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1. Introduction. This paper focuses on the total least squares (TLS) formulation
of the linear approximation problem with multiple right-hand sides

AX ≈ B; A ∈ Rm×n; X ∈ Rn×d; B ∈ Rm×d; ATB ≠ 0;ð1:1Þ
or, equivalently,

½BjA�
�
−I d
X

�
≈ 0:ð1:2Þ

We concentrate on the incompatible problem (1.1), i.e., RðBÞ ⊄ RðAÞ. The compatible
case reduces to finding a solution of a system of linear algebraic equations. In TLS, con-
trary to the ordinary least squares, the correction is allowed to compensate for errors in
the system (data) matrix A as well as in the right-hand side (observation) matrix B, and
the matrices E and G are sought to minimize the Frobenius norm in
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min
X;E;G

k½GjE�kF subject to ðAþ EÞX ¼ B þG:ð1:3Þ

Throughout the paper, anymatrix X which solves the corrected system in (1.3) is called
a TLS solution. Similar to the ordinary least squares, we are often interested in TLS
solutions minimal in the 2-norm and/or in the Frobenius norm.

Mathematically equivalent problems have been independently investigated in sev-
eral areas as orthogonal regression and errors-in-variables modeling; see [18], [19]. It is
worth noting that norms other than the Frobenius norm in (1.3) can also be relevant in
practice; see, e.g., [20].

The TLS problem (1.1)–(1.3) has been investigated in its algebraic setting for dec-
ades; see the early works [6], [4, section 6], [14]. In [7] it is shown that even with d ¼ 1
(which gives Ax≈ b, where b is an m-vector) the TLS problem may not have a solution
and, when the solution exists, it may not be unique; see also [5, pp. 324–326]. The clas-
sical book [17] introduces the generic–nongeneric terminology representing the basic
classification of TLS problems. If d ¼ 1, then the generic problems simply represent pro-
blems that have a (possibly nonunique) solution, whereas nongeneric problems do not
have a solution in the sense of (1.3). This is no longer true for multiple right-hand sides,
where d > 1. The monograph [17] analyzes only two particular cases characterized by
the special distribution of singular values of the extended matrix ½BjA�. The so-called
classical TLS algorithm presented in [17], however, for any A, B, computes some output
X . The relationship of this output to the original problem is not always clear.

For d ¼ 1, the TLS problem does not have a solution when the collinearities among
columns ofA are stronger than the collinearities betweenRðAÞ and b; see [9], [10], [11] for
a recent description. An analogous situation may occur for d > 1, but here the difficulty
can be caused for different columns of B by different subsets of columns of A. Therefore,
it is no longer possible to stay with the generic–nongeneric classification of TLS pro-
blems. This is also the reason why the question remained open in [17]. In this paper
we try to fill this gap and investigate existence and uniqueness of the TLS solution with
d > 1 in full generality.

The organization of this paper is as follows. Section 2 recalls some basic results.
Section 3 introduces problems of what we call the 1st class. After recalling known results
for two special distributions of singular values in sections 3.1 and 3.2, we turn to the
general case in section 3.3. The new classification is introduced in section 4. Section 5
introduces problems of the 2nd class. Section 6 links the new classification with the clas-
sical TLS algorithm from [17], and section 7 concludes the paper.

2. Preliminaries. As usual, σjðMÞ denotes the jth largest singular value, RðM Þ
and N ðM Þ denote the range and the null space, kMkF and kMk denote the Frobenius
norm and the 2-norm of the given matrix M , respectively, and M † denotes the Moore–
Penrose pseudoinverse ofM . Further, kvk denotes the 2-norm of the given vector v; I k ∈
Rk×k denotes the k-by-k identity matrix.

In order to simplify the notation we assume, with no loss of generality, m ≥ nþ d
(otherwise, we can simply add zero rows). Consider the SVD of A, r ≡ rankðAÞ,

A ¼ U  0Σ 0ðV  0ÞT ;ð2:1Þ

where ðU  0Þ−1 ¼ ðU  0ÞT , ðV  0Þ−1 ¼ ðV  0ÞT , Σ 0 ¼ diagðσ 0
1; : : : ;σ

 0
r; 0Þ ∈ Rm×n, and

σ 0
1 ≥ · · ·≥ σ 0

r > σ 0
rþ1 ¼ · · ·¼ σ 0

n ≡ 0:ð2:2Þ
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Similarly, consider the SVD of ½BjA�, s≡ rankð½BjA�Þ,

½BjA� ¼ UΣVT;ð2:3Þ

where U−1 ¼ UT , V−1 ¼ VT , Σ ¼ diagðσ1; : : : ;σs; 0Þ ∈ Rm×ðnþdÞ, and

σ1 ≥ · · ·≥ σs > σsþ1 ¼ · · ·¼ σnþd ≡ 0:ð2:4Þ

If s ¼ nþ d (which implies r ¼ n), then Σ 0 and Σ have no zero singular values. Among
the singular values, a key role is played by σnþ1, where n represents the number of col-
umns of A. In order to handle possible higher multiplicity of σnþ1, we introduce the
notation

σp ≡ σn−q > σn−qþ1 ¼ · · ·¼ σn|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

¼ σnþ1 ¼ · · ·¼ σnþe|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e

> σnþeþ1;ð2:5Þ

where q singular values to the left and e− 1 singular values to the right are equal to
σnþ1, and hence q ≥ 0, e ≥ 1. For convenience we denote n− q≡ p. (Clearly
σp ≡ σn−q is not defined if and only if q ¼ n; similarly, σnþeþ1 is not defined if and only
if e ¼ d.)

For an integer Δ (not necessarily nonnegative) it will be useful to consider the
partitioning

where ΣðΔÞ
1 ∈ Rm×ðn−ΔÞ, ΣðΔÞ

2 ∈ Rm×ðdþΔÞ, and V
ðΔÞ
11 ∈ Rd×ðn−ΔÞ, V ðΔÞ

12 ∈ Rd×ðdþΔÞ, V ðΔÞ
21 ∈

Rn×ðn−ΔÞ,V ðΔÞ
22 ∈ Rn×ðdþΔÞ. WhenΔ ¼ 0, the partitioning conforms to the fact that ½BjA�

is created by A appended by the matrix B with d columns, and in this case the upper
index is omitted, Σ1 ≡ Σð0Þ

1 , etc.
The classical analysis of the TLS problem with a single right-hand side (d ¼ 1) pre-

sented in [7] and the theory developed in [17] were based on relationships between the
singular values ofA and ½BjA�. For d ¼ 1, in particular, σ 0

n > σnþ1 represents a sufficient
(but not necessary) condition for the existence and uniqueness of the solution. In order to
extend this condition to the case d > 1, the following generalization of [7, Theorem 4.1] is
useful.

THEOREM 2.1. Let (2.1) be the SVD of A and (2.3) the SVD of ½BjA� with the parti-
tioning given by (2.6), m ≥ nþ d, Δ ≥ 0. If

σ  0
n−Δ > σn−Δþ1;ð2:7Þ

then σn−Δ > σn−Δþ1. Moreover, V ðΔÞ
12 is of full row rank equal to d, and V

ðΔÞ
21 is of full

column rank equal to ðn− ΔÞ.
The first part follows immediately from the interlacing theorem for singular

values [17, Theorem 2.4, p. 32] (see also [13]). For the proof of the second part, see
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[21, Lemma 2.1] or [17, Lemma 3.1, pp. 64–65]. (Please note the different ordering of the
partitioning of V in [21], [17].)

We start our analysis with the following definition.
DEFINITION 2.2 (problems of the 1st class and of the 2nd class). Consider a TLS

problem (1.1)–(1.3),m ≥ nþ d. Let (2.3) be the SVD of ½BjA� with the partitioning given
by (2.6). Take Δ≡ q, where q is the “left multiplicity” of σnþ1 given by (2.5).

• If V ðqÞ
12 is of full row rank d, then we call (1.1)–(1.3) a TLS problem of the

1st class.
• If V ðqÞ

12 is rank deficient (i.e., has linearly dependent rows), then we call (1.1)–
(1.3) a TLS problem of the 2nd class.

The set of all problems of the 1st class will be denoted by F . The set of all problems of the
2nd class will be denoted by S.

3. Problems of the 1st class. For d ¼ 1, the right singular vector subspace cor-
responding to the smallest singular value σnþ1 of ½bjA� contains for a TLS problem of the
1st class a singular vector with a nonzero first component. Consequently, the TLS pro-
blem has a (possibly nonunique) solution. As we will see, for d > 1 an analogous prop-
erty does not hold. The TLS problem of the 1st class with d > 1may not have a solution.
First we recall known results for two special cases of problems of the 1st class.

