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Wisdom

Nature

Process Ours

(learning algorithm)

X̄ , P̃ C

xi

0 or 1

xi

0 or 1

c̄

produce xi ∈ X̄

if asked

by density P̃

do something
ask Process

if necessary
or Wisdom

when finished
select h̄ ∈ C

h̄ should be

else
return 0

if xi ∈ c̄
return 1

"resemble" to c̄

fixed set X̄ and concept class C ⊂ 2X̄

hypothesis h̄ ∼ c̄

define probability P̃ over X̄ and choose target concept c̄ ∈ C
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" h̄ should be resemble to c̄ "

h̄2

P̃ = 0.1

h̄1

c̄ c̄

P̃ = 0.1 P̃ = 0.1

P̃ = 0.1

Definition

1 eP̃

(
h̄, c̄
) def

= P̃
(
c̄ 4 h̄

) (
=
(

c̄
.
−h̄
)
∪
(

h̄
.
−c̄
))

2 h̄ is consistent if and only if {xi , . . . , xm} ∩
(
c̄ 4 h̄

)
= ∅
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Definition (sample space)

Let
^
x def

= {x1, . . . , xm}, xi ∈ X̄ , i∈{1, . . . ,m} , ~z ∈ {−1,+1}m
and let c̄ ⊂ X̄ . Then the ordered tuple(

^
x , ~z

)
is a m-SAMPLE OF CONCEPT c̄ if and only if

(∀i∈{1, . . . ,m})
(
(xi ∈ c̄)⇔

(
~z i = 1

))
.

For concept class C define SAMPLE SPACE OF CONCEPT

CLASS as

S̄C
def
=
⋃

m≥1

{⋃
c̄∈C

{(
^
x , ~z

) ∣∣∣(^x , ~z) is a m-sample of concept c̄
}}

.

A set b̄ ⊂ X̄ is CONSISTENT SET with sample
(
^
x , ~z

)
if and only

if for all i∈{1, . . . ,m} , holds
(
xi ∈ b̄ ⇔ ~z i = 1

)
.
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Definition ((ε, δ)-learning algorithm)

1 (ε, δ)-LEARNING ALGORITHM is each mapping Ã∗ : S̄C → C
such that for all c̄ ∈ C, ε, δ ∈ (0,1) and P̃ on X̄ , the
probability of the set{
^
x
∣∣∣(^x , ~z) is m-sample of c̄ and eP̃

(
c̄, Ã∗

((
^
x , ~z

)))
≥ ε
}

is smaller than the number δ.
2 If such a learning algorithm exists we say that C IS

UNIFORMLY LEARNABLE .
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Theorem

Let us assume that C is a concept class over finite set X̄ and
H = C. Then, for each learning algorithm A∗ requiring

1
ε

ln
(
|C|
δ

)
queries and producing for the given concept c̄ ∈ C a consistent
hypothesis it holds that

ProbP̃

(
eP̃

(
c̄, Ã∗

((
^
x , ~z

)))
≥ ε
)
< δ.
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Definition

For any arbitrary R ⊂ 2X̄ and for any arbitrary probability
density P̃ defined on X̄ and for an arbitrary ε > 0 let us
define RP̃,ε

def
=
{

r̄ ∈ R
∣∣ProbP̃ (r̄) > ε

}
. Then, we will call

T̄P̃,ε ⊂ X̄ ε-TRANSVERSAL R just if(
∀r̄ ∈ RP̃,ε

)(
r̄ ∩ T̄P̃,ε 6= ∅

)
Example

X̄ = 〈0,1〉n, P̃ uniform on X̄ , R =
{

b̄ ⊂ X̄
∣∣b̄ is a ball

}
, ε = 1

z .

Then T̄ =
{

kε
∣∣k = 0, ··, 1

ε

}n
is a

(
π

n
2 (
√

nε)n

Γ̃( n
2 +1)2n

)
-transversal of R .
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. . . if hypotheses h̄ produced by an algoritm is consistent and
has eP̃

(
h̄, c̄
)
> ε, then {xi , . . . , xm} can’t be ε-transversal of the

system R def
=
{

h̄4 c̄
∣∣h̄ ∈ H

}
. . .

