoise ∈ Rnm

are usually unknown.
Using a pseudoinverse [1] A+ ∈ Rnm×nm of the matrix A, we may

compute

xnaive ≡ A+(bexact + bnoise) = xexact + A+bnoise, (1.3)

and hence obtain the least squares solution to the problem (1.2) (for
more details see Section 2.1). As can be seen in Figure 1.3, this opera-
tion does not lead to the desired sharp model image x and only yields a
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naive noise-dominated solution to the problem (i.e. reconstructed image
is contaminated by the inverted noise). The reasons why this method
cannot be applied to finding a suitable solution will be discussed in Sec-
tion 1.2.2. Before we do that, let us introduce a deblurring model for
colour images.

Colour Images

Construction of a mathematical model describing the blurring process of
colour images is slightly more complicated than the one for the gray-scale
case. This is a result of the colour images being compounds of three, not
just one, 2-dimensional arrays carrying intensity information for different
colours, which also implies possible complications during the recording of
an image. Specifically, the data assigned to one colour may be infiltrated
by different-channel information. Therefore, not only does a colour im-
age suffer from the optical (within-channel) blurring but cross-channel
blurring might appear as well (see Figure 1.4 for comparison). Following

Figure 1.4 Two types of colour image blurring. (Left) Within-channel blur-
ring. (Right) Within-channel plus cross-channel blurring.

the same vector notation as above, consider a colour image of the size
n × m pixels: x = [xr, xg, xb]T ∈ R3nm, where xr, xg, xb ∈ Rnm denote
the gray-scale images of the three colour channels of x. Assuming the
optical blurring (declared by the operator A : Rnm → Rnm) is the same
in all three channels, we can write

Axr = b̃r, A xg = b̃g, A xb = b̃b.

The relation between pixel [b̃ri , b̃
g
i , b̃

b
i ]
T and its cross-blurred counterpart

[bri , b
g
i , b

b
i ]
T is expressed by αrr αrg αrb
αgr αgg αgb
αbr αbg αbb

 b̃ri
b̃gi
b̃bi

 =

 bri
bgi
bbi

 , i = 1, . . . , nm.
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Combining the previous two relations [14, pp. 85], the system αrrA αrgA αrbA
αgrA αggA αgbA
αbrA αbgA αbbA

 xr

xg

xb

 =

 br

bg

bb

 , (1.4)

[xr, xg, xb]T and [br, bg, bb]T ∈ R3nm, models the colour image blurring
problem under the assumption of the spatial invariance of cross-channel
blurring, i.e. cross-channel blurring being the same for all pixels. Equiv-
alently, using Kronecker product notation [8, pp. 180], the problem (1.4)
can be formulated as

(Across−channel ⊗ A)x = b, (1.5)

with

Across−channel =

 αrr αrg αrb
αgr αgg αgb
αbr αbg αbb

 ; x =

 xr

xg

xb

 , b =

 br

bg

bb

 ∈ R3nm.

See Figure 1.4 (Right) for an example of the colour image blurring with
Across−channel =((0.4, 0.35, 0.25), (0.25, 0.2, 0.55), (0.25, 0.25, 0.5)).

The deblurring task is undertaken in compliance with the blurring
model – simple within-channel blurring leads to a system of three inde-
pendent deblurring problems, while occurrence of cross-channel colour
blurring requires finding solution to the problem (1.5). Please note that
only the first type of problems shall be considered in our numerical ex-
periments in Chapter 3.

1.2 Characteristics of the Blurring

Operator

When outlining the basic structure of the linear deblurring model for
digital images, we saw that one of the core requirements of the linear
deblurring model is that A be known. Hence, the natural question one
may ask is how it can be obtained. In this section, we shall take a look
at the construction of the blurring operator A. In order to understand
the noisy nature of the solution (1.3), we shall examine the properties of
A with the help of the singular value decomposition (SVD).
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1.2.1 Blurring as a Two Dimensional Convolution
Problem

Exploiting the basic formulation of the linear blurring model (1.1), it can
be easily seen that the most straightforward way of finding the blurring
operator A is computing

Aei, = ai,

where ei ∈ Rnm, and ai ∈ Rnm stands for the i-th column of the matrix
A ∈ Rnm×nm. Equivalently, this operation can be seen as recording of
an image of a single point source. The blurred result of this process,
and the function defining the blurring, is then called the point spread
function (PSF) [14], see Figure 1.5. This experimental approach is often
employed in areas such as astronomical imaging or microscopy, where a
single bright star or subresolution fluorescent beads [26] respectively can
be utilized as the point sources for finding the PSF. Alternatively, precise
knowledge of an underlying physical process causing the blurring leads to
the explicit formula for the PSF. For example, the atmospheric blur PSF
centered at pkl in P ∈ Rn×m is modelled by a two-dimensional Gaussian
function

pij =
1

2πσxσy
exp

(
−1

2

(
i− k
σx

)2

− 1

2

(
j − l
σy

)2)
, (1.6)

where standard deviations σx, σy determine the width of the PSF. Simi-
larly, out-of-focus blur is defined by the PSF of the form

pij =

{
1/(πr2), (i− k)2 + (j − l)2 ≤ r2,
0, otherwise,

(1.7)

with pkl being the center element and r radius of the PSF. These relations
along with the PSF for linear motion blur can be found in [3], [10], [14].

