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Definition (operators \, [ and ])

Let ~x =
(
~x1, ~x2, · · · , ~xn

)
∈ {−1,+1}n. Then define the number

~x int ∈{0, . . . ,2n − 1} as ~x int def
=
∑n

k=1

(
~x k+1

2

)
2n−k .

Further let i∈{1, . . . ,2n − 1} and ~α ∈ {0,1}n such that
i =

∑n
j=1 ~αj2n−j . Then ibin def

= ~α and ipm1 def
= 2 · ~α− ~1.

Example

1

(
(1,−1,1,1,−1,−1)T

)int
= 25 + 23 + 22 = 44,

2 44bin = (1,0,1,1,0,0)T ,
3 44pm1 = (1,−1,1,1,−1,−1)T ,

4 i =
(
ipm1)int and ~x =

(
~x int
)pm1

.
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Definition (James Joseph Sylvester, 1867)

Let B(1) def
=
(

1
1

1
−1

)
and B(n) def

=

(
B(n−1)

B(n−1)
B(n−1)

−B(n−1)

)
. Than

the matrix B(n) is a parity matrix of degree n.

Lemma

1 B(n) is symmetric Hadamard matrix (B(n) · B(n)T
= 2nI),

2 for all~i ,~j ∈ {0,1}n is

B(n)
~i

int
,
~j

int =
(
−1
)∑n

α=1
~iα·~jα

,

(rows and cols of B(n) are numbered from 0 to 2n − 1).
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B(4) B(8)
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Definition
Square matrix A is INCREASING if the entries in each row and
column forms a nondecreasing sequence. Square matrix A is
POTENTIALLY INCREASING iff there exist permutation matrices
P and Q such that the matrix P · A ·Q is increasing.

Lemma
A square matrix A with entries ±1 is potentially increasing iff
does not contain submatrix of the forms

(
1
−1
−1

1

)
or
(
−1

1
1
−1

)
.
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Theorem
Let C be square matrix of the order 2n, n ≥ 1, fulfilled
condition that C i,j

def
= 1 for i + j ≤ 2n + 1 and C i,j

def
= −1 for

i + j > 2n + 1 ( C has on collateral diagonal and upon 1 only,
bellow −1 only). Further let us assume that the matrix D is
arbitrary potentially increasing matrix of the order 2n. Than:

2n(n + 1) =
〈

B(n) |C
〉
≥
〈

B(n) |D
〉
.

= : Let τ(n) def
=
〈

B(n) |C
〉

and φ+n and φ−n denotes numbers of 1

and −1 in the matrix B(n) , respectively. Then φ+n − φ−n = 2n

implies τ(n) = 2n + 2 · τ(n − 1).
≥ : induction
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Definition

Let the function s̃gn : <n → {−1,+1} is defined as
s̃gn (z) def

= 1 if x > 0 and s̃gn (z) def
= −1 if x ≤ 0.

Definition

Let ~x1, . . . , ~xS be vectors from the space {−1,+1}n . Than
say that vector ~y is THRESHOLD VECTOR of ~x1, . . . , ~xS , if
there exists numbers w1, . . . ,wS such that vector

∑S
i=1 wi · ~x i

has only nonzero components and it holds that:

~y def
= s̃gn

(
S∑

i=1

wi · ~x i

)
.

(Here, function s̃gn is applied to vector componentwise).
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Definition

Assume that vectors ~x1, . . . , ~xS are linearly independent and
let

~y def
=

S∑
i=1

βi~x i + ~y⊥,

where ~y⊥ is in orthogonal complement of [~x1, . . . , ~xS]λ .
Further denote

βmax
def
= max {|βi | |i∈{1, . . . ,S}} .

Numbers βi can be evaluated using pseudoinverse matrices:
Let X def

=
(
~x1, . . . , ~xS

)T . Than holds

~β =
(

X T X
)−1

X T~y .
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Lemma

Let ~y be threshold vector of the system
(
~x1, . . . , ~xS

)
. Than

S∑
i=1

∣∣∣~βi

∣∣∣ ≥ 1 .

Let
∑S

i=1

∣∣∣~βi

∣∣∣ < 1. It follows
((
~x1, . . . , ~xS

)
· ~β
)

i
< 1.

At the same time ~y =
(
~x1, . . . , ~xS

)
~β + ~y⊥, therefore

s̃gn
(
~y⊥
)
= s̃gn

(
~y −

(
~x1, . . . , ~xS

)
~β
)
= s̃gn

(
~y
)
= ~y . (1)

Further, ~y is threshold vector, so there exists ~w such that
s̃gn

((
~x1, . . . , ~xS

)
~w
)
= ~y . This equation and equation (1) imply

inequality
(
~y⊥
)T
·
(
~x1, . . . , ~xS

)
~w > 0 which contradicts with

orthogonality of the vector ~y⊥ to vectors ~x1, . . . , ~xS .
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Theorem

Let ~y be threshold vector of orthogonal system of vectors
~x1, . . . , ~xS ∈ {−1,+1}n. Than

S ≥ n
maxi

∣∣〈~y ∣∣~x i
〉∣∣ . (2)

~x i∥∥∥~x i

∥∥∥ is orthonormal system.