3.1. Problems of the 1st class with unique TLS solution. Consider a TLS
problem of the 1st class. Assume that σn > σnþ1, i.e., q ¼ 0 (p ¼ n). Setting Δ≡ q ¼
0 in (2.6), V ðqÞ

12 ≡ V 12 is a square (and nonsingular) matrix. Define the correction matrix

½GjE�≡−U ½0jΣ2�VT ¼ −UΣ2½VT
12jVT

22�:ð3:1Þ

Clearly, k½GjE�kF ¼ ðPnþd
j¼nþ1 σ

2
jÞ1 ∕ 2, and the corrected matrix ½B þGjAþ E� repre-

sents, by the Eckart–Young–Mirsky theorem [1], [8], the unique rank n approximation
of ½BjA� with minimal ½GjE� in the Frobenius norm.

The columns of the matrix ½VT
12jVT

22�T represent a basis for the null space of the
corrected matrix ½B þGjAþ E�≡ UΣ1½VT

11jVT
21�. Since V 12 is square and nonsingular,

½B þGjAþ E�
�

−I d
−V 22V

−1
12

�
¼ 0;

which gives the uniquely determined TLS solution

XTLS ≡ X ð0Þ ≡−V 22V
−1
12 :ð3:2Þ

We summarize these observations in the following theorem; see [17, Theorem 3.1,
pp. 52–53].

THEOREM 3.1. Consider a TLS problem of the 1st class. If

σn > σnþ1;ð3:3Þ

then with the partitioning of the SVD of ½BjA� given by (2.6), Δ≡ q ¼ 0, V 12 ∈ Rd×d is
square and nonsingular, and (3.2) represents the unique TLS solution of the problem
(1.1)–(1.3) with the corresponding correction ½GjE� given by (3.1).

Theorem 2.1 gives the following corollary.
COROLLARY 3.2. Let (2.1) be the SVD of A and (2.3) the SVD of ½BjA� with the par-

titioning given by (2.6), m ≥ nþ d, Δ≡ 0. If
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σ 0
n > σnþ1;ð3:4Þ

then (1.1)–(1.3) is a problem of the 1st class, σn > σnþ1, and (3.2) represents the unique
TLS solution of the problem (1.1)–(1.3) with the corresponding correction matrix ½GjE�
given by (3.1).

We see that (3.4) represents a sufficient condition for the existence and uniqueness
of the TLS solution of the problem (1.1)–(1.3). This condition is, however, intricate. It
may look like the key to the analysis of the TLS problem, in particular, when one con-
siders the following corollary of the interlacing theorem for singular values and
Theorem 2.1; see [17, Corollary 3.4, p. 65].

COROLLARY 3.3. Let (2.1) be the SVD of A and (2.3) the SVD of ½BjA� with the
partitioning given by (2.6), m ≥ nþ d, Δ≡ q ≥ 0. Then the following conditions are
equivalent:

(i) σ  0
n−q > σn−qþ1 ¼ · · ·¼ σnþd,

(ii) σn−q > σn−qþ1 ¼ · · ·¼ σnþd and V
ðqÞ
12 is of (full row) rank d.

In the following discussion we restrict ourselves to the single right-hand side case.
The condition (i) implies that the TLS problem is of the 1st class. If d ¼ 1 and q ¼ 0,
then (i) reduces to (3.4) and the statement of Corollary 3.3 says that σ  0

n > σnþ1 if and
only if σn > σnþ1 and ½1; 0; : : : ; 0�Tvnþ1 ≠ 0. In order to show the difficulty and motivate
the classification in what follows, we now consider all remaining possibilities for the case
d ¼ 1. It should be, however, understood that they go beyond the problems of the 1st
class and the unique TLS solution. If σ  0

n ¼ σnþ1, then it may happen that either σn >
σnþ1 and ½1; 0; : : : ; 0�Tvnþ1 ¼ 0, which means that the TLS problem is not of the 1st
class and it does not have a solution, or σn ¼ σnþ1. In the latter case, depending on
the relationship between σ 0

n−q and σn−qþ1 ¼ · · ·¼ σnþ1 for some q > 0 (see Corol-
lary 3.3), the TLS problem may have a nonunique solution if the TLS problem is of
the 1st class (see the next section), or the solution may not exist. We see that an attempt
to base the analysis on the relationship between σ 0

n and σnþ1 becomes very involved.
The situation becomes more transparent with the use of the core problem concept

from [11]. For any linear approximation problem Ax≈ b (we still consider d ¼ 1), there
are orthogonal matrices P, R such that

PT ½bjA�
�
1 0

0 R

�
¼
�
b1 A11 0

0 0 A22

�
;ð3:5Þ

where the following hold:
(i) A11 is of minimal dimensions and A22 is of maximal dimensions (A22 may also

have zero number of rows and/or columns) over all orthogonal transforma-
tions of ½bjA� yielding the structure (3.5) of zero and nonzero blocks. Suppose
b ∕⊥ RðAÞ has nonzero projections on exactly l left singular vector subspaces
of A corresponding to distinct (nonzero) singular values. Then among all
decompositions of the form (3.5) the minimally dimensioned A11 is l× l
if Ax≈ b is compatible and ðlþ 1Þ× l if Ax≈ b is incompatible (see [11,
Theorem 2.2]).

(ii) All singular values of A11 are simple and nonzero; all singular values of
½b1jA11� are simple and, since b ∈= RðAÞ, nonzero (recall that we consider only
the incompatible problems).

(iii) The first components of all right singular vectors of ½b1jA11� are nonzero.
(iv) σminðA11Þ > σminð½b1jA11�Þ. Moreover, singular values of A11 strictly interlace

singular values of ½b1jA11�.
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(See [11, section 3].) The minimally dimensioned subproblem A11x1 ≈ b1 is then called
the core problem within Ax≈ b. The SVD of the block structured matrix on the right-
hand side in (3.5) can be obtained as a direct sum of the SVD decompositions of the
blocks ½b1jA11� and A22, just by extending the singular vectors corresponding to the first
block by zeros on the bottom and by extending the singular vectors corresponding to the
second block by zeros on the top. Consequently, considering the special structure of the
orthogonal transformation diagð1; RÞ in (3.5), which does not change the first compo-
nents of the right singular vectors, all right singular vectors of ½bjA� with nonzero first
components correspond to the block ½b1jA11�, and all right singular vectors of ½bjA� with
zero first component correspond to A22. Moreover,

σ 0
n ≡ σminðAÞ ¼ minfσminðA11Þ;σminðA22Þg;

σnþ1 ≡ σminð½bjA�Þ ¼ minfσminð½b1jA11�Þ;σminðA22Þg:

We will review all possible situations.
Case 1. σ 0

n > σnþ1. This happens if and only if σminðA22Þ > σminð½b1jA11�Þ ¼ σnþ1,
which is equivalent to the existence of the unique TLS solution.

Case 2. σminðA22Þ≡ σ  0
n ¼ σnþ1. Here we have to distinguish two cases:

Case 2a. σminðAÞ ¼ σminð½bjA�Þ ¼ σminð½b1jA11�Þ. This guarantees the existence
of the (minimum norm) TLS solution. All singular values of A equal to
σminðAÞ are the singular values of the block A22. Consequently, the multi-
plicity of σminð½bjA�Þ is larger by one than the multiplicity of σminðAÞ.

Case 2b. σminðAÞ ¼ σminð½bjA�Þ < σminð½b1jA11�Þ. Then the multiplicities of
σminðAÞ and σminð½bjA�Þ are equal, all right singular vectors of ½bjA� corre-
sponding to σminð½bjA�Þ have zero first components, and the TLS solution
does not exist.

Summarizing, the TLS solution exists if and only if either σminðAÞ > σminð½bjA�Þ, or
σminðAÞ ¼ σminð½bjA�Þ with different multiplicities for σminðAÞ and σminð½bjA�Þ. In terms
of the singular values of subblocks in the core reduction (3.5),

σminðA22Þ > σminð½b1jA11�Þ ⇔ TLS solution exists and is unique;

σminðA22Þ ¼ σminð½b1jA11�Þ ⇔ TLS solution exists and is not unique;

σminðA22Þ < σminð½b1jA11�Þ ⇔ TLS solution does not exist:

If the TLS solution exists, then the minimum norm TLS solution can always be com-
puted, and it is automatically given by the core problem formulation. If the TLS solution
does not exist, then the core problem formulation gives the solution equivalent to the
minimum norm nongeneric solution constructed in [17].

We will see that in the multiple right-hand sides case the situation is much more
complicated.

3.2. Problems of the 1st class with nonunique TLS solutions—a special
case. Consider a TLS problem of the 1st class. Assume that e≡ d in (2.5); i.e., let
all the singular values starting from σn−qþ1 ≡ σpþ1 be equal:

σ1 ≥ · · ·≥ σp > σpþ1 ¼ · · ·¼ σnþ1 ¼ · · ·¼ σnþd ≥ 0:ð3:6Þ
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The case q ¼ 0 (p ¼ n) reduces to the problem with unique TLS solution discussed in
section 3.1. If q ¼ n (p ¼ 0), i.e., σ1 ¼ · · ·¼ σnþd, then the columns of ½BjA� are mutually
orthogonal and ½BjA�T ½BjA� ¼ σ2

1I nþd. Then it seems meaningless to approximate B by
the columns of A, and we will get (consistently with [17]) the trivial solution XTLS ≡ 0
(this case does not satisfy the nontriviality assumption ATB ≠ 0 in (1.1)). Therefore, in
this section the interesting case is represented by n > q > 0 (0 < p < n).