Regarding its properties [14], PSF can be either spatially invariant
(blurring of each pixel is the same) or spatially variant. Often, as shown
in Figure 1.5, characteristics of the recording process imply that the PSF
is bounded in a region smaller than the dimensions of the picture indi-
cating the local nature of the blurring. Also, if all light is captured in
the imaging process, the sum of the pixel values in the PSF is 1 and the
blurring process of the original image X ∈ Rn×m leading to the blurred
image B ∈ Rn×m is modelled by a two-dimensional convolution:

B = X ∗ PSF.

12
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Figure 1.5 Point source and corresponding point spread function (reshaped
into n×m matrices) for the problem in Figure 1.3.

In other words, every pixel of the blurred image bij, i ≤ n, j ≤ m is
a weighted average of the corresponding pixel xij and its neighbours,
with the elements of PSF defining the weights for the operation. One
should keep in mind that border pixels of B are affected by behaviour of
a scene outside of a finite region being recorded. Hence, A needs to be
derived from two main ingredients: PSF and the boundary conditions.
When rewriting convolution problem as a matrix-vector multiplication,
the choice of the latter to be zero (data outside of X are zero), periodic
(periodic extension of the data inside X outwards), or reflexive (outside
data being reflection of the data inside X) [5] results in specific block
structure of A, namely Toeplitz, circulant, or Hankel, or their combina-
tions. For more details see [14], [25].

1.2.2 Singular Value Decomposition

Singular value decomposition of the operator realizing transformation of
an input image data represents a useful tool for understanding the role
the inverted noise plays in the problem (1.2). Also, it forms a basis for
the methods of the noise elimination in the process of image deblurring.

Consider the singular value decomposition of the matrix A ∈ Rnm×nm,
rank(A) ≡ r,

A = U ΣV T =
nm∑
i=1

σi ui v
T
i , (1.8)

where U = [u1 , . . . , unm ] ∈ Rnm×nm, V = [ v1 , . . . , vnm ] ∈ Rnm×nm,
U−1 = UT , V −1 = V T ,

Σ =

[
Σr 0
0 0

]
∈ Rnm×nm, Σr = diag(σ1, . . . , σr) ∈ Rr×r,
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and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are singular values of the matrix A, ui are
left and vi right singular vectors of the matrix A. For more details and
properties of SVD see [8, pp. 70–73].

Expense-wise, the SVD of the matrix A can take on the so-called
economy form. This way, the unnecessary operations, namely multi-
plication by zero blocks of Σ in (1.8), are avoided:

A = Ur Σr V
T
r =

r∑
i=1

σi ui v
T
i , (1.9)

where Ur ∈ Rnm×r, Vr ∈ Rnm×r.
Similarly,

A† = Vr Σ†r U
T
r =

r∑
i=1

uTi
σi
vi , (1.10)

Σ†r = diag(σ−11 , . . . , σ−1r ) ∈ Rr×r,

denotes the economy singular value decomposition of a Moore-Penrose
pseudoinverse [20] of the matrix A. If A is nonsingular, the pseudoin-
verse and inverse of A coincide. Using this relation, the naive solution to
the problem (1.2) can be written as

xnaive =
r∑
i=1

uTi b

σi
vi = (1.11)

=
r∑
i=1

uTi bexact
σi

vi +
r∑
i=1

uTi bnoise
σi

vi = (1.12)

= xexact + A† bnoise,

where the inverted noise A† bnoise takes over our naive solution (see Figure
1.3). The explanation for this phenomenon lies in the following properties
of image deblurring problems [12], [14]:

• Singular vectors corresponding to small singular values typically
correspond to higher frequency information – as i increases, left
and right singular vectors are apt to have more sign changes (see
Figure 1.6).

• The projections |uTi bexact| in (1.12) decay on average faster than
the corresponding singular values σi, and so the reasonable bound-
edness of the left-hand side sum in (1.12) is ensured, i.e. these
coefficients comply with the so called discrete Picard condition
[12, pp. 82].
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Figure 1.6 Right singular vectors (reshaped into n×m matrices) correspond-
ing to the blurring operator for the problem in Figure 1.3.

• On the other hand, noise projections into the left singular subspaces
are of a random nature with roughly the same order of magnitude
for all i = 1, . . . , nm. This level is known as the noise level δnoise
and defined by [17]

δnoise ≡
‖bnoise‖
‖bexact‖

,

where ‖ · ‖ stands for the Euclidean norm ‖ · ‖2. Consequently,

as singular values σi decay to zero for i → nm, elements
uTi bnoise

σi
grow uncontrollably, the high frequency information is amplified
and the discrete Picard condition cannot be satisfied. In other
words, the useful image information is entirely suppressed by the in-
verted noise:

‖xexact‖ � ‖A† bnoise‖.

Figure 1.7 shows that magnitude of the projections |uTi b| (black)
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Figure 1.7 Singular values (red) of the blurring operator A from the problem

in Figure 1.3, projections |uTi b| (black), and coefficients
|uTi b|
σi

(green).

decays at approximately the same rate as the singular values (red)
of A before stopping at the noise level δnoise, while growing co-

efficients
|uTi bnoise|

σi
(green) account for the solution dominated by

the elements corresponding to small singular values.

