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Abstract. Given a nonsingular complex matrix A ∈ CN×N and complex vectors v and w of
length N , one may wish to estimate the quadratic form w∗A−1v, where w∗ denotes the conjugate
transpose of w. This problem appears in many applications, and Gene Golub was the key figure in its
investigations for decades. He focused mainly on the case A Hermitian positive definite (HPD) and
emphasized the relationship of the algebraically formulated problems with classical topics in analysis
- moments, orthogonal polynomials and quadrature. The essence of his view can be found in his
contribution Matrix Computations and the Theory of Moments, given at the International Congress
of Mathematicians in Zürich in 1994. As in many other areas, Gene Golub has inspired a long list
of coauthors for work on the problem, and our contribution can also be seen as a consequence of his
lasting inspiration.

In this paper we will consider a general mathematical concept of matching moments model
reduction, which as well as its use in many other applications, is the basis for the development
of various approaches for estimation of the quadratic form above. The idea of model reduction via
matching moments is well known and widely used in approximation of dynamical systems, but it goes
back to Stieltjes, with some preceding work done by Chebyshev and Heine. The algebraic moment
matching problem can for A HPD be formulated as a variant of the Stieltjes moment problem, and
can be solved using Gauss-Christoffel quadrature. Using the operator moment problem suggested
by Vorobyev, we will generalize model reduction based on matching moments to the non-Hermitian
case in a straightforward way. Unlike in the model reduction literature, the presented proofs follow
directly from the construction of the Vorobyev moment problem.
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1. Introduction. Given a nonsingular complex matrix A ∈ C
N×N and complex

vectors v and w of length N , estimates of the quadratic form w∗A−1v, where w∗

denotes the conjugate transpose of w, appear in many applications. If A is large,
it seems natural to construct the estimates by projections of the original problem
onto subspaces of small dimensions, with interpretation of the solution of the pro-
jected problem as the estimate (or bound, where appropriate) for the desired unknown
quantity. Here the Krylov subspaces

Kj(A, v) ≡ span{v,Av, . . . , Aj−1v}

come very naturally into play, since they tend to accumulate dominant information
of A with respect to v. For description of the Krylov subspace methods as projection
methods, see, e.g., [7, 11], [36, Chapter 5].

Asuming A is Hermitian positive definite (HPD) and using its spectral decom-
position, different approaches were developed by relating the problem to the Gauss-
Christoffel quadrature. For descriptions of the remarkable and rich work and achieve-
ments in that direction, we refer to [22, 24, 27, 12, 25], to the survey paper [34] and
parts II. and IV. of the book [23], with Commentaries given by Anne Greenbaum
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and Walter Gautschi. A central role in the development was from the late Sixties
played by Gene Golub, who has deeply influenced and inspired many others for work
on the applications of the moment problem, and who was always looking for new
connections [19].

In the paper [44] it was shown that the Gauss-Christoffel quadrature estimates are
closely related to results which trace back to the original Hestenes and Stiefel paper
on conjugate gradients (CG) [28]. The desired value v∗A−1v can be very efficiently
estimated using the scalar quantities available in the CG algorithm. Moreover, the
paper [44] shows that this estimate is numerically stable (a partial proof of numerical
stability of the quadrature-based estimates has been given already in [27]). This has
further been used in construction of stopping criteria for iterative solvers, see [5, 3, 4],
the book [33], the survey paper [34] and the forthcoming paper [30]. The fundamental
mathematical idea behind such estimates can be formulated as matching moments

model reduction.

In this paper we present a description of the matching moments model reduction
based on the Vorobyev moment problem, see [47], which allows us to exploit the direct
and very natural relationship with the projection processes interpretation of Krylov
subspace methods. The Vorobyev moment problem has been used, slightly generalized
and popularized by Claude Brezinski [7]. Unfortunately, it still does not seem to be
well-known.

