

František Hakl

ICS AS CR hakl@cs.cas.cz

May 2013

František Hakl

ICS AS CR

<ロ> <同> <同> < 同> < 同>

<ロ> <同> <同> < 回> < 回>

Definition (operators atural, atural and atural)

Let
$$\vec{x} = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n) \in \{-1, +1\}^n$$
. Then define the numbe $\vec{x}^{int} \in \{0, \dots, 2^n - 1\}$ as $\vec{x}^{int} \stackrel{\text{def}}{=} \sum_{k=1}^n \left(\frac{\vec{x}_{k+1}}{2}\right) 2^{n-k}$.
Further let $i \in \{1, \dots, 2^n - 1\}$ and $\vec{\alpha} \in \{0, 1\}^n$ such that $i = \sum_{j=1}^n \vec{\alpha}_j 2^{n-j}$. Then $i^{bin} \stackrel{\text{def}}{=} \vec{\alpha}$ and $i^{pm1} \stackrel{\text{def}}{=} 2 \cdot \vec{\alpha} - \vec{1}$.

Example

•
$$((1,-1,1,1,-1,-1)^T)^{int} = 2^5 + 2^3 + 2^2 = 44,$$

2
$$44^{bin} = (1, 0, 1, 1, 0, 0)^T$$
,

3
$$44^{pm1} = (1, -1, 1, 1, -1, -1)^T$$
,

•
$$i = (i^{pm1})^{int}$$
 and $\vec{x} = (\vec{x}^{int})^{pn}$

František Hakl

Classes of Boolean circuits

ICS AS CR

Sylvester's construction	Threshold vectors	Basic parity	Symetric vectors	LT ₂ , LT ₃
Definition (Ja	ames Joseph Sylv	ester, 1867)		
Let $\boldsymbol{B}^{(1)} \stackrel{\text{def}}{=}$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and B	(n) $\stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{B}^{(n-1)} \\ \boldsymbol{B}^{(n-1)} \end{pmatrix}$	$egin{array}{c} {m B}^{(n-1)} \ -{m B}^{(n-1)} \end{array} ight)$. Than	
the matrix B	B ⁽ⁿ⁾ is a parity ma	atrix of degree	n.	

Lemma

• $\mathbf{B}^{(n)}$ is symmetric Hadamard matrix $(\mathbf{B}^{(n)} \cdot \mathbf{B}^{(n)^T} = 2^n \mathbf{I})$, • for all $\vec{\mathbf{i}}, \vec{\mathbf{j}} \in \{0, 1\}^n$ is

$$\boldsymbol{B}^{(n)}_{\boldsymbol{\vec{j}}^{int},\boldsymbol{\vec{j}}^{int}} = \left(-1\right)^{\sum_{\alpha=1}^{n} \boldsymbol{\vec{l}}_{\alpha},\boldsymbol{\vec{j}}_{\alpha}},$$

(rows and cols of $B^{(n)}$ are numbered from 0 to $2^n - 1$).

ヘロト ヘ回ト ヘヨト ヘヨト

ICS AS CR

František Hakl

$B^{(4)}$ $B^{(8)}$	Sylvester's construction	Threshold vectors	Basic parity Symetric vectors	LT ₂ , LT ₃
$B^{(4)}$ $B^{(8)}$				
$B^{(4)}$ $B^{(8)}$				
		-(1)	-(9)	
		B ⁽⁴⁾	$B^{(\circ)}$	
			``&`&`&`&`&`&`&`&`&`&`&`&`&`&`&`&`&`&`	
			🔳 "A <u>"A"</u> A"A A <u>ATA</u> "A <u>ATA</u> "A <u>ATA</u> "A	
			KANK <u>KAN</u> KKANKK <u>K</u> Y	
		▃▀▁▁▀▁▇▆▁▀	ANIANIANIANIANIANIA	
			<i>\$</i>	
			🔳 "#\$\$\$!###\$\$\$!##########################	
		▁ ┩▁ <u>┩</u> _		
			🗖 ANNA LA INANA ANA ANA	

・ロト・「日下・「日下・「日下」 シック

ICS AS CR

František Hakl

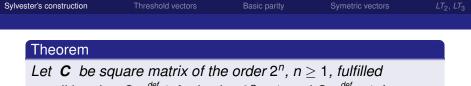
Sylvester's construction		old vectors	Basic parity	Symetric vectors	LT_2, LT_3
Definition					
Square matrix	A is	INCREASIN	G if the entries	s in each row and	Ч

Square matrix \boldsymbol{A} is INCREASING if the entries in each row and column forms a nondecreasing sequence. Square matrix \boldsymbol{A} is POTENTIALLY INCREASING iff there exist permutation matrices \boldsymbol{P} and \boldsymbol{Q} such that the matrix $\boldsymbol{P} \cdot \boldsymbol{A} \cdot \boldsymbol{Q}$ is increasing.