• Singular values of the matrix A decay to, and cluster at, zero which
leads to the large condition number κ(A) = σ1

σr
and so sensibility of

the solution to errors and perturbations.

The last property brings us to the more general characteristic of the image
deblurring problems – the one of their ill-posedness.

1.2.3 Ill-posed problems

The problem of deblurring images using model (1.2) often falls into
the group of so called ill-posed problems1 with a very ill-conditioned
blurring matrix A. Approaching these problems numerically, one should
consider a numerical ε-rank rε [8, pp. 72] of the matrix A, which can be

1The concept of ill and well-posed problems was first introduced by Hadamard.
He defined a problem as ill-posed whenever a solution was non-existent, not unique
or not continuously dependent on the data – small perturbations in the data bring
about arbitrarily large perturbation in the solution [19].
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defined by
rε = min

‖A−B‖≤ ε
rank(B), (1.13)

for a given small tolerance ε. In other words, rε satisfies

σrε > ε ≥ σrε+1. (1.14)

When looking at the set of singular values of the matrix A, we may
distinguish two classes of ill-conditioned problems [12]:

• Discrete ill-posed problems – numerical rank of the matrix A
is not well-defined, i.e. all singular values of A decay gradually to
zero. Numerical treatment of this kind of problems lies in finding
a balance between the norm of the solution and the residual norm.

• Rank-deficient problems – problems with a well-defined nu-
merical rank rε characterized by a well-determined gap between
the large and small singular values of the matrix A, or as per (1.14),
between σrε and σrε+1. This implies the existence of linearly de-
pendent columns / rows of the matrix A and hence the presence
of redundant information in the matrix. Thus, linearly dependent
information needs to be extracted so that a problem with a well-
conditioned matrix could be solved. However, note that rε needs to
be insensitive to small perturbations of ε and the singular values.
Otherwise, the problem should be dealt with by techniques aimed
at discrete ill-posed problems.

Figure 1.8 illustrates these two classes of ill-posed problems: a discrete
ill-posed (Left) and rank-deficient problem (Right).
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Figure 1.8 Two examples of the ill-posed problems from the Regularization
Toolbox [13]: (Left) Discrete ill-posed problem Parallax where singular values
gradually decrease to zero. (Right) Rank-deficient problem Shaw with a well-

determined numerical rank.
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Chapter 2

Numerical Treatment of
Image Deblurring Problems

Having discussed the fundamental properties of the image deblurring
problems, we see that finding exact (naive) solution to the system (1.2)

Ax = b = bexact + bnoise

does not bring about desirable outcomes. The useful information is sup-
pressed and the noise takes over the resulting image. Therefore, as al-
ready indicated, a different approach needs to be taken to deal with these
problems. In this chapter, we shall provide a brief overview of the se-
lected numerical techniques aimed at deblurring digital images, namely
direct and iterative regularization methods – TSVD, Tikhonov regular-
ization, CGLS, LSQR, and the pertinent stopping criteria (parameter-
choice methods) – L-curve, GCV and the discrepancy principle.

2.1 Image Deblurring Methods

Mathematical background of the image deblurring methods presented in
this chapter lies in the numerical treatment of the problem (1.2) and the
corresponding linear least squares problem

min
x∈Rnm

‖b− Ax‖. (2.1)

Equivalently [4], the least squares solution to (1.2) can be obtained by
solving a system of the normal equations

ATAx = AT b, (2.2)

with a symmetric nonnegative definite matrix ATA ∈ Rnm×nm. We shall
benefit from this property later in Section 2.1.2.
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2.1.1 Direct Regularization Methods

Direct regularization techniques, as a class of the methods based on the
singular value decomposition, stem from the nature of the blurring opera-
tor as described in Section 1.2.2. The amplification of the high frequency
information due to decaying singular values (Figures 1.7) calls for a way

of controlling the role single elements
uTi b

σi
vi play in the expansion (1.11).

Using filter factors φi the regularized solution can be defined as

xfilt =
r∑
i=1

φi
uTi b

σi
vi, (2.3)

where r = rank(A) [12, pp. 71–74]. A suitable choice of filter factors,
determined by the regularization method, can help dampen the effects
of the noise in the wanted model image by muting the information cor-
responding to the small singular values of A. We shall take a closer look
at two of these direct regularization techniques – the truncated singular
value decomposition and the Tikhonov regularization.

Truncated Singular Value Decomposition

Truncated singular value decomposition (TSVD) [4], [12], [14] is an ele-
gantly simple yet important representative of the regularization methods
class. Here, the filter factors are chosen so that the disturbing elements
connected with the small singular values are left out:

φi =

{
1, i = 1, . . . , k,
0, i = k + 1, . . . , r.

The regularized solution is then of the form

xTSV D =
k∑
i=1

φi
uTi b

σi
vi, (2.4)

where k ≤ r denotes the truncation level – a regularization param-
eter of the method regulating the smoothness of the solution (for more
details see Section 2.2). The idea behind the TSVD lies in the lower-
rank approximations of the matrix A. From the Eckart - Young - Mirsky
theorem [8, Theorem 2.5.3], [9], it follows that

Ak ≡
k∑
i=1

σi ui v
T
i , (2.5)
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Ak ∈ Rnm×nm is the best rank-k approximation of the matrix A ∈
Rnm×nm. Hence the TSVD solves the least squares problem related to
(1.2) [4, pp. 101]:

min
x∈Rnm

‖b− Ak x‖.

