
Proceedings in Applied Mathematics and Mechanics, 29 May 2008

On solution of total least squares problems with multiple right-hand sides
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Consider a linear approximation problem AX ≈ B with multiple right-hand sides. When errors in the data are confirmed
both to B and A, the total least squares (TLS) concept is used to solve this problem. Contrary to the standard least squares
approximation problem, a solution of the TLS problem may not exist. For a single (vector) right-hand side, the classical
theory has been developed by G. H. Golub, C. F. Van Loan [2], and S. Van Huffel, J. Vandewalle [4], and then complemented
recently by the core problem approach of C. C. Paige, Z. Strakoš [5–7]. Analysis of the problem with multiple right-hand
sides is still under development. In this short contribution we present conditions for the existence of a TLS solution.
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1 Introduction

Consider an orthogonally invariant linear approximation problem with d right-hand sides

AX ≈ B , A ∈ Rm×n , X ∈ Rn×d , B ∈ Rm×d , (1)

where the uninteresting case is excluded by the assumption ATB 6= 0. With no loss of generality assume m ≥ n + d (add
zero rows if necessary). In total least squares (TLS) [1, 2, 4] this problem is solved by constructing minimal correction to B
and A such that the corrected system is compatible,

min
E,G,X

‖[E,G]‖F subject to (A+ E)X = B +G . (2)

With d = 1 the problem (1) reduces to Ax ≈ b , where b is an m-vector. This problem has been analyzed in [2, 4] and
then revised in [5–7], see also [3]. In [5–7], it is shown how the necessary and sufficient information for solving (1) can be
extracted from the data using the so called core reduction. With the singular value decomposition (SVD)

[ b, A ] = U ΣV T =
∑n+1

i=1
ui σi v

T
i , σ1 ≥ · · · ≥ σp > σp+1 = · · · = σn+1 ≥ 0 ,

and the corresponding partitioning

V =
[
v11 v12
V21 V22

]
, v11 ∈ R1×p , v12 ∈ R1×(n−p+1) , V21 ∈ Rn×p , V22 ∈ Rn×(n−p+1) ,

the classical analysis gives the following conditions on existence and uniqueness of a TLS solution in the case d = 1, see [7]
for more details, and the relationship to the core problem theory, which in particular gives an insight into the non-existence of
the TLS solution:

• If v12 6= 0 with p = n, i.e. σn+1 is simple and the corresponding right singular vector of [ b, A ] has a nonzero first
component, then there exists the unique TLS solution of (1).

• If v12 6= 0 with p < n, i.e. σn+1 is multiple and there exists right singular vector corresponding to σn+1 with a nonzero
first component, then the TLS problem (2) does not have a unique solution. The unique minimum norm solution can be
constructed.

• If v12 = 0, i.e. all right singular vectors corresponding to σn+1 have zero first components, then the TLS solution of (1)
does not exist.
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2 Classification of TLS problems

In order to handle a possible multiplicity of σn+1 in case d > 1 , consider the SVD

[B, A ] = U ΣV T =
∑n+d

i=1 ui σi v
T
i ,

σ1 ≥ . . . ≥ σp > σp+1 = . . . = σn+1 = . . . = σn+e > σn+e+1 ≥ . . . ≥ σn+d ≥ 0 ,

and the corresponding partitioning

V =
[
V11 V12 V13

V21 V22 V23

]
, V11 ∈ Rd×p , V12 ∈ Rd×(n−p+e) , V13 ∈ Rd×(d−e) .

The matrix V12 represents the first d rows of the block of singular vectors of [B, A ] corresponding to σn+1, while V11 and
V13 represent the first d rows of the block of singular vectors of [B, A ] corresponding to singular values strictly greater and
strictly smaller than σn+1, respectively.

The classical analysis [4] of the TLS problem (2) with d > 1 is based on the rank of the matrix [V12 , V13 ] and deals with
three special cases. It is shown that if [V12 , V13 ] has full row rank d and either p = n (i.e. σn > σn+1 ) or e = d (i.e.
σn+1 = σn+d ), then a TLS solution exists. If rank ([V12 , V13 ]) < d then the TLS solution does not exist, but the TLS
concept is in [4] extended to the so called nongeneric solution. The case [V12 , V13 ] of full row rank d with p < n and
e < d , is not analyzed in the literature known to us, and a TLS solution is not defined. The TLS algorithm [4, Algorithm 3.1,
pp. 87–88] computes, however, some solution X for any problem (1).

The analysis of the TLS problem in [8, 9] looks at individual ranks of the matrices V12 and V13. Let [V12 , V13 ] be of full
row rank d. We can distinguish three cases which offer the classification of TLS problems for d > 1:

1. If rank ([V12 , V13 ]) = d with rank (V12) = e and rank (V13) = d − e (maximal), then there exists a TLS solution
of (1). If, moreover, p = n, then the solution is unique.

2. If rank ([V12 , V13 ]) = d with rank (V12) > e and rank (V13) = d − e (maximal), then there exists a TLS solution
of (1).

3. If rank ([V12 , V13 ]) = d with rank (V12) > e and rank (V13) < d− e , then the TLS solution of (1) does not exist.

It is worth to note that the TLS algorithm [4, Algorithm 3.1, pp. 87–88] computes a TLS solution, i.e. a solution satisfying (2),
only in the case 1. The cases [V12 , V13 ] of full row rank d with p = n or e = d analyzed in [4], are special cases of case
1 in our classification.

This classification may be completed by the fourth case:

4. If rank ([V12 , V13 ]) < d , then the TLS solution of (1) does not exist.

Note that since the classification of situations which can occur is complicated, we can not follow the basic, generic and
nongeneric terminology used in [4]. Here we presented several ideas which initiated our work on the subject. Results of a
joint effort with Diana M. Sima and Sabine Van Huffel focused on the analysis of TLS problems with multiple right-hand sides,
will be presented elsewhere. Extension of the core reduction to problems with multiple right-hand sides is under development.
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