Projection of the original problem to the subspace of small dimension can be
viewed as a reduction of the original model represented by A, v and w. Reduced
order modeling plays a central role in approximation of large-scale dynamical systems.
Techniques based on Krylov subspaces have been used in that area for decades, see,
e.g., the recent very thorough monograph [2] and the very nice survey paper [6], where
one can find references to substantial work of many other authors. In [2, Chapter 10,
p. 314], approximation of linear dynamical systems by moment matching is described
as one of the three uses of Krylov subspace methods, in addition to iterative solution
of Ax = b and approximation of the eigenvalues of A, and it is treated in detail in
Chapter 11 of that book. It should be emphasized that Krylov subspace methods can
be viewed as much more than just tools for model reduction. Many Krylov subspace
methods by their nature are actually model reductions based on matching moments.
Such a view naturally complements the description using the projection processes
framework, see [7].

Section 2 will very briefly outline the way from the Stieltjes moment problem
to the Gauss-Christoffel quadrature. Section 3 will describe the matching moment
property of the Lanczos and CG methods, and show how it can be formulated using
the Vorobyev moment problem. Section 4 will prove the matching moment property
of the non-Hermitian Lanczos and Arnoldi methods. The paper ends with concluding
remarks. Appendix contains comments on the history which might be of interest
independently of the rest of the paper.

2. Stieltjes moment problem and Gauss-Christoffel quadrature. In the
Stieltjes moment problem [40, 42, 41, 43], a sequence of numbers ξk, k = 0, 1, . . . , is
given and a non-decreasing distribution function ω(λ), λ ≥ 0, is sought such that the
Riemann-Stieltjes integral satisfies

∫ ∞

0

λkdω(λ) = ξk, k = 0, 1, . . . . (2.1)
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Here
∫ ∞

0
λkdω(λ) represents the k-th moment of the distribution function ω(λ). For

the definition and basic properties of the Riemann-Stieltjes integral see, e.g., [10,
Section 1.6.5], and for a general orthogonal polynomial context see, e.g., [20]. This
problem has a simple mechanical interpretation – it aims to find the distribution of
positive mass on the half line λ ≥ 0 given the (generalized) mechanical moments of
the mass distribution with respect to 0 (here for k = 1 the moment divided by the
total mass is the center of mass, k = 2 gives the center of inertia). A closely related
problem was posed and studied by Chebyshev, Heine and Markov. Nice descriptions of
the origins of the moment problem, mechanical motivations of Stieltjes and statistical
motivations of Chebyshev, as well as the subsequent developments can be found,
e.g., in [39, 1, 18]. A summary of some related later achievements motivated by
oscillations of mechanical systems is given in [16], in particular in Chapter II, § 1,
and in Appendix 2, which is devoted to the relationship with the work of Stieltjes on
continued fractions.

In this and in the next section we briefly recall some main ideas which link the
Stieltjes moment problem with the Gauss-Christoffel quadrature, and the Lanczos
and CG methods. Technical details and proofs can be found in [44, 34].

Let the distribution function ω(λ) have N points of increase 0 < λ1 < · · · < λN

with the corresponding positive weights ω1, . . . , ωN ,
∑N

ℓ=1 ωℓ ≡ 1. Then the first 2N
moments are given by

∫ ∞

0

λk dω(λ) =

N
∑

ℓ=1

ωℓ {λℓ}
k ≡ ξk , k = 0, 1, . . . , 2N − 1 . (2.2)

For a given n between 1 and N − 1 (the cases n = 0 and n = N are trivial), one
can look for a nondecreasing distribution function ω(n) with n points of increase

0 < θ
(n)
1 < · · · < θ

(n)
n and positive weights ω

(n)
1 , . . . , ω

(n)
n ,

∑n
ℓ=1 ω

(n)
ℓ ≡ 1, such that

its moments match the maximal number 2n of moments (2.2) given by ω(λ),

∫ ∞

0

λk dω(λ) =

n
∑

ℓ=1

ω
(n)
ℓ {θ

(n)
ℓ }k , k = 0, 1, . . . , 2n − 1 . (2.3)

