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Let A be a real m by n matrix, and b a real m-vector. Consider estimating
z from an orthogonally invariant linear approximation problem

Az =~ b, (1)

where the data b, A contain redundant and/or irrelevant information.

In total least squares (TLS) this problem is solved by constructing a minimal
correction to the vector b and the matrix A such that the corrected system is
compatible. Contrary to the standard least squares approximation problem, a
solution of a TLS problem does not always exist. In addition, the data b, A can
suffer from multiplicities and in this case a TLS solution may not be unique.

Classical analysis of TLS problems is based on the so called Golub - Van
Loan condition 6.,in(A) > omin([b, A]), see [2, 4]. This condition is, however,
intricate through the fact that it is only sufficient but not necessary for the
existence of a TLS solution.

A new contribution to the theory and computation of linear approximation
problems was published in a sequence of papers [5, 6, 7], see also [3]. Here it
is proved that the partial upper bidiagonalization [1] of the extended matrix
[b, A] determines a core approximation problem Ajjx; & by, with the neces-
sary and sufficient information for solving the original problem given by b; and
Ajq1. The transformed data by and A1; can be computed either directly, using
Householder orthogonal transformations, or iteratively, using the Golub-Kahan
bidiagonalization. It is shown how the core problem can be used in a simple
and efficient way for solving the total least squares formulation of the original
approximation problem.

In this contribution we discuss the necessary and sufficient condition for the
existence of a TLS solution based on the core reduction, and mention work on
extensions of the results to linear approximation problems with multiple right
hand sides [8].
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