We first construct the solution minimal in norm. Since V ðqÞ
12 ∈ Rd×ðqþdÞ is of full row

rank, there exists an orthogonal matrix Q ∈ RðqþdÞ×ðqþdÞ such that

"
V

ðqÞ
12

V
ðqÞ
22

#
Q ≡ ½vpþ1; : : : ; vnþd�Q ¼

�
0 Γ
Y Z

�
;ð3:7Þ

where Γ ∈ Rd×d is square and nonsingular. Such an orthogonal matrix Q can be
obtained, e.g., using the LQ decomposition of V

ðqÞ
12 . Consider the partitioning

Q ¼ ½Q1jQ2�, where Q2 ∈ RðqþdÞ×d has d columns. Then the columns of Q2 form an
orthonormal basis of the subspace spanned by the columns of V ðqÞT

12 , Q1 ∈ RðqþdÞ×q is
an orthonormal basis of its orthogonal complement, and

�
Γ
Z

�
¼
�
V

ðqÞ
12

V
ðqÞ
22

�
Q2; V

ðqÞ
12 ¼ ΓQT

2 :ð3:8Þ

Define the correction matrix

½GjE�≡−½BjA�
�
Γ
Z

��
Γ
Z

�
T

¼ −UΣVT

2
4V ðqÞ

12

V
ðqÞ
22

3
5Q2Q

T
2

"
V

ðqÞ
12

V
ðqÞ
22

#
T

¼ −σnþ1½upþ1; : : : ; unþd�Q2Q
T
2 ½vpþ1; : : : ; vnþd�T ;ð3:9Þ

where uj and vj represent left and right singular vectors of the matrix ½BjA�, respec-
tively. If σpþ1 ¼ · · ·¼ σnþd ¼ 0, then the correction matrix is a zero matrix
(σnþ1 ¼ 0), and the problem is compatible; thus we consider σpþ1 ¼ · · ·¼ σnþd > 0.

Note that with the choice of any other matrix Q  0 ¼ ½Q  0
1jQ  0

2� giving a decomposition
of the form (3.7), Q  0

2 represents an orthonormal basis of the subspace spanned by the
columns of V

ðqÞT
12 , and therefore Q  0

2 ¼ Q2Ψ for some orthogonal matrix Ψ ∈ Rd×d.
Consequently, (3.9) is uniquely determined independently of the choice of Q in (3.7).

Clearly, k½GjE�kF ¼ σnþ1kQ2Q
T
2 kF ¼ σnþ1

ffiffiffi
d

p
, and the corrected matrix

½B þGjAþ E�≡ ½BjA�
�
I nþd −

�
Γ
Z

��
Γ
Z

�
T
�

represents the rank n approximation of ½BjA� such that the Frobenius norm of the
correction matrix ½GjE� is minimal, by the Eckart–Young–Mirsky theorem.

The columns of the matrix ½ΓT jZT �T represent a basis for the null space of the
corrected matrix ½B þGjAþ E�. Since Γ is square and nonsingular,
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½B þGjAþ E�
�

−I d
−ZΓ−1

�
¼ 0;

which gives the TLS solution

XTLS ≡−ZΓ−1 ¼ −½Y jZ �QTQ

�
0

Γ−1

�
¼−V

ðqÞ
22 V

ðqÞ
12 ≡ X ðqÞ:ð3:10Þ

This can be expressed as

XTLS ¼ ðATA− σ2
nþ1I nÞ†ATB;

see [17, Theorem 3.10, pp. 62–64]. The solution (3.10) and the correction (3.9) do not
depend on the choice of the matrix Q in (3.7). We summarize these observations in the
following theorem (see [17, Theorem 3.9, pp. 60–62]).

THEOREM 3.4. Consider a TLS problem of the 1st class. Let (2.3) be the SVD of ½BjA�
with the partitioning given by (2.6), Δ≡ q < n, p≡ n− q. If

σp > σpþ1 ¼ · · ·¼ σnþd;ð3:11Þ

then (3.10) represents a TLS solution XTLS of the problem (1.1)–(1.3). This is the unique
solution of the minimal Frobenius norm and 2-norm, with the corresponding unique
correction matrix ½GjE� given by (3.9).

Using Corollary 3.3 we get

σ 0
p > σpþ1 ¼ · · ·¼ σnþd;ð3:12Þ

which represents a sufficient condition for the existence of the TLS solution of the TLS
problem (1.1)–(1.3) minimal in the Frobenius norm and the 2-norm.

The correction matrix minimal in the Frobenius norm can be in this special case
constructed from any d-vectors selected among qþ d columns vpþ1; : : : ; vnþd (or their
orthogonal linear transformation) of the matrix V such that their top d-subvectors cre-
ate a d-by-d square nonsingular matrix. The equality of the last qþ d singular values
ensures that the Frobenius norm of the corresponding correction matrix is still equal to
σnþ1

ffiffiffi
d

p
. It can be shown that, for any such choice, a norm of the corresponding solution

~X is larger than or equal to the norm ofX ðqÞ given by (3.10), and any such ~X represents a
TLS solution. Consequently, the special TLS problem satisfying (3.6) has infinitely
many solutions.

3.3. Problems of the 1st class—the general case. Here we consider a TLS
problem of the 1st class with a general distribution of singular values. We will discuss
only the remaining cases not covered in the previous two sections, i.e., n ≥ q > 0
(0 ≤ p < n; recall that p ¼ n− q) and e < d, giving

σ1 ≥ · · ·≥ σp > σpþ1 ¼ · · ·¼ σnþ1 ¼ · · ·¼ σnþe > σnþeþ1 ≥ · · ·≥ σnþd ≥ 0

(note that σp does not exist for q ¼ n (p ¼ 0)). We will see that in this general case the
problem (1.1)–(1.3) may not have a solution.

We try to construct a TLS solution with the same approach used in section 3.2, and
we will show that it may fail. Since, with the partitioning (2.6), Δ≡ q, the matrix V ðqÞ

12 ∈
Rd×ðqþdÞ is of full row rank, there exists an orthogonal matrix Q ∈ RðqþdÞ×ðqþdÞ such that
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"
V

ðqÞ
12

V
ðqÞ
22

#
Q ≡ ½vpþ1; : : : ; vnþd�Q ¼

�
0 Γ
Y Z

�
;ð3:13Þ

where Γ ∈ Rd×d is square and nonsingular. With the partitioning Q ¼ ½Q1jQ2�, where
Q1 ∈ RðqþdÞ×q, Q2 ∈ RðqþdÞ×d, the columns of Q2 form an orthonormal basis of the
subspace spanned by the columns of V ðqÞT

12 , and

�
Γ
Z

�
¼
"
V

ðqÞ
12

V
ðqÞ
22

#
Q2; V

ðqÞ
12 ¼ ΓQT

2 :ð3:14Þ

Following [17], it is tempting to define the correction matrix

½GjE�≡−½BjA�
�
Γ
Z

��
Γ
Z

�
T

¼ −UΣVT

�
V

ðqÞ
12

V
ðqÞ
22

�
Q2Q

T
2

�
V

ðqÞ
12

V
ðqÞ
22

�T
¼ −½upþ1; : : : ; unþd�diagðσpþ1; : : : ;σnþdÞQ2Q

T
2 ½vpþ1; : : : ; vnþd�T ;ð3:15Þ

which differs from (3.9) because the diagonal factor is no longer a scalar multiple of the
identity matrix. Analogously to the previous section, the matrix (3.15) is uniquely de-
termined independently of the choice of Q in (3.13).

The columns of the matrix ½ΓT jZT �T are in the null space of the corrected matrix

½B þGjAþ E�≡ ½BjA�
�
I nþd −

�
Γ
Z

��
Γ
Z

�
T
�
:ð3:16Þ

In general the columns of ½ΓT jZT �T do not represent a basis for the null space of the
corrected matrix. If A is not of full column rank, the extended matrix ½BjA� has a zero
singular value with the corresponding right singular vector having the first d entries
equal to zero. Such a right singular vector is in the null space of the corrected matrix,
but it cannot be obtained as a linear combination of the columns of ½ΓT jZT �T . Since Γ is
square and nonsingular,

½B þGjAþ E�
�

−I d
−ZΓ−1

�
¼ 0;

and we can construct

X ðqÞ ≡−ZΓ−1 ¼ −V
ðqÞ
22 V

ðqÞ†
12 :ð3:17Þ

The matrices (3.17) and (3.15) do not depend on the choice of Q in (3.13). The matrix
X ðqÞ given by (3.17) is a natural generalization of X ðqÞ given by (3.10). The classical TLS
algorithm [15], [16] (see also [17]) applied to a TLS problem of the 1st class returns as
output the matrix X ðqÞ given by (3.17) with the matrices G, E given by (3.15). We will
show, however, that X ðqÞ is not necessarily a TLS solution.