For comparison with the naive solution in Figure 1.3, we include the

50 100 150 200 250 300

50

100

150

200

250

Figure 2.1 The TSVD solution to the problem in Figure 1.3
with the truncation level k= 2195.

TSVD solution to the same problem, see Figure 2.1. This solution cor-
responds to the regularization parameter k = 2195.

Tikhonov Regularization

Attempts to include apriori assumptions about the properties (size and
smoothness) of the solution into the regularization process lead to Tikhon-
ov regularization [4], [12], solving the minimization problem

min
x∈Rnm

{
‖b− Ax‖2 + λ2‖x‖2

}
, (2.6)

with λ standing for the regularization parameter.
Similarly to (2.2), the problem (2.6) is equivalent to solving the mod-

ified normal equations

(ATA+ λ2I)x = AT b.

Using the singular value decomposition, the solution to this system can
be written as [18]

xTikhonov =
r∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi.
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Figure 2.2 Filter factors corresponding to the problem in Figure 1.3: (Left)
Comparison of the φi for the TSVD solution in Figure 2.1 with k = 2195 and
the Tikhonov regularization with λ = σ2195 = 1.8509×10−3. (Right) Tikhonov

factors for different values of λ.

Hence, the Tikhonov filter factors are given by

φi =
σ2
i

σ2
i + λ2

, i = 1, . . . , r. (2.7)

This way both, the residual norm ‖b−Axfilt‖ of the discrete ill-posed
problem, controlling the smoothness of the solution, and the norm of the
solution ‖xfilt‖ can be held reasonably balanced. Taylor expansion of
the expression (2.7) reveals that φi ≈ 1 for σi � λ, and φi ≈ σ2

i /λ
2 for

σi � λ, suggesting that Tikhonov filters set in effectively when σi ≈ λ,
see [14, pp. 70].

Figure 2.2 illustrates the first 10000 filter factors (out of 78000) for
the regularization of the problem in the Figure 1.3. See figure on the left
for comparison of the Tikhonov and TSVD filter factors φi. Right figure
illustrates the Tikhonov factors for different values of λ.

2.1.2 Iterative Regularization Methods

Both iterative techniques outlined in this section, CGLS and LSQR, take
advantage of the conjugate gradients method (CG) [16] and project a
large problem (1.2) onto a Krylov subspace of the smaller dimensions [4],
[8], [12]. The CG algorithm applied to the normal equations (2.2) can
either lead to CGLS, or LSQR, if implemented via Golub - Kahan bidiag-
onalization [21]. Although these methods are mathematically equivalent
they do exhibit different properties when implemented in the finite arith-
metics [12].
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CGLS

The CGLS is a Krylov subspace method [4, Section 7.4.1] with the iter-
ated solution xk minimizing the error functional

F = (x̄− xk)TATA (x̄− xk),

over the affine subspace x0 + Kk(ATA, AT (b − Ax0)), for a given start-
ing vector x0 and x̄ = A† b being the least squares solution (1.3). The
algorithm is initialized with x0, r0 = b − Ax0, p0 = AT r0 and executed
for k = 1, 2, . . .

αk = ‖AT rk−1‖2 / ‖Apk−1‖2,
xk = xk−1 + αk pk−1,

rk = rk−1 − αk Apk−1,
βk = ‖AT rk‖2 / ‖AT rk−1‖2,
pk = AT rk + βk pk−1.

Here the vector rk denotes k-th residual vector rk = b − Axk, and pk is
an auxiliary vector. For more details and convergence properties see [4],
[6], [16].

LSQR

The LSQR algorithm [22] is based on the Golub - Kahan bidiagonalization
[21] and can be implemented as follows. For a given initial vector u1 =
b/β1, where β1 = ‖b‖ 6= 0, and v0 = 0 the loop computes for i = 1, 2, . . .

αi vi = ATui − βi vi−1, ‖vi‖, = 1,
βi+1 ui+1 = Avi − αi ui, ‖ui+1‖, = 1,

(2.8)

until αi = 0 or βi+1 = 0, or until i = nm. The recurrence (2.8) may then
be rewritten into the matrix form as

ATUk+1 = Vk L
T
k+ + αk+1 vk+1 e

T
k+1,

A Vk = Uk+1 Lk+,

where Uk+1 = (u1, . . . , uk+1) ∈ Rnm×(k+1), Vk = (v1, . . . , vk) ∈ Rnm×k

are orthonormal matrices and Lk+ ∈ R(k+1)×k stands for a lower bidiag-
onal matrix

Lk+ =


α1

β2 α2

. . . . . .

βk αk
βk+1

 .
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Hence [4] we have span(Uk) = Kk(AAT , b), span(Vk) = Kk(ATA, AT b).
The algorithm then seeks the approximate solution xk ∈ Kk(ATA, AT b),
by taking xk = Vk yk, with yk ∈ Rk minimizing the k-th residual

rk = b− Axk = β1 u1 − AVk yk = Uk+1 (β1 e1 − Lk+ yk).

