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1 Introduction

In the contribution we consider the discretization of differential equation by the finite element
method (FEM) and using simple model problems we illustrate numerically that the algebraic
error can create a significant local components and can dominate locally the total error, even
when the globally measured algebraic error (in the energy norm or as the algebraic backward
error) is significantly smaller than the globally measured discretization error.

The FEM generates an approximate solution of the model in form of a linear combination of
functions with stricly local supports. The global approximation property of the FEM approxi-
mate solution is restored by solving a linear algebraic system for the coefficients of this linear
combination. The fact that in practice we do not solve this system exactly can have fundamental
consequences.

2 Model problem 2D

We consider the two-dimensional Poisson problem

−∆u = f in Ω ≡ [0, 1]2 , f(x, y) = −2 (x2 + y2 − x− y) ,

u = 0 on ∂Ω ,

with the smooth solution
u(x, y) = x (x− 1) y (y − 1)

discretized using the Galerkin finite element method with linear basis functions on a regular
triangular grid with 30 inner nodes in each direction.

We have computed the (approximate) solution of the system Ax = b arised from the discretiza-
tion using the MATLAB backslash operator. Neglecting the algebraic error in this computation,
the (closely approximated) squared energy norm of the discretization error is

‖∇(u− uh)‖2 = 6.1588× 10−5.

The shape of the discretization error is very similar to the shape of the solution, see Fig. 1.

We apply the conjugate gradient method (CG) to the linear algebraic system Ax = b with initial
guess x0 = 0. By u

(n)
h we denote the approximation to the Galerkin solution uh determined by

the vector xn generated in the n-th iteration of the CG method. The errors satisfy the Galerkin
orthogonality relation

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − u

(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖2A .
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Figure 1: Piecewise linear approximations to the solution of the model problem u (left) and to
the discretization error u− uh (right).

After 19 CG iteration steps the values of the total error and the algebraic error (measured in
the energy norm or as the algebraic backward error) are

Total error Algebraic error Normwise
‖∇(u− u

(19)
h )‖2 ‖x− x19‖2A backward error

6.1774× 10−5 1.8586× 10−7 8.4672× 10−5

We can see that the total error measured in the energy norm is dominated by the discretization
error.
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Figure 2: Algebraic error (left) and piecewise linear approximation to the total error (right) in
the model problem after 19 CG iteration steps; The vertical axis are scaled by 10−5.

When one considers the local distribution of error, the whole picture changes. Figure 2 shows
the algebraic and total errors after 19 CG iteration steps. Apparently, the local distribution of
the discretization and the algebraic error is significantly different, and the local behaviour of the
total error is dominated by the algebraic error.

Please note, that Figures 1, 2 are generated using the MATLAB trisurf command, which
generates a linear triangular surface plot. The discretization and total errors are not as smooth
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as suggested by the plots, but contains “bubbles” inside the triangles, which can be (depending
on the size of the error) significant. In order to show the errors we therefore consider analogous
problem in one dimension.

3 Model problem 1D

We consider the one-dimensional boundary value problem

−u′′(x) = −12x2 + 12x + 2 , x ∈ [0, 1] (1)
u(0) = u(1) = 0

discretized using the piecewise linear basis functions on uniform partition with 19 inner nodes.
Figure 3 shows the exact solution

u(x) = (x− 2) (x− 1) x (x + 1)

and the corresponding discretization error u− uh. The coeficients of uh are approximated (to a
sufficient accuracy) using the MATLAB backslash operator. The values of u− uh at the nodes
of the partition are on the machine precision level.
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Figure 3: The exact solution u (left) and the discretization error u − uh (right) in the one-
dimensional model problem.

For solving the stiffness system we apply the CG method with x0 = 0. After 9 CG iteration
steps the values of the total error, the discretization error (measured in the energy norm) and
the algebraic error (measured in the energy norm or as the algebraic backward error) are

Total error Discretization error Algebraic error Normwise
‖∇(u− u

(9)
h )‖2 ‖∇(uh − u

(9)
h )‖2 ‖x− x9‖2A backward error

3.7556× 10−3 3.500× 10−3 2.5563× 10−4 8.5921× 10−4

The algebraic and total errors are shown in Fig. 4.

4 Conclusion

Let us first stress that we do not advocate to solve the Poisson problem on regular domains by
the CG method. Our goal is to show on a simple model problem some important phenomena
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Figure 4: The algebraic error (left) and the total error (right) in the one-dimensional model
problem after 9 CG iteration steps.

which should be taken into account when solving large scale mathematical modeling problems
in general. It should be admitted that matrix computations can not be considered a separate
(black box) part of the numerical solution process. Apart from relatively simple cases, black
box approaches may not work. Even worse, they are philosophically wrong. Even if direct
algebraic solvers are applicable, the resulting algebraic error might not be small and it should
be considered (or the opposite should be rigorously justified). The stopping criteria in iterative
algebraic solvers should be linked, in an optimal case, with fully computable and locally efficient
(on individual elements) a posteriori error bounds that allow to keep an appropriate balance
between the discretization and the algebraic parts of the error.
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