We first focus on the question whether there exists another correction ~E, ~G corre-
sponding to the last qþ d columns of V that makes the corrected system compatible.
Such a correction can be constructed analogously to (3.13) by considering an orthogonal
matrix ~Q ¼ ½ ~Q1j ~Q2� such that

756 HNĚTYNKOVÁ, PLEŠINGER, SIMA, STRAKOŠ, VAN HUFFEL

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



"
V

ðqÞ
12

V
ðqÞ
22

#
~Q ¼ ½vpþ1; : : : ; vnþd� ~Q ¼

�
Ω ~Γ
~Y ~Z

�
;ð3:18Þ

where ~Γ ∈ Rd×d is nonsingular and Ω is a matrix not necessarily equal to zero. Then
define the correction matrix

½ ~Gj ~E�≡−½BjA�
"
~Γ
~Z

#"
~Γ
~Z

#
T

:ð3:19Þ

The corrected system ðAþ ~EÞX ¼ B þ ~G is compatible and the matrix

~X ≡− ~Z ~Γ−1 ¼ −V
ðqÞ
22 ðV ðqÞ

12
~Q2

~QT
2 Þ†ð3:20Þ

solves this corrected system. The columns of ½ ~ΓT j ~ZT �T have to be in the null space of the
corrected matrix ½B þ ~GjAþ ~E�. As above, they do not necessarily represent a basis of
this null space.

Now we show that X ðqÞ does not necessarily represent a TLS solution; i.e., the Fro-
benius norm of the correction matrix (3.15) need not be minimal. This can be illustrated

by a simple example. Let q ¼ n and e < d. Then in (3.13) we set Q ¼ ½V ðqÞT
22 jV ðqÞT

12 �.
(Notice that V ðΔÞ

11 and V
ðΔÞ
21 in the partitioning (2.6) vanish for Δ≡ q ¼ n.) Therefore,

�
V

ðqÞ
12

V
ðqÞ
22

�
½V ðqÞT

22 jV ðqÞT
12 � ¼

�
0 I d

I n 0

�
; i:e:; Γ ¼ I d; Z ¼ 0;

which gives from (3.13) ½GjE� ¼ −½Bj0�, and, analogously, X ðqÞ ¼ 0; see (3.17). If we
solve the same problem in the ordinary least squares sense, then the corresponding cor-
rection matrix is ½ḠjĒ�≡ ½ðAA† − I ÞBj0�, having in general smaller Frobenius norm
than ½GjE� ¼ −½Bj0�, given by (3.15). Therefore, the constructed matrix X ðqÞ given
by (3.17) does not, in general, represent a TLS solution.

Summarizing, the classical TLS algorithm of Van Huffel computes for TLS pro-
blems of the 1st class the output (3.2), (3.10), or (3.17), which are formally analogous,
but with different relationship to the TLS solution. While (3.2) and (in the particular
case of a very special distribution of the singular values) (3.10) represent TLS solutions
(having minimal Frobenius and 2-norm), the interpretation of (3.17) remains unclear.
The partitioning of the setF of TLS problems of the 1st class according to the conditions
valid in (3.2), (3.10), and (3.17) is unsatisfactory. In particular, apart from the simple
case (3.2) and the very special case (3.10), we do not know whether a TLS solution
exists.1 We will therefore develop a different partitioning of the set F in section 4. First
we briefly discuss some properties of matrices X ðqÞ and ~X .

3.4. Note on the norms of matrices X�q� and ~X. It is obvious that X ðqÞ given by
(3.17) is a special case of ~X given by (3.20). Lemma 3.5 gives simple formulas for the
Frobenius norm and 2-norm of ~X . Lemma 3.6 shows that X ðqÞ has the minimal norms
among all ~X of the form (3.20). The proofs are fully analogous to the proofs of [17,
Theorems 3.6 and 3.9].

1The problems in the set F are called generic in [17]. Since a problem in this set may not have a TLS
solution, we will no longer use the generic–nongeneric terminology.
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LEMMA 3.5. Let ½ ~ΓT j ~ZT �T ∈ RðnþdÞ×d have orthonormal columns, and assume
~Γ ∈ Rd×d is nonsingular. Then the matrix ~X ¼ − ~Z ~Γ−1 has the norms

k ~Xk2F ¼ k ~Γ−1k2F − d and k ~Xk2 ¼ 1− σ2
minð ~ΓÞ

σ2
minð ~ΓÞ

;ð3:21Þ

where σminð ~ΓÞ is the minimal singular value of ~Γ.
LEMMA 3.6. Consider X ðqÞ ¼ −ZΓ−1 ¼ −V

ðqÞ
22 V

ðqÞ†
12 given by (3.13)–(3.17) and ~X ¼

− ~Z ~Γ−1 given by (3.18)–(3.20). Then

k ~XkF ≥ kX ðqÞkF ; and k ~Xk ≥ kX ðqÞk:ð3:22Þ

Moreover, equality holds for the Frobenius norms if and only if ~X ¼ X ðqÞ.
These lemmas can be easily seen as follows. A matrix ~X of the form (3.20) is going to

be minimal in the Frobenius or the 2-norm when k ~Γ−1kF is minimized or σminð ~ΓÞ≡ σdð ~ΓÞ
is maximized, respectively. The minimization/maximization are with respect to the
orthogonal matrix ~Q which is considered a free variable, with the constraint that ~Γ
has to be nonsingular. The interlacing theorem for singular values applied to the
matrices ½Ωj ~Γ� ¼ V

ðqÞ
12

~Q and ~Γ gives

σjðΓÞ ¼ σjðV ðqÞ
12 Þ ¼ σjð½Ωj ~Γ�Þ ≥ σjð ~ΓÞ; j ¼ 1; : : : ; d;

with all the inequalities becoming equalities if and only if Ω ¼ 0. The minimum for the
2-norm is reached when the smallest singular values are equal, i.e., σdðΓÞ ¼ σdð ~ΓÞ. Note
that there can be more than one matrix of the form (3.20) reaching the minimum of the
2-norm.

If the corrected matrix (Aþ ~E) has linearly dependent columns, then the corrected
system with the correction ½ ~Gj ~E� of the form (3.19) can have more than one solution.
The following lemma shows that under some additional assumptions on the structure of
~Q, the matrix (Aþ ~E) is of full column rank, and therefore the matrix ~X of the form
(3.20) is the unique solution of the corrected system. (Note that the correction (3.15) is a
special case of the correction (3.19).)

LEMMA 3.7. Consider a TLS problem of the 1st class. Let ½ ~Gj ~E� be the correction
matrix given by (3.19), and let ~X be the matrix given by (3.20). If ~Q in (3.18) has
the block diagonal form ~Q ¼ diagðQ  0; I d−eÞ, whereQ  0 ∈ RðqþeÞ×ðqþeÞ is an orthogonal ma-
trix, then ðAþ ~EÞ is of full column rank, and ~X represents the unique solution of the
corrected system ðAþ ~EÞ ~X ¼ B þ ~G.

Proof. Since ~Q ¼ diagðQ  0; I d−eÞ has the block diagonal structure,

½BjA� ¼ UΣVT ¼

0
B@U

2
64 I p 0 0

0 ~Q 0

0 0 Im−n−d

3
75
1
CAΣ
�
V

�
I p 0

0 ~Q

��T

≡ ŪΣV̄ T ;

i.e., ŪΣV̄ T represents the SVD of ½BjA� with

Ū ¼ ½ū1; : : : ; ūm�; V̄ ¼ ½v̄1; : : : ; v̄nþd� ¼
"
V

ðqÞ
11 Ω ~Γ

V
ðqÞ
21

~Y ~Z

#
:

Using this SVD, the corrected matrix can be written as

758 HNĚTYNKOVÁ, PLEŠINGER, SIMA, STRAKOŠ, VAN HUFFEL

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



½B þ ~GjAþ ~E� ¼ ½ū1; : : : ; ūn� diagðσ1; : : : ;σnÞ
"
V

ðqÞ
11 Ω

V
ðqÞ
21

~Y

#
T

:

If σn ¼ 0, then ½ ~Gj ~E� ¼ 0 and the original system is compatible, i.e., RðBÞ ⊆ RðAÞ.
Therefore, assume σn > 0. From the CS decomposition of V̄ it follows that since ~Γ
is square nonsingular, the matrix ½V ðqÞ

21 j ~Y � is square nonsingular. Since ½ū1; : : : ; ūn� is
of full column rank, the matrix

ðAþ ~EÞ ¼ ½ū1; : : : ; ūn�diagðσ1; : : : ;σnÞ½V ðqÞ
21 j ~Y �T

is of full column rank. The matrix ~X is then the unique solution of the corrected system
ðAþ ~EÞ ~X ¼ B þ ~G. ▯

We will see in the next section that the form ~Q ¼ diagðQ  0; I d−eÞ appears in a
natural way.