In other words, the LSQR projects the problem (1.2) onto a lower-
dimensional Krylov subspace [4, pp. 307] resulting in

Lk+ yk ≈ β1 e1,

and in each step it solves the corresponding linear least squares problem

min
yk∈Rk

‖Lk+ yk − β1 e1‖.

More about the LSQR algorithm, its convergence rates and finite-arith-
metics implementation issues can be found in [4], [12], [22], [23].

2.2 Stopping Criteria

In the previous section, we have summarized several ways of approaching
the image deblurring problems by means of regularization. As suggested
above, the success of these methods depends on a good pick of the reg-
ularization parameter, namely λ for Tikhonov regularization or k for
TSVD, and also CGLS and LSQR.

To illustrate the importance of this choice, we present an example of
deblurring via the TSVD for different values of the truncation parameter
k, see Figure 2.3. Notice that for a small value of the regularization
parameter, k = 1000, the solution is free of errors, the data are not
polluted by noise. However, the lack of the useful information leads to
an overregularization and indistinct results. By increasing k to the value
of 30000, we obtain a more desirable solution. Incrementing further, not
only do we add more information, but we also contaminate the solution by
the high frequency elements corresponding to the small singular values.
This situation of underregularization is depicted for k = 40000 and k =
75000. We see that for large values of the regularization parameter, the
solution is completely overtaken by the inverted noise.

Changes of regularization parameters pertinent to other methods
in question bring about similar situations. Large values of λ for the
Tikhonov regularization and small values of k for LSQR and CGLS lead
to the overregularization, while decreasing λ and increasing k end up
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Exact image Blurred image

k = 1000 k = 30000

k = 40000 k = 75000

Figure 2.3 Original and blurred image and the TSVD solutions for different
values of the regularization parameter k.
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in the underregularization of the solution. Thus, it can be seen that a
suitable choice of the regularization parameter is crucial for obtaining
desirable results.

Mathematically speaking, consider the exact solution xexact = A† bexact
and its regularized counterpart xfilt = A] b, where A] stands for a regu-
larized inverse of the matrix A (e.g. A] = A+

k for the TSVD, with Ak
from (2.5)). Then

xexact − xfilt = A† bexact − A] b =

= (A† − A]) bexact − A] bnoise,

and the decision about the value of the regularization parameter lies in
balancing the regularization error ‖(A†−A]) bexact‖ and the perturbation
error ‖A] bnoise‖ in order to minimize the total error [12, pp. 176]. The
change of the regularization parameter influences the trade-off between
these two values: the more regularization is introduced into the problem,
the bigger the regularization error yet smaller the perturbation one, and
vice versa.

Applying the TSVD to the ill-posed problems with a well determined
numerical rank (rank-deficient problems, see Section 1.2.3), one may opt
for choosing the regularization parameter equal to this value. This way,
the unnecessary loss of useful information and consequent increase in the
regularization error is avoided. Also, this choice leads to a cutback of the
perturbation error due to exclusion of the noise elements corresponding
to small singular values from the solution and is independent of the right-
hand side [12, Section 7.1].

However, in the discrete ill-posed case, it is much more difficult to
achieve the balance between the two errors. Depending on the informa-
tion available, we differentiate between two classes of parameter-choice
methods:

• Methods working with the given right-hand side b in (1.2) to extract
the relevant information about the noise in the data, e.g. the L-
curve and the Generalized Cross Validation.

• Methods based on the a priori knowledge of the noise level, i.e. ex-
act value or a good estimate of ‖bnoise‖. The discrepancy prin-
ciple can be considered the most common representative of this
class.

We shall now discuss the three methods in more detail.
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2.2.1 L-curve

The L-curve, as a parameter-choice method for the ill-posed problems,
is a log-log plot of the norm of the regularized solution ‖xfilt‖ versus
the corresponding residual norm ‖b − Axfilt‖. The method, primarily
developed to complement the Tikhonov regularization, has been studied
extensively by Hansen and O’Leary [11], [12], [15] and has found wider
application in other techniques as well.

The L-curve can be either continuous, in case of the continuous regu-
larization parameter such as λ in Tikhonov regularization, or composed
of the discrete set of points for regularization methods with a discrete
regularization parameter k. The basic assumption for the use of the
L-curve is the monotonicity of the residual norm and the norm of the
solution [12]. Often, as in Figure 2.4 (Left) depicting the TSVD L-curve
for the problem in Figure 2.3, the curve takes on the L-shape, which
facilitates the computations. Nevertheless, it is worth noting that this is
not always the case, see Figure 2.4 (Right). Trying to balance the two
norms, the L-curve aims at finding the regularization parameter prevent-
ing the oversmoothing (situation corresponding to the rightmost part of
the L-curve) and undersmoothing (uppermost part of the L-curve) of the
solution. Intuitively, the most suitable parameter should lie at the ”cor-
ner” of the curve. Note that the rightward movement along the curve
coincides with an increase of λ and decrease of k, while moving leftwards
reflects a reverse situation.