This means that the Rieman-Stieltjes integral, determined by the distribution func-
tion ω(λ), is for any polynomial up to degree 2n−1 given by the weighted sum of the

polynomial values at the n points θ
(n)
ℓ with the corresponding weights ω

(n)
ℓ . Equiva-

lently, (2.3) is nothing but the n-point Gauss-Christoffel quadrature, see [10, sec. 2.7]
and [18] for a basic description and a comprehensive survey of related topics. Let

p1(λ) ≡ 1, p2(λ), . . . , pn+1(λ)

be the first n + 1 orthonormal polynomials corresponding to the inner product

(φ, ψ) ≡

∫ ∞

0

φ(λ)ψ(λ) dω(λ) (2.4)

determined by the distribution function ω(λ). Then, denoting

Pn(λ) = (p1(λ), . . . , pn(λ))T ,

we get

λPn(λ) = TnPn(λ) + δn+1pn+1(λ)en , (2.5)
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which represents the matrix formulation of the Stieltjes recurrence for the orthogonal
polynomials determined by (2.4). The recurrence coefficients form the Jacobi matrix

Tn ≡













γ1 δ2

δ2 γ2
. . .

. . .
. . .

δn

δn γn













, δℓ > 0 , ℓ = 2, . . . , n . (2.6)

The basic result about the Gauss-Christoffel quadrature states, see also [35, Section 4]
and the references given there, that the nodes of the n-point quadrature are equal to
the roots of pn+1(λ), i.e. the eigenvalues of Tn. The corresponding weights are given
by

ω
(n)
ℓ =

1

p′n+1(θ
(n)
ℓ )

∫ ∞

0

pn+1(λ)

λ − θ
(n)
ℓ

dω(λ) , (2.7)

or, equivalently, by the sizes of the squared first entries of the corresponding normal-
ized eigenvectors of Tn.

The n-point Gauss-Christoffel quadrature can be viewed as a matching moments
model reduction, where the original model is represented by the distribution function
ω(λ) with the N points of increase λ1, . . . , λN , and the reduced model by the dis-

tribution function ω(n)(λ) with the n points of increase θ
(n)
1 , . . . , θ

(n)
n . The reduced

model matches the first 2n moments given by the original model, see (2.3).

3. Matrix formulation of the moment problem for A Hermitian positive

definite. In the following we will use some basic facts about the Lanczos and CG
methods, and about the Arnoldi method, which can be found, e.g., in [44, 34, 36]. A
well presented summary in [2, Chapter 10] might be preferred by dynamical systems
oriented readers. While the Gauss-Christoffel quadrature describes the matching mo-
ments model reduction in polynomial language, the following formulation translates
the description to matrix algebra.

Consider a linear algebraic system Ax = b with a HPD matrix A ∈ C
N×N and an

initial vector x0, giving the initial residual r0 = b−Ax0 and the Lanczos initial vector
v ≡ v1 = r0/‖r0‖. Consider the nondecreasing distribution function ω(λ) with the
points of increase λℓ equal to the eigenvalues of A and the weights ωℓ equal to sizes of
the squared components of v1 in the corresponding invariant subspaces. For simplicity
of exposition we assume, following the notation in Section 2, that the eigenvalues of
A are distinct and all weights are nonzero. With this setting, the moments (2.2) of
the distribution function ω(λ) can be expressed in matrix language as

∫ ∞

0

λk dω(λ) =

N
∑

ℓ=1

ωℓ {λℓ}
k = v∗

1Akv1 , (3.1)

and, analogously, using the spectral decomposition of the Jacobi matrix Tn and the
well-known fact that all its eigenvectors have nonzero first components,

n
∑

ℓ=1

ω
(n)
ℓ {θ

(n)
ℓ }k = eT

1 T k
ne1 . (3.2)
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It is easy to see that the Lanczos algorithm [31, 32] applied to A with v1 gives in the
nth step the Jacobi matrix Tn in (2.6), i.e.

AVn = VnTn + δn+1vn+1e
T
n , (3.3)

where Vn represents the matrix with orthonormal columns v1, . . . , vn,

Vn = (v1, . . . , vn) , V ∗

n Vn = I , V ∗

n vn+1 = 0. (3.4)

The Lanczos method computes the eigenvalues of Tn and takes them as approximations
to the eigenvalues of A.