4. Partitioning of the set of problems of the 1st class. We will base our par-
titioning and the subsequent classification of TLS problems with multiple right-hand
sides on the following theorem.

THEOREM 4.1. Consider a TLS problem of the 1st class. Let (2.3) be the SVD of ½BjA�
with the partitioning given by (2.6), Δ≡ q ≤ n, where q is the “left multiplicity” of σnþ1

given by (2.5), p≡ n− q. Consider an orthogonal matrix ~Q such that"
V

ðqÞ
12

V
ðqÞ
22

#
~Q ¼

�
Ω ~Γ
~Y ~Z

�
; ~Q ¼ ½ ~Q1 j ~Q2�;ð4:1Þ

where ~Q1 ∈ RðqþdÞ×q, ~Q2 ∈ RðqþdÞ×d, and define

½ ~Gj ~E�≡−½BjA�
�
~Γ
~Z

��
~Γ
~Z

�T
¼ −½upþ1; : : : ; unþd� diagðσpþ1; : : : ;σnþdÞ ~Q2

~QT
2 ½vpþ1; : : : ; vnþd�T :ð4:2Þ

Then the following two assertions are equivalent:
(i) There exists an orthonormal matrix Ψ ∈ Rd×d such that Q̂ ≡ ~Q diagðI q;ΨÞ

has the block diagonal structure

Q̂ ¼
�
Q  0 0

0 I d−e

�
∈ RðqþdÞ×ðqþdÞ; Q  0 ∈ RðqþeÞ×ðqþeÞ;ð4:3Þ

and using Q̂ in (4.1)–(4.2) instead of ~Q yields the same ½ ~Gj ~E�.
(ii) The matrix ½ ~Gj ~E� satisfies

k½ ~Gj ~E�kF ¼
0
@ Xnþd

j¼nþ1

σ2
j

1
A1 ∕ 2

:ð4:4Þ

Proof. First we prove the implication ðiÞ ⇒ ðiiÞ. We partition Q̂ ¼ ½Q̂1jQ̂2�, where
Q̂1 ∈ RðqþdÞ×q, Q̂2 ∈ RðqþdÞ×d, and Q  0 ¼ ½Q  0

1jQ  0
2�, where Q  0

1 ∈ RðqþeÞ×q, Q  0
2 ∈ RðqþeÞ×e.

Then
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Q̂2Q̂
T
2 ¼

�
Q  0

2 0

0 I d−e

��
Q  0

2 0

0 I d−e

�T
¼
�
Q  0

2

0

��
Q  0

2

0

�
T

þ
�

0

I d−e

��
0

I d−e

�
T

;

which gives, using (4.2) and (2.5),

k½ ~Gj ~E�k2F ¼ kdiagðσpþ1; : : : ;σnþdÞQ̂2Q̂
T
2 k2F

¼ σ2
nþ1kQ  0

2ðQ  0
2ÞTk2F þ

Xnþd

j¼nþeþ1

σ2
j ¼ σ2

nþ1eþ
Xnþd

j¼nþeþ1

σ2
j;

i.e., (4.4). The implication ðiÞ ⇒ ðiiÞ is proved.
Now we prove the implication ðiiÞ ⇒ ðiÞ. Let ½ ~Gj ~E� be given by (4.1), (4.2) and as-

sume that (4.4) holds. We prove that there exists Q̂ of the form (4.3) giving the same
½ ~Gj ~E�. Define the splitting

~Q ¼ ½ ~Q1j ~Q2� ¼
� ~Q11

~Q12

~Q21
~Q22

�

such that ~Q11 ∈ RðqþeÞ×q, ~Q21 ∈ Rðd−eÞ×q, ~Q12 ∈ RðqþeÞ×d, ~Q22 ∈ Rðd−eÞ×d. The matrix
½ ~Gj ~E� given by (4.2) satisfies

k½ ~Gj ~E�k2F ¼ kdiagðσpþ1; : : : ;σnþdÞ ~Q2k2F
¼ σ2

nþ1k ~Q12k2F þ kD ~Q22k2F ;

where D ≡ diagðσnþeþ1; : : : ;σnþdÞ. Note that k ~Q12k2F ¼ d− k ~Q22k2F , since the matrix
~Q2 consists of d orthonormal columns. Thus,

k½ ~Gj ~E�k2F ¼ σ2
nþ1ðd− k ~Q22k2F Þ þ kD ~Q22k2F ¼ σ2

nþ1d− kðσ2
nþ1I d−e −D2Þ1∕ 2 ~Q22k2F :

Using (4.4) this gives

σ2
nþ1ðd− eÞ−

Xnþd

j¼nþeþ1

σ2
j ¼ kðσ2

nþ1I d−e − D2Þ1 ∕ 2 ~Q22k2F :

Since σnþ1 > σnþeþl for all l ¼ 1; : : : ; d− e, this implies that all rows of ~Q22 have norm
equal to one. Consequently, since ~Q is an orthogonal matrix, ~Q21 ¼ 0, i.e.,

~Q ¼ ½ ~Q1j ~Q2� ¼
� ~Q11

~Q12

0 ~Q22

�
;

and the matrix ~Q22 has orthonormal rows. Consider the SVD ~Q22 ¼ S ½I d−ej0�PT ¼
½Sj0�PT , where S ∈ Rðd−eÞ×ðd−eÞ, P ∈ Rd×d are square orthogonal matrices. Define ortho-
gonal matrices

Ψ≡ P

�
0 ST

I e 0

�
∈ Rd×d and Q̂ ≡ ~Q

�
I q 0

0 Ψ

�
¼
� ~Q11

~Q12Ψ
0 ½0jI d−e�

�
:

Because Q̂ is orthogonal, the last d− e columns of ~Q12Ψ (i.e., corresponding to the block
I d−e) are zero, and
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Q̂ ¼ diagðQ  0; I d−eÞ

is in the form (4.3) with Q  0 ¼ ½ ~Q11j ~Q12ΨI
ðeÞ
qþd� ∈ RðqþeÞ×ðqþeÞ, where I ðeÞqþd represents the

first e columns of I qþd. Because Q̂2Q̂
T
2 ¼ ð ~Q2ΨÞð ~Q2ΨÞT ¼ ~Q2

~QT
2 , the matrix Q̂ yields

the same correction (4.2) as ~Q. ▯
The statement of this theorem says that any correction ½ ~Gj ~E� (reducing rank of

½BjA� to at most n) having the norm given by (4.4) can be obtained as in (4.1)–
(4.2) with ~Q in the block diagonal form (4.3).

Now we describe three disjoint subsets of problems of the 1st class representing the
core of the proposed classification. Define the partitioning of the matrix V

ðqÞ
12 with re-

spect to e, the “right multiplicity” of σnþ1, given by (2.5),

where W ðq;eÞ ∈ Rd×ðqþeÞ, V ð−eÞ
12 ∈ Rd×ðd−eÞ. Note that since rankðV ðqÞ

12 Þ ¼ d, i.e., the pro-

blem is of the 1st class, rankðV ð−eÞ
12 Þ ≤ d− e implies that rankðW ðq;eÞÞ ≥ e. On the other

hand, rankðW ðq;eÞÞ ¼ e implies that rankðV ð−eÞ
12 Þ ¼ d− e.

DEFINITION 4.2 (partitioning of the set of problems of the 1st class). Consider a TLS
problem (1.1)–(1.3), m ≥ nþ d. Let (2.3) be the SVD of ½BjA� with the partitioning
given by (2.6), Δ≡ q, and the partitioning of V ðqÞ

12 given by (4.5), where q and e are
the integers related to the multiplicity of σnþ1, given by (2.5). Let the problem

(1.1)–(1.3) be of the 1st class (i.e., rankðV ðqÞ
12 Þ ¼ d). The set of all problems for which

• rankðW ðq;eÞÞ ¼ e and rankðV ð−eÞ
12 Þ ¼ d− e (V ð−eÞ

12 has full column rank),

• rankðW ðq;eÞÞ > e and rankðV ð−eÞ
12 Þ ¼ d− e (V ð−eÞ

12 has full column rank),

• rankðW ðq;eÞÞ > e and rankðV ð−eÞ
12 Þ < d− e (V ð−eÞ

12 is rank deficient)
will be denoted by F 1, F 2, and F 3, respectively. Clearly, F 1, F 2, and F 3 are mutually
disjoint and F 1 ∪ F 2 ∪ F 3 ¼ F .

4.1. The set F 1—problems of the 1st class having a TLS solution in the
form X�q�. Consider a TLS problem of the 1st class from the set F 1, i.e., rankðW ðq;eÞÞ ¼
e in (4.5) which implies V ð−eÞ

12 is of full column rank, i.e., rankðV ð−eÞ
12 Þ ¼ d− e. First we

give a lemma which allows us to relate the partitioning (4.5) to the construction of a
solution in (3.13)–(3.17).