Hence, the task to find the suitable regularization parameter is trans-
formed into the problem of finding the point of the maximum curvature
on the curve, [15]. More precisely, given the parametric definition of the
L-curve

(ζ(p), η(p)) = (log ‖b− Axfilt‖, log ‖xfilt‖),

where p = λ for the Tikhonov regularization, or p = k for TSVD, CGLS
or LSQR, we seek a regularization parameter p, for which the curvature

κ(p) =
ζ ′η′′ − ζ ′′η′

((ζ ′)2 + (η′)2)3/2

is maximized. However, note that the computation requires a twice dif-
ferentiable smooth curve. Thus, in the discrete case, Hansen and O’Leary
propose fitting a cubic spline to the points of the L-curve. For further
details on the properties and computational aspects of the L-curve see
[2], [11], [12], [15].
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Figure 2.4 (Left)L-curve for the TSVD of the problem in Figure 2.3 with a
corner at k = 31147. (Right) L-curve for the Tikhonov regularziation of the

problem Shaw(30) from the Regularization Toolbox [13].

2.2.2 Generalized Cross Validation

The Generalized Cross Validation (GCV) represents a parameter-choice
method based on statistical ideas. The GCV suggests that a suitable
regularization parameter should lead to a solution capable of correctly
predicting data values that have been omitted from the right-hand side b
[12, Section 7.4]. To do this, one seeks to minimize the GCV functional

G(p) =
‖b− Axfilt‖2

(trace(Inm − AA]))2

where p = λ for the Tikhonov regularization, or p = 1/k for TSVD,
CGLS or LSQR. Figure 2.5 illustrates the GCV function for the first
two techniques. Provided suitable characteristics of the regularization
method, the general form of G(p) can be further simplified, e.g. for the
TSVD we have [14]

G(k) =
‖b− Axk‖2

(nm− k)2
=

1

(nm− k)2

nm∑
i=k+1

(uTi b)
2.

Despite its wide applicability, one of the drawbacks of this method
are revealed when dealing with the GCV function ”flat” around its min-
imum – specifically, numerical difficulties connected with the minimiza-
tion resulting in under- or oversmoothing of the solution. For deeper
understanding see [7], [12], [28].
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Figure 2.5 GCV function for the problem in Figure 2.3: (Left) GCV function
G(k) with minimum at k = 30169. (Right) GCV function G(λ) with minimum

at λ = 1.1198× 10−6.

2.2.3 Discrepancy principle

Discrepancy principle is the most commonly used ‖bnoise‖-based method
of determining the value of the regularization parameter. Building on the
a priori knowledge of the noise level, the discrepancy principle chooses
such parameter that the residual norm is equal to the known upper bound
δ for ‖bnoise‖, [12, Section 7.2]:

‖b− Axfilt‖ = δ, where ‖bnoise‖ ≤ δ. (2.9)

In discrete situations, the regularization parameter is selected as the
smallest k for which ‖b−Axfilt‖ ≤ δ. Note that the regularized solution
xfilt corresponds to the point of intersection of the L-curve and the ver-
tical line given by (2.9), and xfilt → xexact, as δ → 0 [14]. Generalization
of the concept as well as the statistical properties are further discussed
in [12], [18].
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Chapter 3

Numerical Experiments

In this chapter we shall present numerical experiments testing previously
discussed numerical techniques for digital image processing. The compu-
tations were carried out on an Intel(R) Core(TM)2 Duo laptop with CPU
T6600 2.20 GHz / 3 GB RAM and the unit roundoff was ε = 1.2×10−16.
We have worked in MATLAB R2009b and used subroutines from the
HNO functions package (supplementary material to [14]) and the Regu-
larization Toolbox [13] that we modified to work for the separable blur 1.

Problem 1

The first experiment demonstrates the role of the boundary conditions in
the construction of the blurring operator from the point spread function.
To blur the original image X of the size 260 × 549 pixels in Figure 3.1
(Top), we have created a Gaussian blur point spread function with stan-
dard deviations σx = σy = 6, see Section 1.2.1. The resulting PSF was
then coupled with different types of boundary conditions and applied to
the image.

Figure 3.1 compares the results of the blurring with zero, periodic
and reflexive boundary conditions (top to bottom). As the second image
suggests, the use of the zero boundary conditions leads to the occurrence
of the artificial dark edges. This is caused by the fact that a scene outside
the exact image is treated as black, the border pixels of X are convolved
with zero elements which results in the infiltration of the inside data. On
the other hand, periodic boundary conditions consider a scene outside of

1Situation when blurring of the rows is independent of the blurring of the columns
of the image. Here, the blurring operator A is expressed by A = Ar ⊗ Ac, where
Ar ∈ Rm×m denotes the row blurring and Ac ∈ Rn×n the column blurring operator.
For more details see [14].
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Figure 3.1 Gaussian blur with different boundary conditions imposed on the
exact image. From top to bottom: exact image, blurred images using zero,

periodic and reflexive boundary conditions.
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the exact image periodically filled with the exact image data X. This
implies that the border data at top / left of the exact image shall influence
the blurring of the data at the bottom / right of the image. This can be
seen in the third figure – notice the dark edge at the top of the image
and lighter edge at the bottom. The reflexive boundary conditions avoid
the previous artificial effects by reflecting the data inside X outsides. In
other words, the pixels in the border area of the image are not affected
by any other information, see Figure 3.1 (Bottom).

Hence, we can conclude that each type of the boundary conditions has
its specifications which should be considered in order to obtain desirable
results.

