Homework assignment L7: IRT models for ordinal and nominal items

Assignment date:	01.12.2020
Deadline:	07.12.2020 23:59
Slides:	http://www.cs.cas.cz/martinkova/NMST570
Note:	Send answers and R script to hladka@cs.cas.cz and martinkova@cs.cas.cz (in CC)
	Include NMST570 in subject of your e-mails
- -	

Name:

Lecture presentation

Watch lecture presentation (online Zoom, or video shared on course webpage) and provide answer(s) to question(s) posed in the presentation.

Reading with Perusall (alternative)

It is possible to skip up to 4 HW assignments and to provide satisfactory feedback (10 relevant annotations, each may gain up to 1 point) to readings instead (Chapter 7 and relevant R code this week).

1 Reading with Perusall

Provide 1 annotation in Czech or in English to assigned reading (Chapter 7 and relevant R code this week) [1].

2 Training in ShinyItemAnalysis

Run ShinyItemAnalysis online or locally.

Ex. 2.1 Finish Exercise in IRT/Training/Polytomous models tab for graded response model. Provide proof (screenshot). [3.5]

Ex. 2.2 Finish Exercise in IRT/Training/Polytomous models tab for generalized partial credit model. Provide proof (screenshot). [1]

3 Real data analysis

Consider neuroticism data neuroticism500.csv available at

 $https://github.com/patriciamar/psychometrics_intro/blob/master/datasets/Neuroticism/neuroticism500.csv$

Use pseudo R code

http://www.cs.cas.cz/hladka/documents/NMST570_HW7.R

modify it and answer the following questions

Ex. 3.1 Describe basic properties of the dataset:

- 1. How many items and how many respondents are in the data? $\left[0.125\right]$
- 2. How are the items rated? [0.125]

Ex. 3.2 Consider graded response model and use the mirt package.

- 1. Fit graded response model with the same discrimination for all items. Provide table with the discrimination and location parameter estimates for each item. [0.5]
- 2. Fit graded response model with no constrain. Provide table with the discrimination and location parameter estimates for each item. [0.5]
- 3. Use some information criteria to decide between these two models. Briefly comment [0.5]
- 4. For the better fitting model, plot category response curves for all items. [0.25]
- 5. For the better fitting model, plot item information curves for all items in one plot. [0.25]
- 6. For the better fitting model, plot test information function. For which type of respondents is the instrument the most informative? [0.5]

4 Reading

Read "Empirical Example" in chapter 7 "Partial Credit Model" of Handbook of Item Response Theory, volume 1 and answer the following questions.

Ex. 4.1 Describe data used in empirical example

- 1. How many markers judged the quality of essays? [0.125]
- 2. What was the grade scale used by markers? [0.125]
- 3. How many essays did each marker mark? [0.125]

Ex. 4.2 Read "Measuring Essay Quality" and answer the following questions:

- 1. Briefly describe how was the quality of essays estimated. [0.25]
- 2. What was the best quality essay? [0.125]
- 3. What was the lowest quality essay? [0.125]
- 4. Briefly describe marking patterns in Essay 22 (Figure 7.2). [0.5]

Ex. 4.3 Read "Calibrating Markers".

- 1. Briefly describe how was the behavior of markers assessed. [0.25]
- 2. Markers 57, 25, 43, and 24 are describes as "typical", "harsh", "lenient", and "noncommittal". Briefly describe why. [0.75]
- 3. Explain why different uses of grades does not have to be source of misfit. [0.125]
- 4. How could the different use of grades be avoided? Provide some examples. [0.25]

5 Provide feedback

Here you can provide feedback on lecture, lab session and/or materials (slides, video presentation, HW assignment, ShinyItemAnalysis application, etc.) [1pt bonus] :)