LEMMA 4.3. Let (2.3) be the SVD of ½BjA� with the partitioning (2.6), m ≥ nþ d,
Δ≡ q ≤ n. Consider the partitioning (4.5) of V ðqÞ

12 . The following two assertions are
equivalent:

(i) The matrix W ðq;eÞ has rank equal to e.
(ii) There exists Q in the block diagonal form (4.3) satisfying (3.13).

Proof. Let W ðq;eÞ ∈ Rd×ðqþeÞ have rank equal to e. Then rankðV ð−eÞ
12 Þ ¼ d− e.

There exists an orthogonal matrix H ∈ RðqþeÞ×ðqþeÞ (e.g., a product of Householder
transformation matrices) such that W ðq;eÞH ¼ ½0jM �, where M ∈ Rd×e is of full column

rank. Putting Q ≡ diagðH; I d−eÞ yields V
ðqÞ
12 Q ¼ ½0jΓ�, where the square matrix

Γ≡ ½M jV ð−eÞ
12 � ∈ Rd×d is nonsingular.
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Conversely, let Q ¼ diagðQ  0; I d−eÞ and satisfy (3.13). Denote Γ ¼ ½Γ1jΓ2�, where
Γ1 ∈ Rd×e, Γ2 ∈ Rd×ðd−eÞ. Obviously ½0jΓ1� ¼ W ðq;eÞQ  0, Γ2 ¼ V

ð−eÞ
12 I d−e ¼ V

ð−eÞ
12 . Since Γ

is nonsingular, rankðΓ1Þ ¼ e.Q  0 is an orthogonal matrix and thus rankðW ðq;eÞÞ ¼ e. ▯
The following theorem formulates results for the set F 1.
THEOREM 4.4. Let (2.3) be the SVD of ½BjA� with the partitioning (2.6), m ≥ nþ d,

Δ≡ q ≤ n (p≡ n− q). Let the TLS problem (1.1)–(1.3) be of the 1st class; i.e., V ðqÞ
12 is of

full row rank equal to d. Let σp > σpþ1 ¼ · · ·¼ σnþ1 ¼ · · ·¼ σnþe, 1 ≤ e ≤ d (if q ¼ n,
then σp is not defined). Consider the partitioning of V ðqÞ

12 given by (4.5). If

rankðW ðq;eÞÞ ¼ eð4:6Þ
(the problem is from the set F 1), then XTLS ≡ X ðqÞ ¼ −V

ðqÞ
22 V

ðqÞ†
12 given by (3.17) repre-

sents the TLS solution having the minimality property (3.22). The corresponding cor-
rection ½GjE� given by (3.15) has the norm (4.4).

The proof follows immediately from Lemmas 4.3, 3.6, and 3.7.
The problems of the 1st class discussed earlier in sections 3.1 and 3.2 belong to the

set F 1. In the first case q≡ 0 and V
ðqÞ
12 ≡V 12 is square nonsingular. Thus, independently

of the value of e (4.5) yieldsW ð0;eÞ with the (full column) rank equal to e and the matrix
Q  0 fromQ ¼ diagðQ  0; I d−eÞ in the assertion (ii) of Lemma 4.3 can always be chosen equal
to the identity matrix I e; i.e., Q ¼ I d. In the second case e≡ d. Thus W ðq;dÞ ≡ V

ðqÞ
12 is of

(full row) rank equal to d. Here the identity block I d−e in the assertion (ii) of Lemma 4.3
disappears; i.e.,Q ¼ Q  0.

4.2. The set F 2—problems of the 1st class having a TLS solution but not
in the form X�q�. Consider a TLS problem of the 1st class from the set F 2, i.e.,
rankðV ð−eÞ

12 Þ ¼ d− e and rankðW ðq;eÞÞ > e in (4.5). Because V ð−eÞ
12 is of full column rank,

there exists ~Q ¼ diagðQ  0; I d−eÞ having the block diagonal form (4.3) such that (4.1)
holds, i.e.,

V
ðqÞ
12

~Q ¼ ½W ðq;eÞQ  0jV ð−eÞ
12 � ¼ ½Ωk ~Γ1jV ð−eÞ

12 �ð4:7Þ
with ~Γ ¼ ½ ~Γ1jV ð−eÞ

12 � nonsingular. Consequently, the correction ½ ~Gj ~E� defined by (4.2) is
minimal in the Frobenius norm (see Theorem 4.1), and the corresponding matrix ~X ≡
− ~Z ~Γ−1 given by (3.20) represents a TLS solution (which is, by Lemma 3.7, the unique
solution of the corrected system with the given fixed correction ½ ~Gj ~E�). Because
rankðW ðq;eÞÞ > e andQ  0 is orthogonal, the productW ðq;eÞQ  0 ¼ ½Ωj ~Γ1�, where rankð ~Γ1Þ ¼
e ( ~Γ is nonsingular), leads always to a nonzero Ω. On the other hand, the construction
(3.15)–(3.17) always leads to Ω ¼ 0. Hence, the matrix X ðqÞ given by (3.17) does not
represent a TLS solution.

The following theorem completes the argument by showing that any problem from
the set F 2 always has a minimum norm TLS solution.

THEOREM 4.5. Let (1.1)–(1.3) be the TLS problem of the 1st class belonging to the set
F 2. Then there exist TLS solutions given by (3.18)–(3.20)minimal in the 2-norm, and in
the Frobenius norm, respectively.

Proof. A TLS solution ~X ¼ − ~Z ~Γ−1 is obtained from the formula"
V

ðqÞ
12

V
ðqÞ
22

#
Q̂ ¼

"
V

ðqÞ
12

V
ðqÞ
22

#�
Q  0

1 Q  0
2 0

0 0 I d−e

�
¼
�
Ω ~Γ
~Y ~Z

�
;

where the block diagonal matrix Q̂ is the orthogonal matrix (4.3) from Theorem 4.1.
The TLS solution is uniquely determined by the orthogonal matrix Q  0≡
½Q  0

1jQ  0
2� ∈ RðqþeÞ×ðqþeÞ.
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In our construction, Q  0 ∈ RðqþeÞ×ðqþeÞ is required to lead to a nonsingular ~Γ. Since
the matrix inversion is a continuous function of entries of a nonsingular matrix, and
matrix multiplication is a continuous function of entries of both factors, the matrix ~X ¼
− ~Z ~Γ−1 is a continuous matrix-valued function ofQ  0. Define two nonnegative functionals
N2ðQ  0Þ∶RðqþeÞ×ðqþeÞ → ½0;þ∞� and NFðQ  0Þ∶RðqþeÞ×ðqþeÞ → ½0;þ∞� on a set of all
(qþ e)-by-(qþ e) orthogonal matrices such that

N2ðQ  0Þ≡
�
k ~XðQ  0Þk2
þ∞

if Q  0 gives ~ΓðQ  0Þ nonsingular;
if Q  0 gives ~ΓðQ  0Þ singular:

The functional NF ðQ  0Þ is defined analogously. Note that both functionals are nonnega-
tive and lower semicontinuous on the compact set of all (qþ e)-by-(qþ e) orthogonal
matrices, and thus both functionals have a minimum on this set. ▯

Theorem 4.5 does not address the uniqueness of the minimum norm solutions, and it
also does not give any practical algorithm for computing them. Further note that the
sets of solutions minimal in 2-norm and minimal in the Frobenius norm can be different
or even disjoint. This fact can be illustrated with the following example. Consider the
problem given by its SVD decomposition

½BjA�≡ U

2
6664
3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

3
7775
0
BBB@1

4

2
6664
−1 −3

ffiffiffi
3

p ffiffiffi
3

p

3 −1
ffiffiffi
3

p
−

ffiffiffi
3

pffiffiffi
3

p ffiffiffi
3

p
1 3ffiffiffi

3
p

−
ffiffiffi
3

p
−3 1

3
7775
1
CCCA

T

;ð4:8Þ

where A ∈ R4×2, B ∈ R4×2 (it is easy to verify that ATB ≠ 0). Here q ¼ 1, e ¼ 1,

W ðq;eÞ ¼ 1

4

�
−3

ffiffiffi
3

p
−1

ffiffiffi
3

p
�
; V

ð−eÞ
12 ¼ 1

4

� ffiffiffi
3

p
−

ffiffiffi
3

p
�

have rank two and one, respectively. This problem is of the 1st class and belongs to the
set F 2. The TLS solution is determined by the orthogonal matrix

Q̂ ¼
�
Q  0

1 Q  0
2 0

0 0 I d−e

�
¼
2
4 cosðϕÞ − sinðϕÞ 0

sinðϕÞ cosðϕÞ 0

0 0 1

3
5;

which depends on only one real variable ϕ. Figure 4.1 shows how the 2-norm and the
Frobenius norm of the TLS solution depend on the value of ϕ. From the behavior of the
norms it is clear that the set of solutions minimal in the 2-norm has no intersection with
the set of solutions minimal in the Frobenius norm. If we use in the previous example
(4.8) the matrix of the right singular vectors

V ¼ 1

2

2
66664

0 1 0
ffiffiffi
3

p

−1 0
ffiffiffi
3

p
0ffiffiffi

3
p

0 1 0

0 −
ffiffiffi
3

p
0 1

3
77775;
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then there exists a solution which is minimal in both the 2-norm and the
Frobenius norm.