Summarizing, let the original model be represented by the matrix A and the
initial vector v1. Then the Lanczos algorithm computes in steps 1 to n the model
reduction of A with v1 to Tn with e1 such that the reduced model matches the first
2n moments of the original model, i.e.,

v∗

1Akv1 = eT
1 T k

ne1 , k = 0, 1, . . . , 2n − 1 . (3.5)

With A HPD, we can extend the considerations presented above to the CG
method. Using the orthonormal basis Vn of the Krylov subspace Kn(A, v1) deter-
mined by the Lanczos algorithm, one can write for the approximation xn = x0 +Vnyn

generated by the CG method

0 = V ∗

n rn = V ∗

n (b − Axn) = V ∗

n (b − Ax0 − AVnyn) ,

which gives, using V ∗
n AVn = Tn,

xn = x0 + Vnyn , Tnyn = ‖r0‖e1 . (3.6)

The nth CG approximation xn can be considered as a result of the model reduction
from Ax = b to Tnyn = ‖r0‖e1 such that the first 2n moments (3.5) are matched.
The eigenvalues and the squared first components of the corresponding normalized
eigenvectors of Tn represent the nodes and weights of the related Gauss-Christoffel
quadrature. Vice versa, Tn is determined by its eigenvalues and the first components of
the corresponding normalized eigenvectors (for the rich history of the investigation of
the last problem see [35, Section 3.1]), i.e. by the nodes and weights of the given Gauss-
Christoffel quadrature. The Lanczos and CG methods can therefore be considered as
matrix formulations of the Gauss-Christoffel quadrature. Moreover, considering the
Gauss-Christoffel quadrature for f(λ) = 1/λ, we get

∫ ∞

0

λ−1 dω(λ) =
‖x − x0‖

2
A

‖r0‖2
,

and

‖x − x0‖
2
A

‖r0‖2
=

n
∑

ℓ=1

ω
(n)
ℓ {θ

(n)
ℓ }−1 +

‖x − xn‖
2
A

‖r0‖2
. (3.7)

That means that the error of the n-point Gauss-Christoffel quadrature is for f(λ) =
1/λ given by the squared energy norm of the error at the nth step of the CG method
scaled by 1/‖r0‖

2. For proof and review of some related results we refer to [24, 44, 34].
The moment matching model reduction described above can be easily extended

to non-Hermitian Krylov subspace methods. For that purpose it will be useful to
formulate the moment problem for A HPD in an operator (vector) form.
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Consider the HPD matrix A as an operator on C
N . Using the orthogonal pro-

jector Qn ≡ VnV ∗
n onto Kn(A, v1), we can orthogonally restrict the operator A to

the subspace Kn(A, v1) . Then the resulting orthogonally projected restriction An is
given by

An = VnV ∗

n AVnV ∗

n = VnTnV ∗

n (3.8)

with its matrix in the orthonormal basis of Kn(A, v1) represented by Vn

V ∗

n AnVn = Tn . (3.9)

The restricted operator An is determined by its action on the vectors generating
Kn(A, v1),

Anv1 = Av1,

An(Av1) = A2v1,

... (3.10)

An(An−2v1) = An−1v1,

An(An−1v1) = Qn(Anv1) ≡ VnV ∗

n Anv1 .

Equivalently,

Anv1 = Av1,

A2
nv1 = A2v1,

... (3.11)

An−1
n v1 = An−1v1,

An
nv1 = VnV ∗

n Anv1 .

These relationships represent the operator (or vector) moment problem given by
Vorobyev, see [47, Chapter III, Sections 2-4, in particular equation (11) on p. 53].

Using the Vorobyev formulation, proof of the matching moment property is easy
and elegant. By construction, see (3.11),

v∗

1Akv1 = v∗

1Ak
nv1 , k = 1, . . . , n . (3.12)

Since Kn(A, v1) = span {v1, . . . , A
n−1v1} and An

nv1 ∈ Kn(A, v1), the orthogonal
projection

0 = Qn(Anv1) − An
nv1 = Qn(Anv1 − An

nv1)

implies that the difference Anv1 − An
nv1 must be orthogonal to all basis vectors v1,

Av1 = Anv1, . . . , A
n−1v1 = An−1

n v1, which gives (for j = 0 trivially), using the
properties A∗ = A, A∗

n = An,

0 = (Ajv1)
∗(Anv1 − An

nv1) = v∗

1An+jv1 − v∗

1An+j
n v1 , j = 0, 1, . . . , n − 1 .