Lemma

A square matrix **A** with entries ± 1 is potentially increasing iff does not contain submatrix of the forms $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$.

František Hakl



condition that $C_{i,j} \stackrel{\text{def}}{=} 1$ for $i + j \le 2^n + 1$ and $C_{i,j} \stackrel{\text{def}}{=} -1$ for $i + j > 2^n + 1$ (C has on collateral diagonal and upon 1 only, bellow -1 only). Further let us assume that the matrix D is arbitrary potentially increasing matrix of the order 2^n . Than:

$$2^{n}(n+1) = \left\langle \boldsymbol{B}^{(n)} \, | \, \boldsymbol{C} \right\rangle \geq \left\langle \, \boldsymbol{B}^{(n)} \, | \, \boldsymbol{D} \right\rangle.$$

=: Let $\tau(n) \stackrel{\text{def}}{=} \langle \mathbf{B}^{(n)} | \mathbf{C} \rangle$ and ϕ_n^+ and ϕ_n^- denotes numbers of 1 and -1 in the matrix $\mathbf{B}^{(n)}$, respectively. Then $\phi_n^+ - \phi_n^- = 2^n$ implies $\tau(n) = 2^n + 2 \cdot \tau(n-1)$. \geq : induction

・ロト ・回ト ・ヨト ・ヨト

ICS AS CR

František Hakl

Sylvester's construction	Threshold vectors	Basic parity	Symetric vectors	LT ₂ , LT ₃
Definition				
Let the funct	ion $\widetilde{sgn}: \Re^n \to \{$	-1 ± 1 is d	efined as	
	f $x > 0$ and \widetilde{sgn} (
sgn(z) = 11	f x > 0 and sgn ($Z) = -1$ If $X \leq -1$	<u>≤</u> 0.	
Definition				

Definition

Let $\vec{x}_1, \ldots, \vec{x}_S$ be vectors from the space $\{-1, +1\}^n$. Than say that vector \vec{y} is THRESHOLD VECTOR of $\vec{x}_1, \ldots, \vec{x}_S$, if there exists numbers w_1, \ldots, w_S such that vector $\sum_{i=1}^S w_i \cdot \vec{x}_i$ has only nonzero components and it holds that:

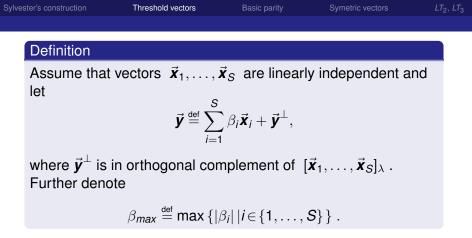
$$\vec{\boldsymbol{y}} \stackrel{\text{def}}{=} \widetilde{sgn} \left(\sum_{i=1}^{S} w_i \cdot \vec{\boldsymbol{x}}_i \right).$$

(日) (四) (日) (日)

ICS AS CR

(Here, function \widetilde{sgn} is applied to vector componentwise).

František Hakl



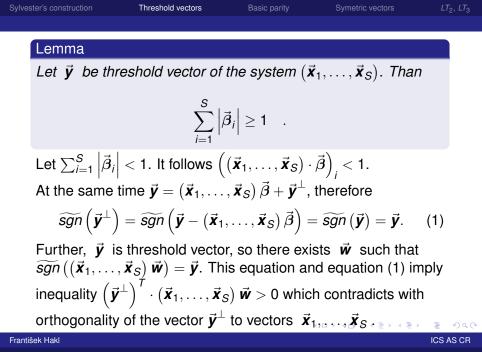
Numbers β_i can be evaluated using pseudoinverse matrices: Let $\boldsymbol{X} \stackrel{\text{def}}{=} (\vec{\boldsymbol{x}}_1, \dots, \vec{\boldsymbol{x}}_S)^T$. Than holds