4.3. The set F 3—problems of the 1st class which do not have a TLS
solution. Consider a TLS problem of the 1st class from the set F 3, i.e., the case with
rankðV ð−eÞ

12 Þ < d− e. Since V ð−eÞ
12 in (4.5) is rank deficient, ~Q ∈ RðqþdÞ×ðqþdÞ in the block

diagonal form (4.3) leads to (4.7) with ~Γ ¼ ½ ~Γ1jV ð−eÞ
12 � containing linearly dependent col-

umn(s). Thus ~Γ in (4.1) is always singular. Consequently, in this case there does not exist
~Q in the block diagonal form yielding ~Γ nonsingular. Therefore, there is no correction
½ ~Gj ~E� having the norm (4.4) which makes the system (1.1) compatible; see Theorem 4.1.

Now we show that a TLS solution does not exist for the problems from the set F 3.
Using a general matrix ~Q (see (3.18)), we construct a correction (3.19) which makes the
system compatible, and the norm of this correction is arbitrarily close to the lower bound
(4.4). Denote ρ≡ ðd− eÞ− rankðV ð−eÞ

12 Þ the rank defect of V
ð−eÞ
12 . Analogously to

section 4.2, there exists an orthogonal matrix Q  0 ∈ RðqþeÞ×ðqþeÞ such that

V
ðqÞ
12 diagðQ  0; I d−eÞ ¼ ½W ðq;eÞQ  0jV ð−eÞ

12 � ¼ ½Ωk ~Γ1jV ð−eÞ
12 �

with rankð½ ~Γ1jV ð−eÞ
12 �Þ ¼ d− ρ; compare with (4.7). Let J ¼ fj1; : : : ; jρg denote indices

of any ρ columns of V ð−eÞ
12 such that the remaining columns of V ð−eÞ

12 (with indices
f1; : : : ; d− eg \ J ) are linearly independent. Because rankðV ðqÞ

12 Þ ¼ d, the matrix Ω
has ρ linearly independent columns which are not in Rð½ ~Γ1jV ð−eÞ

12 �Þ; let
K ¼ fk1; : : : ; kρg denote their indices. Consider an angle θ, 0 < θ < π. A Givens rota-
tion corresponding to θ applied subsequently on pairs of columns with indices jl and kl,
for l ¼ 1; : : : ;ρ, can be written as an orthogonal transformation

½Ωk ~Γ1jV ð−eÞ
12 �

2
64

C 11 0 S12

0 I e 0

−ST
12 0 C 22

3
75 ¼ ½Ω̂k ~Γ1 jV̂ ð−eÞ

12 �;

where C 11 ∈ Rq×q and C 22 ∈ Rðd−eÞ×ðd−eÞ are diagonal matrices having ρ diagonal en-
tries (on the positions ðkl; klÞ and ðjl; jlÞ, l ¼ 1; : : : ;ρ, respectively) equal to cosðθÞ
(the other diagonal entries are equal to one), and S12 ∈ Rq×ðd−eÞ has entries on positions
ðkl; jlÞ, l ¼ 1; : : : ;ρ, equal to sinðθÞ (the other entries are zero). Since 0 < θ < π, the

FIG. 4.1. (Left plot) The 2-norm and the Frobenius norm of TLS solutions of the problem (4.8) belonging
to the set F 2. Solutions minimal in different norms are distinct. (Right plot) Detail of the solutions minimal in
the 2-norm and in the Frobenius norm.
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matrix ~Γ ¼ ½ ~Γ1jV̂ ð−eÞ
12 � is nonsingular, and thus the corresponding correction makes the

system compatible. The transformation matrix

~Q ¼

2
64Q  0diagðC11; I eÞ Q  0

h
S12

0

i
½−ST

12j0� C 22

3
75

can be, with θ → 0, arbitrarily close to the block diagonal form (4.3), and moreover the
Frobenius norm of the corresponding correction

k½ ~Gj ~E�kF ¼
 Xnþd

j¼nþ1

σ2
j þ sin2ðθÞ

X
j∈J

ðσ2
nþ1 − σ2

nþeþjÞ
!

1 ∕ 2

can be arbitrarily close to the lower bound given by (4.4).
Consequently, there is no minimal correction that makes the system (1.1) compa-

tible. The TLS problem (1.1)–(1.3) with rank deficient V
ð−eÞ
12 does not have a

solution.

4.4. Correction corresponding to the matrix X�q�. In the previous three sec-
tions we have shown that a TLS solution (if it exists) always has the correction matrix
with the Frobenius norm (4.4). We can formulate the following corollary.

COROLLARY 4.6. Consider a TLS problem (1.1)–(1.3) of the 1st class. The construc-
tion (3.13)–(3.17) yields the TLS solution XTLS ≡ X ðqÞ if and only if there exists an
orthogonal matrix Q̂ in the block diagonal form (4.3) such that substituting Q̂ for Q
in (3.13)–(3.15) gives the same correction ½GjE�.

Now we focus on the properties of the correction ½GjE� given by (3.15) in general.
First we prove an auxiliary lemma.

LEMMA 4.7. Let ½GjE� be the correction matrix given by (3.15). Denote
s≡ rankð½BjA�Þ. Then the ranks of the correction and corrected matrix satisfy

minfs; dg ≥ rankð½GjE�Þ ≥ maxf0; s− ng;ð4:9Þ

maxf0; s− dg ≤ rankð½B þGjAþ E�Þ ≤ minfs; ng:ð4:10Þ

Proof. The upper bound in (4.9) follows immediately from (3.15). The lower bound
in (4.9) follows from the fact that the correction matrix makes the system compatible,
i.e., the resulting rank of ½B þGjAþ E� is at most n, which also proves the upper
bound in (4.10). Since the rank of ½GjE� is at most d, the lower bound in (4.10) follows
trivially. ▯

The result of the following theorem can also be found in [22, eq. (5.4)].
THEOREM 4.8. Let ½GjE� be the correction matrix given by (3.15). Then its Frobenius

norm satisfies 0
@ Xpþd

j¼pþ1

σ2
j

1
A1∕ 2

≥ k½GjE�kF ≥

0
@ Xnþd

j¼nþ1

σ2
j

1
A1∕ 2

:ð4:11Þ

Proof. The lower bound in (4.11) is trivial. The matrix ½GjE� has from (4.9) the
rank not greater than minfs; dg, which immediately gives the upper bound. From
the construction (3.15) a rank d matrix of the given form cannot have Frobenius norm
larger than (4.11). ▯
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Since the Frobenius norm of the correction ½GjE� given by (3.15) can be larger than
ðPnþd

j¼nþ1 σ
2
jÞ1∕ 2, the correction need not be minimal, and (3.17) need not represent (as

described above) a TLS solution. Further note that the inequalities in (4.11) become
equalities if and only if

σpþj ¼ σnþj; j ¼ 1; : : : ; d

(recall that n ¼ pþ q). This happens either if q ¼ 0 (the case with the unique solution
discussed in section 3.1), or if σpþ1 ¼ · · ·¼ σnþd (the special case discussed in
section 3.2).

5. Problems of the 2nd class. In this section we briefly describe problems
(1.1)–(1.3) of the 2nd class, i.e., the problems for which V

ðqÞ
12 does not have full row rank;

see Definition 2.2. Here the right singular vector subspace given by the last (qþ d) sin-
gular vectors vpþ1; : : : ; vnþd does not contain sufficient information for constructing a
solution (3.20), and the problems of the 2nd class do not have a TLS solution (the
argumentation is analogous to that in section 4.3).