Combining with (3.12) and (3.8) this gives

v∗

1Akv1 = v∗

1Ak
nv1 = eT

1 T k
ne1 , k = 0, 1, . . . , 2n − 1 , (3.13)

which proves (3.5).
Summarizing, the moment problems (2.3) and (3.5) can equivalently be repre-

sented by construction of the operator An on the n-dimensional subspace Kn(A, v1)
given by (3.10) or (3.11). Please note that apart from the relationship to the CG
method, all statements of this subsection remain valid for A Hermitian.
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4. Matching moments and non-Hermitian Krylov subspace methods.

The nice paper [13] which focused on the HPD case motivated the Gauss-Christoffel
quadrature interpretation related to the non-Hermitian Lanczos algorithm and to
the Arnoldi algorithm presented in [15]. Further interpretations of moment match-
ing as extensions of the Gauss-Christoffel quadrature to the complex plane were de-
scribed in [38, 37], with references to computation of the scattering amplitude [48],
see also [8, 26]. Developments of general polynomial-based extensions to the com-
plex plane can lead to various interesting formulas. On the other hand, such general
constructions typically include some nontrivial assumptions and formal polynomial re-
lationships which do not have the quantitative impacts and interpretations of the same
depth as the standard Gauss-Christoffel quadrature corresponding to the HPD case.
In our view, the mathematical essence of the complex Gauss-Christoffel quadrature
generalizations is given by the matching moment property, which can be formulated
without further assumptions in a matrix form.

In this section we describe the extension of the matching moment model reduction
to the non-Hermitian case without using the matrix of moments, cf. [2, Chapter 11],
and without using polynomial-based generalizations of the Gauss-Christoffel quadra-
ture formulas to the complex plane.

4.1. Non-Hermitian Lanczos process. Given a nonsingular N by N matrix A
and two starting vectors v ≡ v1, w ≡ w1 of length N , ‖v1‖ = 1, w∗

1v1 = 1, the non-
Hermitian Lanczos algorithm can be written in the form

AVn = VnTn + δn+1vn+1e
T
n ,

A∗Wn = WnT ∗

n + β∗

n+1wn+1e
T
n , (4.1)

where W ∗
nVn = I, Tn = W ∗

nAVn, ‖vn+1‖ = 1, w∗
n+1vn+1 = 1,

Tn =













γ1 β2

δ2 γ2
. . .

. . .
. . . βn

δn γn













, δℓ > 0, βℓ 6= 0, ℓ = 2, . . . , n , (4.2)

see, e.g. [36, Section 7.1], [2, Section 11.2.1], [6, Section 2.4]. Here it is assumed

that the algorithm does not break down in steps 1 through n. The columns of Vn

form a basis of Kn(A, v1) while the columns of Wn a basis of Kn(A∗, w1). Because
of the biorthogonality W ∗

nVn = I, the oblique projector onto Kn(A, v1) orthogonal to
Kn(A∗, w1) can be written as

Qn = VnW ∗

n . (4.3)

The discussion of breakdown in the non-Hermitian Lanczos algorithm is out of
the scope of this paper. The assumption here means that the results on matching
moments model reduction are valid for the step n providing that the algorithm does
not breakdown before or on that step. It is not assumed, cf. [6, p. 16, relation (15)],
that the Lanczos algorithm can be carried out to step N . Such an assumption means a
loss of generality, since there are incurable breakdowns in the non-Hermitian Lanczos
method, and mentioning a look-ahead scheme proposed in [14] as a possible general
cure, see [6, p. 16] is not mathematically correct. Look-ahead techniques are important
in practical computations, but the context of their use is different. They can not cure
incurable breakdowns.
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We will prove that under the given assumption on existence of the recurrence steps
1 through n, the non-Hermitian Lanczos algorithm represents the model reduction
which matches the first 2n moments

w∗

1Akv1 = eT
1 T k

ne1 , k = 0, 1, . . . , 2n − 1 , (4.4)

with Tn given by (4.2). Our proof is based on the relationship with the corresponding
Vorobyev moment problem, while the proof in [2] uses factorization of the matrix of
moments, and the proof in [6] the additional assumption discussed above.