Problem 2

Problem 2 examines the influence of the noise amount in the image data
on the success of the deblurring of an discrete-ill posed problem. The test-
ing blurred image (Figure 3.2 (Left), Gaussian blur with σx = σy = 3) of
the size 196× 295 pixels was corrupted by addition of a random noise of
three different orders. More precisely, we have constructed three testing
images b1, b5 and b10 ∈ Rnm×1, n = 196, m = 295, corresponding to
the noise levels δnoise = 10−1, 10−5 and 10−10 respectively. The experi-
ment uses the TSVD and compares the results for different values of the
regularization parameter k.

Figure 3.2 Testing blurred image (Left) and its exact counterpart (Right).

Figure 3.3 reveals a severe ill-conditioning of the blurring operator
A – the order of magnitude of the condition number κ(A) = σ1/σnm is
10−35, suggesting that even small perturbations of the data will bring
about dramatically large perturbations of the solution. The problem is
ill-posed and the blurring operator does not have a well-defined numerical
rank, since the singular values decay gradually to zero. The truncation
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Figure 3.3 The singular values of the blurring operator and projections |uTi b1|,
|uTi b5| and |uTi b10|. The dashed lines mark the truncation levels of the TSVD:

k = 2604, 8084, 17350, 28350.

levels for the experiments were set to k = 2604, 8084, 17350, 28350,
and are marked by the dashed lines allowing us to estimate the amount
of noise information (corresponding to the projections |uTi bj|, j = 1, 5,
10) that shall leak into the solution. The results of the experiment are
presented in Figure 3.4. Notice that as k grows (from top to bottom),
the solutions change from over- to underregularized. The situation is the
gravest in the case of δnoise = 10−1, where already the choice of k = 17350
leads to suppression of any useful image information in the image (Left).
It can be seen that the solutions corresponding to δnoise = 10−10 are the
most resistant to degradation due to noise. Even for k = 28350 one might
observe only a slight underregularization.

The experiment shows that in image deblurring of the discrete ill-
posed problem, the noise level determines how much information can be
included in the solution before it is taken over by the inverted noise.
Regarding TSVD, higher levels of noise require smaller values of the
regularization parameter, while small noise levels enable choice of larger
k and hence inclusion of larger amount of the useful data into the solution.
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Figure 3.4 TSVD solutions for different noise and truncation levels. From
left to right: δnoise = 10−1, 10−5, 10−10. From top to bottom: k = 2604, 8084,

17350, 28350.
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Problem 3

The third experiment compares the regularization methods described in
Section 2.1 while working on real-life astronomic data. The testing image
of Mars craters of the size 222 × 219 pixels, courtesy of NASA/JPL-
Caltech [24], was blurred with Gaussian blur with σx = σy = 4, to
simulate the image degradation by the atmospheric blur, and further
corrupted by the addition of the random noise with δnoise = 10−1, see
Figure 3.5 (Top left).

Using the L-curve criterion for choosing the regularization parameter,
we have constructed Tikhonov, TSVD, CGLS and LSQR solutions. Fig-
ure 3.5 (Top right, Middle) shows that in this setting, only the Tikhonov
regularization provides a desirable solutions. All three other methods
exhibit undersmoothing, with the LSQR solution being unacceptably
underregularized. The explanation for this lies in the choice of the regu-
larization parameter by the L-curve. Figure 3.6 depicts the L-curves for
the four methods. Note that all curves are distinctively L-shaped with
well-defined corners, and we display the zoomed plots of these corners
only. In case of the TSVD, the use of the L-curve does not lead to the
balance of the perturbation and regularization errors. As for the iterative
methods, the algorithm2 failed to localize the true corner of the L-curve,
which demonstrated itself drastically for the LSQR.

Since the results provided by the regularization methods are greatly
dependent on the parameter-choice method employed, we should avoid
their explicit comparison judging solely on this example. To illustrate
this, we include the TSVD, CGLS and LSQR solutions to the problem
for values of k different from the ones supplied by the L-curve, see Figure
3.5 (Bottom). Notice that these provide better approximations of the
exact image.

2Subroutine l corner from the Regularization Toolbox [13].
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Figure 3.5 Comparison of the solutions obtained by different regularization
methods. From left to right: (Top) Blurred image, original image, Tikhonov
solution for λ = 2.4348 × 10−3, (Middle) TSVD, CGLS and LSQR with
k = 3095, 490, 7979 respectively. Parameters λ and k were given by the L-
curve. (Bottom) The choice of k = 2400, 150, 200 for TSVD, CGLS and LSQR

respectively leads to more desirable results.
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Figure 3.6 Corner parts of the L-curves for Tikhonov regularization, TSVD,
CGLS and LSQR pertinent to the problem in Figure 3.5.
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Problem 4

In this experiment, we demonstrate a medical application of the numeri-
cal techniques in question and compare the results obtained for different
parameter-choice methods applied to the Tikhonov regularization. The
testing retinal image in Figure 3.8 (Top left) was obtained from the exact
image of the size 287× 288 pixels taken from the DRIVE database (Dig-
ital Retinal Images for Vessel Extraction, [27]) that has been modified
by the out-of-focus blur with the radius of 3 pixels, see Section 1.2.1,
and addition of the random noise with δnoise = 10−1. Consequently, the
white mask has been reapplied to the image to discard the irrelevant data
outside of the retinal area.