Definition
For each m ≥ 1, ε > 0 let

Q̄m,ε
def
=
{
^
x ∈ X̄ m

∣∣∣^x do not form ε-transversal of R
}

and (assume that
^
x ,

^
y ∈ X̄ m)

J̄2m
ε

def
=
{
^
xy ∈ X̄ 2m

∣∣∣(∃r̄ ∈ RP̃,ε

)(
^
x ∩ r̄ = ∅ and

∣∣∣^y ∩ r̄
∣∣∣ ≥ εm

2

)}
.

. . . the probability of the set Q̄m,ε is a probability of producing
consistent hypothesis with error eP̃

(
h̄, c̄
)
> ε . . .
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Definition
1 The class H is well-behaved if the sets Q̄m,ε and J̄2m

ε are
measurable for any probability P̃ , any m ≥ 1, ε > 0, and
any system of sets R def

=
{

h̄4 c̄
∣∣h̄ ∈ H

}
, where c̄ is an

arbitrary Borelian set.
2 The class H ⊂ 2X̄ is universally separable, if there exists a

countable subset T of the class H such that for all h̄ ∈ H
there exists a sequence {h̄i}∞1 of sets from T such that(
∀x ∈ X̄

)
(∃n ≥ 1)

(
(∀i ≥ n)

(
x ∈ h̄i if and only if x ∈ h̄

))
.

Theorem
If H is universally separable, then H is well-behaved.
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Lemma

Let R 6= ∅ be a concept class and P̃ be probability on X̄ for
which Q̄m,ε and J̄2m

ε are measurable for all m ≥ 1, ε > 0. Then
for each ε > 0 and m ≥ 2

ε

ProbP̃m

(
Q̄m,ε

)
< 2ProbP̃2m

(
J̄2m
ε

)
≤ 2ΠR (2m) 2−

εm
2 .

Lemma

Let m ≥ 1, c̄ ⊂ X̄ , H ⊂ 2X̄ and R def
=
{

h̄4 c̄
∣∣h̄ ∈ H

}
. Then

ΠR (m) = ΠH (m) .

Lemma

Let d = VCdim (H) ∈ N, ε, δ ∈ (0,1), Γ
def
= 2ΠH (2m) 2−

εm
2 . Then

m ≥ max
{

4
ε

log2

(
2
δ

)
,
8d
ε

log2

(
12.611

ε

)}
⇒ Γ ≤ δ .
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Definition
Concept class C is called nontrivial iff

(∃c̄1, c̄2 ∈ C)
(
c̄1 6= c̄2 and

(
c̄1 ∩ c̄2 6= ∅ or c̄1 ∪ c̄2 6= X̄

))
.

Concept class is called trivial in other cases.

c̄1 ∩ c̄2

c̄2
.
−c̄1 c̄2

.
−c̄1

X̄
.
−{c̄1 ∪ c̄2}

Two cases of minimal content of nontrivial concept class.
(colored sets are nonempty)
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Theorem (main result of PAC theory)
Let C be a nontrivial, well-behaved class. Then:

1 If VCdim (C) = d < +∞. Then
1 for any 0 < ε < 1

2 there is no (ε, δ)-learning algorithm with
number of queries less than

max
(

1− ε
ε

ln
(

1
δ

)
,d (1− 2 (ε (1− δ) + δ))

)
. (1)

2 for arbitrary 0 < ε < 1, any learning algorithm using at least

max
(

4
ε

log2

(
2
δ

)
,

8d
ε

log2

(
12.611

ε

))
(2)

queries and returning a consistent hypothesis is an
(ε, δ)-learning algorithm.

2 C is uniformly learnable if and only if VCdim (C) < +∞.
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Sketch of the proof:
1 1 1−ε

ε
ln
( 1
δ

)
: (c&c) Any nontrivial concept class can be

reduced to one of the cases discussed above. For uniform
probability we get a contradiction.
d (1− 2 (ε (1− δ) + δ)): (c&c) Reduce X̄ to d-element
subset with uniform probability. Then use the "matrix"
Z c̄,h̄

def
= eP̃

(
c̄, h̄

)
to show, that m > d (1− 2 (ε (1− δ) + δ))

imply that
(
∃h̄∗) contradicts (ε, δ)-property . . . "broadly

speaking".
2 See previous slides.