The restriction An of A to Kn(A, v1) projected orthogonally to Kn(A∗, w1) is
given by

An = VnW ∗

nAVnW ∗

n = VnTnW ∗

n . (4.5)

It can be determined by its action on the generating vectors of Kn(A, v1),

Anv1 = Av1,

An(Av1) = A2v1,

... (4.6)

An(An−2v1) = An−1v1,

An(An−1v1) = VnW ∗

nAnv1 ,

or, equivalently,

Anv1 = Av1,

A2
nv1 = A2v1,

... (4.7)

An−1
n v1 = An−1v1,

An
nv1 = VnW ∗

nAnv1 .

Trivially, see (4.7),

w∗

1Akv1 = w∗

1Ak
nv1 , k = 0, 1, . . . , n .

For the powers n + 1 to 2n − 1 the situation is more subtle. Using

0 = VnW ∗

n(Anv1 − An
nv1) ,

Anv1 − An
nv1 is orthogonal to the generating vectors w1, A

∗w1, . . . , (A
∗)n−1w1 of the

Krylov subspace Kn(A∗, w1). We therefore get

(

(A∗)ℓw1

)∗

(Anv1 − An
nv1) = 0 , ℓ = 0, . . . , n − 1 .

A simple rearrangement leads with (4.5) to

w∗

1Aℓ+nv1 = w∗

1AℓAn
nv1 = w∗

1AℓVnTn
n e1 , ℓ = 0, . . . , n − 1 . (4.8)
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Now consider the term w∗
1Aℓ in (4.8), which we will view as

(

(A∗)ℓw1

)∗
. Using the

fact that the matrix Tn given by (4.2) is tridiagonal,

(A∗)n−1w1 = (A∗)n−2(A∗w1) = (A∗)n−2(A∗Wne1)

= (A∗)n−2(WnT ∗

n + β∗

n+1wn+1e
T
n ) e1 = (A∗)n−2WnT ∗

ne1

= (A∗)n−3(AWn)T ∗

ne1 = (A∗)n−3(Wn(T ∗

n)2e1 + β∗

n+1wn+1e
T
nT ∗

ne1)

= (A∗)n−3Wn(T ∗

n)2e1

= · · ·

= Wn(T ∗

n)n−1e1 + β∗

n+1wn+1e
T
n (T ∗

n)n−2e1 ,

where we have repeatedly used

eT
n (T ∗

n)ℓe1 = 0, ℓ = 0, 1, . . . , n − 2.

Since eT
n (T ∗

n)n−2e1 = 0, we have

(A∗)n−1w1 = Wn(T ∗

n)n−1e1 ,

and the analogous identity clearly holds for the powers less than n − 1, i.e.

(A∗)ℓw1 = Wn(T ∗

n)ℓe1 , ℓ = 0, 1, . . . , n − 1 .

Putting all pieces together and using the biorthogonality W ∗
nVn = I, (4.8) gives

w∗

1Aℓ+nv1 = eT
1 T ℓ+n

n e1 , ℓ = 0, 1, . . . , n − 1 ,

which proves (4.4).

As suggested by Petr Tichý [46], the term w∗
1AℓVn in (4.8) can alternatively be ex-

pressed by considering the dual Vorobyev moment problem for A∗
n = WnT ∗

nV ∗
n which

represent the restriction of A∗ onto Kn(A∗, w1) projected orthogonally to Kn(A, v1),

A∗

nw1 = A∗w1,

(A∗

n)2w1 = (A∗)2w1,

... (4.9)

(A∗

n)n−1w1 = (A∗)n−1w1,

(A∗

n)nw1 = WnV ∗

n (A∗)nw1 .

Clearly

w∗

1AℓVn = w∗

1AℓVnW ∗

nVn = w∗

1Aℓ
nVn = e∗1W

∗

nAℓ
nVn = e∗1T

ℓ
n , ℓ = 0, 1, . . . , n ,

which again finishes the proof (the equality for the nth power given above is not
needed).