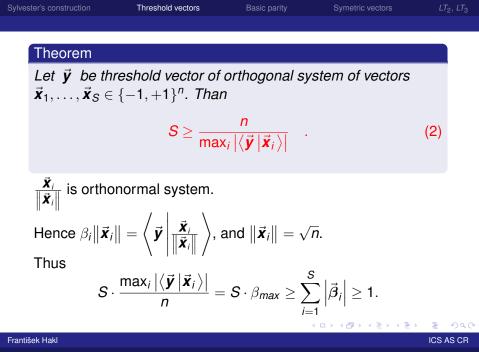
$$\vec{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \vec{\boldsymbol{y}}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

ICS AS CR

František Hakl





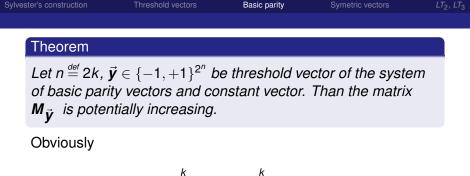
Basic parity vectors \vec{p}_i (dim = 2^{2k}) and corresponding conjugated matrices $M_{\vec{p}_i}$

$ \left(\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	$ \left(\begin{array}{c} 1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ \end{array}\right) $	$\left(\begin{array}{c} 1\\ -1\\ -1\\ -1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -$	$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	$\left(\begin{array}{c}1\\1\\1\\1\end{array}\right)$	1 –1 1 –1 1 –1 1 –1	$\begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$	$\left(\begin{array}{c}1\\1\\1\\1\end{array}\right)$	-1 1 -1 1 -1 1 -1 1	$\begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$
$ \left(\begin{array}{c} -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\$	$ \left(\begin{array}{c} 1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1 \end{array}\right) $	$ \left \begin{array}{c} 1\\ -1\\ -1\\ -1\\ 1\\ -1\\ -1\\ -1\\ -1 \right) \right $	$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\left(\begin{array}{c}1\\1\\-1\\-1\end{array}\right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$	$\left(\begin{array}{c}1\\-1\\1\\-1\end{array}\right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

ICS AS CR

František Hakl



$$\vec{\mathbf{y}} = \sum_{j=1}^{\kappa} \alpha_j \cdot \vec{\mathbf{p}}_j + \sum_{j=1}^{\kappa} \beta_j \cdot \vec{\mathbf{p}}_{k+j}$$

 $oldsymbol{M}_{ec{oldsymbol{y}}} = \sum_{j=1}^k lpha_j \cdot oldsymbol{M}_{ec{oldsymbol{p}}_j} + \sum_{j=1}^k eta_j \cdot oldsymbol{M}_{ec{oldsymbol{p}}_{k+j}} \stackrel{ ext{def}}{=} oldsymbol{A} + oldsymbol{B}$

 $RM_{\vec{v}}S = R(A + B)S = RAS + RBS = AS + RB$

František Hakl

So

ICS AS CR

ヘロト ヘ回ト ヘヨト ヘヨト

Definition
Let
$$\vec{y} \in \{-1, +1\}^{2^n}$$
. Then a vector \vec{y} is SYMMETRIC iff
 $(\forall i, j \in \{0, ..., 2^n - 1\}) \left[\left(\sum_{k=1}^n (i^{bin})_k = \sum_{k=1}^n (j^{bin})_k \Rightarrow \vec{y}_i = \vec{y}_j \right] .$
• columns of $\boldsymbol{B}^{(n)}$
• majority function

Symetric vectors

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

2

ICS AS CR

$$\vec{\boldsymbol{g}}_{i}^{(n)} \stackrel{\text{def}}{=} \begin{cases} -1 & \sum_{l=1}^{n} (i^{bin})_{l} \equiv 4 \mod 0, 1 \\ pro & \\ 1 & \sum_{l=1}^{n} (i^{bin})_{l} \equiv 4 \mod 2, 3. \end{cases}$$

František Hakl

٢

Theorem

Let $n \in N$ and a vector $\vec{y} \in \{-1, +1\}^{2^n}$ is symmetric. Let d_1, \ldots, d_m be lengths of successive constant blocks of the sequence