Hence βi
∥∥~x i
∥∥ =

〈
~y

∣∣∣∣∣ ~x i∥∥∥~x i

∥∥∥
〉

, and
∥∥~x i
∥∥ =
√

n.

Thus

S ·
maxi

∣∣〈~y ∣∣~x i
〉∣∣

n
= S · βmax ≥

S∑
i=1

∣∣∣~βi

∣∣∣ ≥ 1.
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Basic parity vectors ~pi (dim = 22k ) and corresponding conjugated matrices M~pi
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Theorem

Let n def
= 2k, ~y ∈ {−1,+1}2n

be threshold vector of the system
of basic parity vectors and constant vector. Than the matrix
M ~y is potentially increasing.

Obviously

~y =
k∑

j=1

αj · ~pj +
k∑

j=1

βj · ~pk+j

So

M ~y =
k∑

j=1

αj ·M ~pj
+

k∑
j=1

βj ·M ~pk+j

def
= A + B

RM ~y S = R (A + B)S = RAS + RBS = AS + RB
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Definition

Let ~y ∈ {−1,+1}2n
. Then a vector ~y is SYMMETRIC iff

(∀i , j∈{0, . . . ,2n − 1})

[(
n∑

k=1

(
ibin
)

k
=

n∑
k=1

(
jbin
)

k
⇒ ~y i = ~y j

]
.

columns of B(n)

majority function

~g(n)
i

def
=


−1

∑n
l=1(i

bin)l ≡ 4 mod 0,1
pro

1
∑n

l=1(i
bin)l ≡ 4 mod 2,3.
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Theorem

Let n ∈ N and a vector ~y ∈ {−1,+1}2n
is symmetric. Let

d1, . . . ,dm be lengths of successive constant blocks of the
sequence

~y0, ~y21−1, ~y22−1, . . . , ~y2n−1.
Further for each k ∈{1, . . . ,m} and ~x ∈ {−1,+1}n is

ṽk
(
~x
) def
= s̃gn

 n∑
j=1

~x j + n − 2
k∑

j=1

dj +
1
2

.
Then

−~y0

1−
m∑

j=1

(−1)j (ṽj
(
~x
)
− 1
) = ~y ~x int .
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6~x1
6~x2

6~x3
6~x4

6~x5
6~x6

~v 1 ~v 2 ~v 3 ~v 4~v 1 ~v 2 ~v 3 ~v 4~v 1 ~v 2 ~v 3 ~v 4~v 1 ~v 2 ~v 3 ~v 4~v 1 ~v 2 ~v 3 ~v 4~v 1 ~v 2 ~v 3 ~v 4

output 1output 1output 1output 1

Theorem
PT1 ⊂ LT3 and SYM2 6⊂ PT1.

František Hakl ICS AS CR

Classes of Boolean circuits



Sylvester’s construction Threshold vectors Basic parity Symetric vectors LT2, LT3

Theorem

Let n = 2k and for ~y ∈ {−1,+1}n be M ~y = B(n). Than ~y ∈ LT3

and ~y 6∈ LT2.

add ~y ∈ LT3:

x16
�
��

xk+16
@

@@
6

s̃gn(x1+xk+1− 1
2)

x26
�
��

xk+26
@

@@
6

s̃gn(x2+xk+2− 1
2)

x36
�
��

xk+36
@

@@
6

s̃gn(x3+xk+3− 1
2)

x46
�
��

xk+46
@
@@
6

s̃gn(x4+xk+4− 1
2)

s̃gn




1
1
−1
−1

+


1
−1

1
−1

− 1
2
·


1
1
1
1


 =


1
−1
−1
−1
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now, let ~y ∈ LT2:
~y is threshold vector of{
~p1, . . . , ~pS

}
∪
{

threshold vectors of vectors ~p1, . . . , ~pS} . All
whose conjugated matrices (say M ) are potentially increasing
so for arbitrary j∈{1, . . . ,S} the following inequality holds〈

B(k) |M
〉
=
〈

M ~y |M
〉
≤ (k + 1) · 2k .

Therefore (remember S ≥ n
maxi

∣∣∣〈~y ∣∣∣~x i

〉∣∣∣ ) it holds that

S ≥ 2n

(k + 1)2k =
2 · 2

n
2

n + 2
.
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Perceptron× XOR:
inequalities
geometry

~y⊥~x1 and ~y⊥~x2

M ~y contains
(
−1

1
1
−1

)

−1

1
1
−1

 = s̃gn

β


1
1
−1
−1

+ γ


1
−1

1
−1




β + γ < 0
β − γ > 0
β + γ > 0
β − γ < 0

→
β + γ = 0
β − γ = 0

}
→ β = 0

γ = 0
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