2 ⇐ (construction) Use Zermelo’s well-ordering theorem to
well-order H̄ . Let algorithm get m-sample of c̄ and return
the first hypothesis consistent with c̄ . The statemet follows
from 1)-2).
⇒ (by contradiction) For any d ∈ N we carry out steps
1)-1)-(second term). Choose (ε, δ) such that
(1− 2 (ε (1− δ) + δ)) > 0. Hence m can’t be
upper-bounded.
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Definition (discrete delta rule)

Let
(
~x1, y1

)
, . . . ,

(
~x t , yt

)
be a given sequence of tuples in

<n × {−1,+1}, t ≥ 1. Further, let vector’s sequence {~w i}∞1
satisfy the following recursive formulas

1 put ~w1
def
= ~0, k = 1

2 let k = k + 1 and J̄ def
=
{

j∈{1, . . . , t}
∣∣s̃gn

(〈
~wk
∣∣~x j
〉)
6= yj

}
1 if J̄ = ∅ put ~wk+1 = ~wk and STOP,
2 else let jk ∈ J̄ be arbitrary. Then put

~wk+1
def
= ~wk + yjk~x jk

and REPEAT step 2).

Then we say that {~w i}∞1 is DELTA SEQUENCE of(
~x1, y1

)
, . . . ,

(
~x t , yt

)
.
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Theorem (delta rule convergence)

Let {~w i}∞1 is a delta sequence and let there exists a vector ~̂w
such that for all indexes i∈{1, . . . , t} holds
s̃gn

(〈
~̂w
∣∣~x i

〉)
= yi . Further let

α
def
= max

i∈{1,...,t}

{∥∥~x i
∥∥2
}

and β
def
= min

i∈{1,...,t}

{∣∣∣〈 ~̂w ∣∣~x i

〉∣∣∣} > 0 .

Then there exists an natural number z > 0 satisfying
~wz+1 = ~wz and z can be estimated as

z ≤
α
∥∥∥ ~̂w∥∥∥2

β2 + 1 .
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Theorem (delta rule complexity)

There exists a linearly separable dichotomy of the {−1,+1}n
such that any integer linear separator

(
~w , t
)

of this dichotomy
satisfies estimation

2
n−2

2 ≤
n∑

k=1

∣∣~wk
∣∣+ |t |.
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Definition (Mangasarian LP)

Let Ā def
=
{
~a1, . . . , ~ai

}
and B̄ def

=
{
~b1, . . . , ~bj

}
be a finite subsets

of the <n . Then MANGASARIAN LINEAR PROBLEM is defined
as the problem find vectors ~y ∈ <i , ~z ∈ <j , ~w ∈ <n and t ∈ <
that minimizes

i∑
α=1

~yα +

j∑
β=1

~zβ

subject to

~yα +
〈
~w
∣∣~aα 〉− t ≥ 1 for α∈{1, . . . , i}

~zβ −
〈
~w
∣∣∣~bβ 〉+ t ≥ 1 for β∈{1, . . . , j}

~yα ≥ 0 for α∈{1, . . . , i}
~zβ ≥ 0 for β∈{1, . . . , j} .
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Theorem

Let Ā def
=
{
~a1, . . . , ~ai

}
and B̄ def

=
{
~b1, . . . , ~bj

}
be a finite subsets

of the <n . Then
1 There exists a linear separator of the sets Ā and B̄ if and

only if the optimal value of the corresponding Mangasarian
LP is zero.

2 If the optimal value of the corresponding Mangasarian LP
is zero and

(
~y∗, ~z∗, ~w∗, t∗

)
is optimal solution, than

(
~w∗, t∗

)
is linear separator of the sets Ā and B̄ .
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. . . a real case . . .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
positive purity

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

se
n
si

ti
v
it

y
ROC

1.0 0.5 0.0 0.5 1.0
discriminant value (bin width 258.87)

0.0

0.5

1.0

1.5

2.0

2.5

#
 n

u
m

 o
f 

e
v
e
n
ts

 i
n
 b

in

Histogram of 'negatives' and 'positives'
 events

The necessary condition on consistency of hypotheses
produced is unsatisfied, PAC model isn’t applicable. We have to

use

Probably Approximately Optimal (PAO) model
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