Analogously to the Hermitian case, the non-Hermitian Lanczos algorithm and the
non-Hermitian Lanczos method for approximation of the eigenvalues of A matches at
the nth step the 2n moments (4.4). It is worth noticing that here we have two vectors
v1 and w1, which represent the starting vectors for the two coupled recurrences with
A and A∗ respectively. In general v1 is different from w1.
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4.2. Vorobyev moment problem and the Arnoldi method. Given a non-
singular N by N matrix A and an initial vector v ≡ v1 of length N , ‖v1‖ = 1, the
Arnoldi algorithm can be seen as

AVn = VnHn + hn+1,nvn+1e
T
n , (4.10)

where

V ∗

n Vn = In , V ∗

n vn+1 = 0 , Hn = V ∗

n AVn ,

and Hn is an upper Hessenberg matrix with positive entries on the first subdiagonal,
see, e.g., [36, Section 6.3], [2, Chapter 10]. The n steps of the Arnoldi algorithm
applied to the matrix A with the starting vector v1 give the restriction An of A to
Kn(A, v1) projected orthogonally to Kn(A, v1),

An = VnV ∗

n AVnV ∗

n = VnHnV ∗

n . (4.11)

Expressing this through the Vorobyev moment problem gives

Anv1 = Av1 ,

An(Av1) = A2v1 ,

... (4.12)

An(An−2v1) = An−1v1 ,

An(An−1v1) = VnV ∗

n (Anv1) ,

or, equivalently,

Anv1 = Av1 ,

A2
nv1 = A2v1 ,

... (4.13)

An−1
n v1 = An−1v1 ,

An
nv1 = VnV ∗

n Anv1 .

Given an additional vector u ≡ u1 of length N , multiplication of the first n − 1 rows
in (4.13) from the left by u∗

1 results in

u∗

1A
kv1 = u∗

1A
k
nv1 , k = 0, . . . , n − 1 . (4.14)

Unlike the non-Hermitian Lanczos case, the additional vector u1 in the Arnoldi algo-
rithm is not a part of the recurrence. Since u1 is generally unrelated to v1, and since
A is non-Hermitian, the last row in (4.13) is, in general, of no help in extending the
matching moments property beyond the first n moments. With (4.11)

Ak
n = VnHk

nV ∗

n , k = 1, . . . , n − 1 .

Finally, using (4.14),

u∗

1A
kv1 = u∗

1VnHk
ne1 = t∗nHk

ne1 , k = 0, . . . , n − 1 , (4.15)

where tn is defined by the orthogonal decomposition of u1,

u1 ≡ Vntn + u⊥

1 = Vn(V ∗

n u1) + u⊥

1 , (4.16)
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here u⊥
1 is the component of u1 orthogonal to Kn(A, v1). Multiplication of the last

row in (4.13) from the left by u∗
1 gives

u∗

1VnV ∗

n Anv1 = (V ∗

n u1)(V
∗

n AnVn)e1 = u∗

1A
n
nv1 . (4.17)

With u1 = v1 we can therefore add one more moment and conclude,

v∗

1Anv1 = e1H
n
ne1 . (4.18)

Summarizing, the n steps of the Arnoldi algorithm and of the Arnoldi method
for approximation of eigenvalues of A starting with v1 can be viewed with a given
additional vector u1 as the reduction of the original model represented by A, v1 and
u1 to the reduced model represented by Hn, e1 and tn which matches the n moments

u∗

1A
kv1 = t∗nHk

ne1 , k = 0, 1, . . . , n − 1 . (4.19)

The vector tn is given by the orthogonal decomposition (4.16). If u1 = v1, then this
model reduction matches n + 1 moments (4.19) and (4.18).

5. Concluding remarks. Moment matching model reduction represents a fun-
damental mathematical concept used in many applications. The Vorobyev formulation
of the moment problem makes in an elegant way a link between the matching moments
model reduction and the approximations by projections onto Krylov subspaces. In
our further work we will investigate how this approach leads to estimates for the form
w∗A−1v which can be efficiently computed using various Krylov subspace methods
for solving non-Hermitian linear algebraic systems. Results will be presented in the
forthcoming paper [45].
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Appendix: Historical remarks. Different meanings of the term moments

recalled in our short contribution reflect only a small part of the large variety of
contexts in which moments are used throughout mathematics and in many areas of
applications. As mentioned before, the motivation of Sieltjes [40, 42, 41, 43] was taken
from mechanics; the Riemann-Stieltjes integral