The classical TLS algorithm, which gives an output also for problems of the 2nd
class, is derived in [17] by a straightforward generalization of the single right-hand side
concept. The right singular vector subspaceRð½V ðqÞT

12 jV ðqÞT
22 �T Þ used for the construction

(3.13)–(3.17) in previous cases is extended with additional right singular vectors until,
for some t, a full row rank block V

ðtÞ
12 ∈ Rd×ðtþdÞ is found in the upper right corner of V

(and V
ðt−1Þ
12 is, at the same time, rank deficient),

Then the matrix X ðtÞ ¼ −V
ðtÞ
22V

ðtÞ†
12 with the corresponding correction can be

constructed analogously to (3.13)–(3.17) with q replaced by t. Obviously, this matrix
might not be uniquely defined when σn−tþ1 is not simple, in particular, when
σn−t ¼ σn−tþ1. In order to handle a possible multiplicity of σn−tþ1, it is convenient
to consider the notation

σn− ~q > σn− ~qþ1 ¼ · · ·¼ σn−t ¼ σn−tþ1 ≥ σn−tþ2;

where ~q ≥ t; put for simplicity n− ~q≡ ~p. (If such σn− ~q ≡ σ ~p does not exist, then put
~q≡ n.) The condition that V ð ~qÞ

12 is of full row rank equal to d is readily satisfied, since
V

ð ~qÞ
12 extends V ðtÞ

12 . Then X ð ~qÞ and ½GjE� can be constructed as in (3.13)–(3.17) with q
replaced by ~q. Thus, the matrix X ð ~qÞ ≡−V

ð ~qÞ
22 V

ð ~qÞ†
12 represents a solution of the compa-

tible corrected system ðAþ EÞX ¼ B þG. The Frobenius and the 2-norm of the matrix
X ð ~qÞ are given by Lemma 3.5. Similarly to the problems of the 1st class, the minimality
property (3.22) ofX ð ~qÞ can be shown. Thus,X ð ~qÞ has minimal Frobenius and 2-norm over
all matrices ~X that can be obtained from the construction analogous to
(3.18)–(3.20) with q replaced by ~q. The substitution of ~q for t ensures the uniqueness
of the construction and leads to the matrix with the smallest norm. On the other hand, it
inevitably increases the norm of the correction, with
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k½GjE�kF >

� Xnþd

j¼nþ1

σ2
j

�1∕ 2

:

The Frobenius norm of ½GjE� is strictly larger than the smallest possible correction
reducing the rank of ½BjA� to n, and the matrix X ð ~qÞ does not represent a TLS
solution.2

6. Summary of the relationship to the classical TLS algorithm. The clas-
sical TLS algorithm gives for any data the output X ðκÞ which is equal (in exact arith-
metic) either to X ðqÞ given by (3.2), or by (3.10), or by (3.17), or to X ð ~qÞ described in
section 5.

ALGORITHM 1 (THE CLASSICAL TLS ALGORITHM).
A fully documented Fortran 77 implementation is given in [15], [16]. The code can be
obtained through Netlib.org, cf. http://www.netlib.org/vanhuffel.

Require: A ∈ Rm×n, B ∈ Rm×d {here the SVD of ½BjA� in the form (2.3)–(2.6)}
1: Δ←0
2: if rankðV ðΔÞ

12 Þ ¼ d and Δ ¼ n, then goto 6

3: if rankðV ðΔÞ
12 Þ ¼ d and σn−Δ > σn−Δþ1, then goto 6

4: Δ←Δþ 1
5: goto 2
6: κ←Δ
7: X ðκÞ←− V

ðκÞ
22 V

ðκÞ†
12

8: return κ, X ðκÞ

The output X ðκÞ is called a generic (or TLS) solution in [17] for any problem of the
1st class, and it is called a nongeneric solution in [17] for any problem of the 2nd class. As
our new partitioning and the included classification reveals,

(i) if the problem is of the 1st class and rankðW ðq;eÞÞ ¼ e (i.e., the problem be-
longs to the set F 1), thenX ðκÞ ≡ XTLS represents a TLS solution (it solves the
TLS problem (1.1)–(1.3)), κ ≡ q;

(ii) if the problem is of the 1st class and rankðW ðq;eÞÞ > e (i.e., the problem be-
longs to the set F 2 ∪ F 3), then X ðκÞ does not represent a TLS solution, which
exists for the problems in the set F 2 but does not exist for the problems in the
set F 3, κ ≡ q;

(iii) if the problem is of the 2nd class, (i.e., the problem belongs to the set S), then
X ðκÞ does not represent a TLS solution (a TLS solution does not exist), κ ≡ ~q.

For d ¼ 1 (single right-hand side case) the output X ðκÞ of Algorithm 1 represents the
TLS solution of the core problem (3.5) transformed to the original coordinate system.
The output X ðκÞ has two further important interpretations.

LEMMA 6.1 (the constrained total least squares (C-TLS)). The matrix X ðκÞ ¼
−V

ðκÞ
22 V

ðκÞ†
12 given by Algorithm 1 represents the unique solution of the constrained mini-

mization problem

min
X;E;G

k½GjE�kF subject to ðAþ EÞX ¼ B þG;ð6:1Þ

2The matrix X ð ~qÞ ¼ −V
ð ~qÞ
22 V

ð ~qÞ†
12 is called a nongeneric solution in [17, Definition 3.3, p. 78].
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and ½GjE�
�
0

w

�
¼ 0 for all

�
0

w

�
∈ R

 �
V

ðκÞ
12

V
ðκÞ
22

�!
ð6:2Þ

with the correction ½GjE� given by (3.15) (with q possibly replaced by ~q).
The additional constraint (6.2) can be equivalently rewritten as

½GjE�
�
0

Y

�
¼ 0;

where Y is defined analogously to (3.13). Since σn−κ > σn−κþ1, the correction matrix in
(6.1)–(6.2) is unique. Consequently, the constrained problem (6.1)–(6.2) has the unique
solution XC�TLS ≡ X ðκÞ. Furthermore, since the matrix in (3.13) (with q possibly re-
placed by ~q) has orthonormal columns, X ðκÞTY ¼ −ðΓ−1ÞTZTY ¼ 0, and the additional
constraint implies that X ðκÞTw ¼ 0 for all w from (6.2); see [17, Eq. 3.101, p. 79], [21],
[22]. Note that the problem (6.1)–(6.2) for κ ≡ ~q is considered a definition of the non-
generic solution in [17, Definition 3.3, p. 78 and Theorem 3.15, pp. 80–82].

LEMMA 6.2 (the truncated total least squares (T-TLS)). The matrix
X ðκÞ ¼ −V

ðκÞ
22 V

ðκÞ†
12 given by Algorithm 1 represents the unique minimum norm TLS

solution of the modified TLS problem

min
X;Ê;Ĝ

k½ĜjÊ�kF subject to ðÂþ ÊÞX ¼ B̂ þ Ĝ;ð6:3Þ

where ½B̂jÂ� ¼
 Xn−κ

j¼1

ujσjv
T
j

!
þ σn−κþ1

 Xnþd

j¼n−κþ1

ujv
T
j

!

with the corresponding correction ½ĜjÊ�, k½ĜjÊ�kF ¼ σn−κþ1

ffiffiffi
d

p
.

The problem (6.3) is clearly a TLS problem of the 1st class (belonging to the set F 1).
Moreover, it is a special case described in section 3.2. This problem is called truncated
total least squares (T-TLS) problem for the given A, B with the solution XT�TLS ≡ X ðκÞ;
see [17, note on p. 82]. It is worth noting that the T-TLS concept allows us to assume
that the original problem AX ≈ B is a perturbation of the modified problem ÂX ≈ B̂.
From the T-TLS point of view, any TLS problem may be interpreted as a perturbed
problem of the 1st class with the special singular values distribution (3.6). Since
XT�TLS ¼ X ðκÞ, Algorithm 1 can be used as a relatively simple and useful regularization
technique; see, e.g., [21], [2], [3] (for d ¼ 1) and also [17, algorithm and comments in
section 3.6.1, pp. 87–90]. The distribution of the smallest singular values of ½BjA� plays
no role in the algorithm output.

The true TLS solution (if it exists) does not have this regularization property. The
TLS solution uses information about the smallest singular values of ½BjA�.

7. Conclusions. We have presented a new classification of TLS problems with
multiple right-hand sides. Each TLS problem falls into one of four distinct sets. The
union of the first three sets F j, j ¼ 1, 2, 3, contains problems of the 1st class. It is
complemented by the set S of problems of the 2nd class, as illustrated by the following
schema.
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It has been shown that the special cases analyzed in [17] belong to the set F 1. We have
proved that any problem from F 1 ∪ F 2 has a TLS solution, whereas problems from
F 3 ∪ S do not have a TLS solution. Moreover, for any problem from F 1 ∪ F 2 there
exist a TLS solution minimal in the 2-norm and a solution minimal in the Frobenius
norm, but for the problems from the set F 2 the minimum norm solutions can be distinct.

The classical TLS algorithm (Algorithm 1) computes a TLS solution only for pro-
blems belonging to the set F 1. We have not provided an efficient algorithm for comput-
ing a TLS solution for the problems fromF 2 (where it exists). It can possibly be obtained
using a nonlinear optimization over a parameterization of the set of corresponding
orthogonal matrices. However, this optimization is hardly practically applicable.

The TLS problems with d ¼ 1 have been clarified through the concept of the core
reduction. An extension of this concept to a TLS problem with d > 1 could help to un-
derstand the discrepancy between the true TLS solution and the solution given by the
classical TLS algorithm. An approach based on such a reduction, outlined in [12], will be
discussed elsewhere.

Acknowledgments. We wish to thank Daniel Kressner and two anonymous re-
ferees for their comments which led to improvements of our manuscript.
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