We have tested all of the three parameter-choice methods presented
in the Section 2.2: L-curve, GCV and the discrepancy principle. The
L-curve (Figure 3.7, Left) determines the value λ = 1.3717× 10−5, GCV
(Right) chooses λ = 0.0052 and the discrepancy principle λ = 0.0125.
Notice that the corner of the curve is not well-defined and the L-curve-
determined parameter is of the smaller order of magnitude compared to
the other two, which brings doubts about the accuracy of this choice.

The reconstructed image (Figure 3.8, Top right) confirms this ex-
pectation by showing that the L-curve-based solution suffers from high
amounts of noise information. Solutions gained via GCV and discrep-
ancy principle can be considered acceptable, with the GCV providing a
slightly smoother appearance.

In this example, the GCV turned out to be the most suitable method
of ascertaining the value of the regularization parameter. Nevertheless,
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Figure 3.7 Parameter-choice methods for the Tikhonov regularization of the
image in Figure 3.8: (Left) L-curve, notice the indistinct corner of the curve.

(Right) GCV function G(λ).
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Figure 3.8 Comparison of the testing image and regularized Tikhonov solu-
tions for different parameter choice methods. From left to right: (Top) Testing
retinal image, solution based on L-curve λ = 1.3717× 10−5, (Bottom) GCV

λ = 5.2241× 10−3 and discrepancy principle λ = 1.25× 10−2.

this does not apply its universal superiority. The feasibility of the meth-
ods depends on the particular input image data and the regularization
techniques employed.

Problem 5

Problem 5 illustrates deblurring of the colour image with within-channel
blurring. To simulate the effects of the defocussed lens of the camera, the
blurred image of the size 260 × 391 pixels used for the experiment was
obtained as a result of out-of-focus blurring with the radius of 3 pixels
and corrupted by random noise with δnoise = 10−2.
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Figure 3.9 Colour image deblurring. (Left) Blurred image, (Right) Tikhonov
GCV-based solution. From top to bottom: colour image, gray-scale images

corresponding to the red, green and blue channels.

39



To restore the image, we have used the Tikhonov regularization, while
the value of the regularization parameter was provided by the GCV.
Figure 3.9 demonstrates that in order to deblur the colour image with
within-channel blurring, one needs to deal with three separate problems
– one for each colour channel (red, green, blue). Resulting image is then
a compound of these three solutions, see Section 1.1.2.

Colour image deblurring is hence time and memory-wise consider-
ably more expensive than the gray-scale one, which should be taken into
account before opting for a specific method.

Problem 6

The last experiment compares the results obtained by the iterative meth-
ods, CGLS and LSQR, used for deblurring of a colour image. The testing
image of the size 197 × 295 pixels was corrupted by the Gaussian blur
with σx = σy = 4, and the addition of random noise with δnoise = 10−1,
see Figure 3.10.

Figure 3.10 Testing blurred image (Left) and its exact counterpart (Right).

To compare the two methods, we have constructed solutions corre-
sponding to 100, 500, 1000 and 2000 iterations. Figure 3.11 shows that
for k = 100, both solutions are equally underregularized. However, the
bigger the value of the regularization parameter, the larger the difference
between amounts of the inverted noise in CGLS (Left) and LSQR (Right)
solutions. We see that the perturbation error in CGLS grows noticeably
faster than in the LSQR solutions. After 2000 iterations, the useful in-
formation in the former solution is substantially suppressed, while the
latter can still be considered quite legible.

Hence, in this case, LSQR has exhibited better regularization proper-
ties than CGLS. Nevertheless, it has been showed that in general, LSQR
does not provide significantly better results than CGLS, [12].
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Figure 3.11 CGLS (Left) and LSQR (Right) solutions for different values of
the regularization parameter. From top to bottom: k = 100, 500, 1000, 2000.
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Conclusion

The aim of this thesis was to provide a concise overview of the numerical
techniques in digital image processing, more specifically to discuss the
process of image deblurring.

Building on the explanation of digital image representation and con-
struction of the blurring operator A, we have outlined the basic structure
of the linear deblurring problem and discussed its properties. The sin-
gular value decomposition of A revealed the ill-posedness of the problem
and clarified the reasons behind the failure of the direct solution meth-
ods, e.g. the Gaussian elimination. We have seen that in order to avoid
the occurance of the noise-dominated solution, the discrete Picard con-
dition needs to be satisfied and the amplification of the high frequency
information must be prevented.

Hence one option is to approach the problem by means of regulariza-
tion. In our discussion, we have summarized basic characteristics of the
selected direct (TSVD, Tikhonov regularization) as well as iterative reg-
ularization methods (CGLS, LSQR) along with the pertinent stopping
criteria – L-curve, GCV and the discrepancy principle.

The numerical experiments were carried out so as to put the theoret-
ical background into practice. Working with the real-life image data, we
have examined the role the boundary conditions and the noise level play
in the image deblurring problems. Also, the colour image deblurring task
was exemplified. Apart from that, we have shown that the feasibility of
a specific deblurring method is difficult to estimate a priori. When us-
ing the stopping criteria for choosing the regularization parameter, one
should keep in mind that the regularization and parameter-choice meth-
ods are interdependent, and the success of the solver depends on the
particular input image data.

Nevertheless, regularization methods represent a powerful numeri-
cal tool for solving the image deblurring ill-posed problems and enjoy a
widespread use in a raft of scientific areas.
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