∫ b

a

dω(λ) (5.1)

represented the total mass distributed over the interval [a, b] ∈ [0,+∞). As pointed
out by Shohat and Tamarkin [39], this gave the name to ω(λ) as the distribution func-

tion, used nowadays. The first and the second moments also have the interpretation
of the mechanical moments with respect to 0 of the total mass

∫ ∞

0
dω(λ) distributed

over the semi-axis [0,+∞). Stieltjes solved his formulation of the problem of moments
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by developing the theory of continued fractions. Prior to Stieltjes, analogous ideas can
be found in the work of Chebyshev and Markov, see the Introduction in [39] and the
Foreword in [1]. Though their motivation was not solving the problem of moments,
their work led to the development of the closely related general theory of orthogonal
polynomials.

As pointed out in our text, the idea of finding a distribution function with n points
of increase which matches the first 2n moments of the given distribution function (in
the sense of the Riemann-Stieltjes integral) can be viewed as a special form of the
Stieltjes moment problem. In this sense this goes back to the idea of Gauss quadra-
ture [17], and in particular to its formulation given by Jacobi [29], see the insightful
commentary given by Goldstine in [21, Sections 4.11 and 5.2]. Gauss quadrature
was further extended by Christoffel [9]. Therefore we refer to it as Gauss-Christoffel
quadrature, while using the shorter term ‘Gauss quadrature’ in some cases where we
refer to the work of other authors who use that term exclusively. A thorough his-
torical description of related work can be found in the remarkable review paper by
Gautschi [18, Introduction and Section 1].

In their seminal paper on the conjugate gradient method, Hestenes and Stiefel
described the fundamental relationship of the algebraic formulation of the method,
intended for solving systems of linear algebraic equations, to the Riemann-Stieltjes
integral, orthogonal polynomials, Gauss(-Christoffel) quadrature and continued frac-
tions [28, Sections 14–16]. As we see above, Vorobyev presented in his book [47] the
algebraic formulation of the problem of moments which had allowed him to develop
the so-called unified moment method for solving linear systems of equations and com-
puting eigenvalues of linear operators. He used the equivalence of the scalar moment
problem formulation recalling the work of Stieltjes, Chebyshev and Markov with his
operator moment problem formulation for the Hermitian positive definite case. He
was well aware of the relationship with the work of Lanczos, Hestenes and Stiefel (in
addition to that he refers to the work of Ljusternik from 1956 which is not available to
the author of this paper). Vorobyev did not formulate his moment problem as a model
reduction in the sense presented in this paper. Our contribution can be considered an
extension of his ideas in that direction, as well as an extension to the non-Hermitian
case. It is worthwhile to point out that, apart from the book [47], published originally
in Russian in 1958, we have found only five papers published by Vorobyev (all prior
to 1965). We were unable to locate any bibliographical data about the author.

In [15] the moment matching in the non-Hermitian Lanczos process, described
in Section 4.1, is interpreted as a Gauss quadrature in the complex plane. On the
other hand, the Gauss quadrature associated with the Arnoldi algorithm given in [15]
is not related in an analogous way to the moment matching described here. The
Gauss quadrature interpretation of the non-Hermitian Lanczos process in [15] gives
the essence of the Gauss quadrature extension, and it leaves out possible formal
polynomial expression of the Gauss quadrature in the complex plane, which was given
later under various assumptions (including existence of the spectral decomposition i.e.
diagonalizability of the corresponding matrices) by several authors, see, e.g., [38, 37].
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(Aachen/Monschau, 1979), Birkhäuser, Basel, 1981, pp. 72–147.

[19] , The interplay between classical analysis and (numerical) linear algebra—a tribute to
Gene H. Golub, Electron. Trans. Numer. Anal., 13 (2002), pp. 119–147.

[20] , Orthogonal Polynomials, Computation and Approximation, Numerical Mathematics
and Scientific Computation, Oxford University Press, Oxford, 2004.

[21] H. H. Goldstine, A History of Numerical Analysis from the 16th through the 19th Century,
Springer-Verlag, New York, 1977. Studies in the History of Mathematics and Physical
Sciences, Vol. 2.

[22] G. H. Golub, Matrix computation and the theory of moments, in Proceedings of the Inter-
national Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995,
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