 $\vec{y}_0, \vec{y}_{2^1-1}, \vec{y}_{2^2-1}, \dots, \vec{y}_{2^n-1}.$ Further for each $k \in \{1, \dots, m\}$ and $\vec{x} \in \{-1, +1\}^n$ is

$$\widetilde{v}_k\left(\vec{\boldsymbol{x}}\right) \stackrel{\text{\tiny def}}{=} \widetilde{sgn}\left(\sum_{j=1}^n \vec{\boldsymbol{x}}_j + n - 2\sum_{j=1}^k d_j + \frac{1}{2}\right).$$

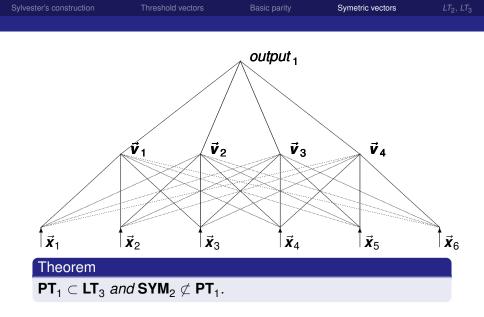
Then

$$-\vec{\boldsymbol{y}}_{0}\left(1-\sum_{j=1}^{m}\left(-1\right)^{j}\left(\widetilde{\boldsymbol{v}}_{j}\left(\vec{\boldsymbol{x}}\right)-1\right)\right)=\vec{\boldsymbol{y}}_{\vec{\boldsymbol{X}}^{int}}.$$

・ロ・・雪・・雪・・雪・・

ICS AS CR

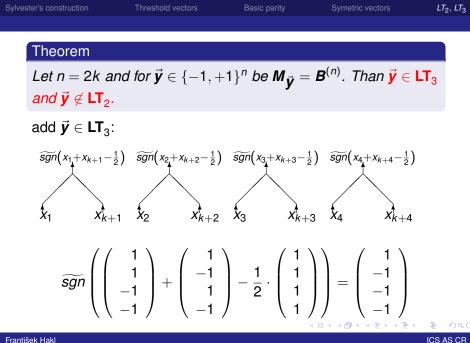
František Hakl



◆□ > ◆□ > ◆臣 > ◆臣 > ○ ○ ○ ○ ○ ○

ICS AS CR

František Hakl



František Hakl

now, let $\vec{y} \in LT_2$: \vec{y} is threshold vector of $\{\vec{p}_1, \dots, \vec{p}_S\} \cup \{\text{threshold vectors of vectors } \vec{p}_1, \dots, \vec{p}_S\}$. All whose conjugated matrices (say M) are potentially increasing so for arbitrary $j \in \{1, \dots, S\}$ the following inequality holds

$$\left\langle \boldsymbol{B}^{(k)} | \boldsymbol{M} \right\rangle = \left\langle \boldsymbol{M}_{\boldsymbol{\vec{y}}} | \boldsymbol{M} \right\rangle \leq (k+1) \cdot 2^{k}.$$

Therefore (remember $S \ge \frac{n}{\max_i \left|\left\langle \vec{\pmb{y}} \mid \vec{\pmb{x}}_i \right\rangle\right|}$) it holds that

$$S\geq \frac{2^n}{(k+1)2^k}=\frac{2\cdot 2^{\frac{n}{2}}}{n+2}.$$

ICS AS CR

František Hakl

Sylvester's construction	Threshold vectors	Basic parity	Symetric vectors	LT ₂ , LT ₃
inequalitigeometry	es	ron × XOR: ● <i>y</i> ⊥ <i>x</i> ₁ a ● <i>M_y</i> con		
	$ \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \widetilde{sgn} \left(\beta \right) $	$F\left(\begin{array}{c}1\\1\\-1\\-1\end{array}\right)+\gamma$	$\begin{pmatrix} 1\\ -1\\ 1\\ -1 \end{pmatrix} \end{pmatrix}$	
$egin{array}{c} eta\ eba\ eaa\ eba\ eaa\ eba\ eaa\ eba\ $	$\left. \begin{array}{c} +\gamma < 0 \\ -\gamma > 0 \\ +\gamma > 0 \\ -\gamma < 0 \end{array} \right\} \rightarrow$	$\left. \begin{array}{l} \beta + \gamma = 0 \\ \beta - \gamma = 0 \end{array} \right\}$	$ \rightarrow \begin{array}{c} \beta = 0 \\ \gamma = 0 \end{array} $	
			 · · · · · · · · · · · · · · · · · · ·	三 つへで
František Hakl				ICS AS CR