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Detecting causal interactions among system parts

In the study of complex systems, one of the key quests is that for being able
to disentangle the structure of interactions between the observed
subsystems. Based on the intuition that cause precedes the effect, we can
use the formalization by Granger (1969): X causal with respect to Y , iff
the Xt improves the prediction of Yt+δt.
In particular for a linear stochastic process: Let Xt and Yt be two jointly
stationary stochastic processes satisfying:

Xt =
∞∑
j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (1)

Yt =
∞∑
j=1

d1jYt−j + η1t, var(η1t) = Γ1, (2)

with the joint autoregressive representation:

Xt =
∞∑
j=1

a2jXt−j +
∞∑
j=1

b2jYt−j + ε2t, (3)

Yt =
∞∑
j=1

c2jXt−j +
∞∑
j=1

d2jYt−j + η2t, (4)

where the covariance matrix of the noise terms is:

Σ = Cov

(
ε2t

η2t

)
=

(
Σ2 Υ2

Υ2 Γ2

)
. (5)

The causal influence from Y to X is then quantified based on the decrease
in the residual model variance when we include the past of Y in the model
of X :

FY→X = ln
Σ1

Σ2
. (6)

Similarly, the causal influence from X to Y is defined as:

FX→Y = ln
Γ1

Γ2
. (7)

Causality – nonlinear generalization

Generalization of linear Granger causality: transfer entropy (TE, Schreiber,
2001): X causes Y iff the knowledge of past of X decreases the uncertainty
about Y .
For two discrete random variables X ,Y with sets of values Ξ and Υ and
probability distribution functions (PDFs) p(x), p(y) and joint PDF p(x , y),
the Shannon entropy H(X ) is defined as

H(X ) = −
∑
x∈Ξ

p(x) log p(x), (8)

The conditional entropy H(X |Y ) of X given Y is

H(X |Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x , y) log p(x |y). (9)

The amount of common information contained in the variables X and Y is
quantified by the mutual information I (X ;Y ) defined as

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y ). (10)

The conditional mutual information I (X ;Y |Z ) of the variables X ,Y given
the variable Z is given as

I (X ;Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z ). (11)

Transfer entropy from process Xt to process Yt then corresponds to the
conditional mutual information between Xt and Yt+1 conditional on Yt:

TX→Y = I (Xt,Yt+1|Yt). (12)

Interestingly, it can be shown that for linear Gaussian processes, transfer
entropy is equivalent to linear Granger causality, up to a multiplicative
factor (Barnett et al., 2009):

TX→Y =
1

2
FX→Y . (13)

Technical Problem of Transfer Entropy: not robust estimation

Granger causality outperforms Transfer Entropy (Hlinka et al., 2013).
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Figure: Reliability of causality network detection using different causality estimators, and the
similarity to linear causality network estimates. Black: average Spearman’s correlation across
all 15 pairs of decades. White: average Spearman’s correlation of nonlinear causality network
and linear causality network across 6 decades.

Moreover, many complex system timeseries close to ’linearity’: for example
brain activity (Hlinka et al, 2011), climate data (Hlinka et al, 2015).

Principal problem of TE: obscurity wrt. system equations

Solution: Nonlinear Granger causality by linearization

We recently suggested approach (Wahl et al., 2016) to generalize Granger
causality concept to diffusion processes given by the Langevin equation.

Ẏi = hi(Y) + [g(Y)]ijΓj(t),

〈Γi(t)〉 ≡ 0, 〈Γi(t)Γj(t
′)〉 = 2δijδ(t − t ′), i = 1, 2. (14)

With corresponding Fokker-Planck equation

∂P(y, t)

∂t
=−

N∑
i=1

∂

∂yi

[
D

(1)
i (y)P(y, t)

]
+

N∑
i ,j=1

∂2

∂yi∂yj

[
D

(2)
ij (y)P(y, t)

]
. (15)

It relates to the Langevin equation for Itô’s interpretation of the stochastic
integral by h = D(1) and ggT = D (2). A local approximation in state space
around y0 yields an Ornstein-Uhlenbeck process

˙̃Yi =
N∑
j=1

γijỸj + Θi(t), i = 1, 2,

〈Θi(t)〉 ≡ 0, 〈Θi(t)Θj(t
′)〉 = θijδ(t − t ′). (16)

Temporal discretization gives rise to an autoregressive process with well
defined Granger causality. Granger-causality maps y→ FỸ2→Ỹ1

(y) can be
drawn in the subset Mstable of state space with locally stable OU process.
Global Granger-causality defined as the average of local causality over
Mstable with respect to the stationary probability density P∗(y):

IY2→Y1
:=

∫
Mstable

FỸ2→Ỹ1
(y)P∗(y) dy1dy2∫

Mstable

P∗(y) dy1dy2
. (17)

Summary: Convenient properties of the generalized concept

I allows local mapping of causality throughout state-space
I consistent with linear Granger causality on linear stochastic processes
I invariant under the same transformations
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