PAC model	Sample complexity	PAC example	PAO	PAC

PAC learning model

František Hakl

ICS AS CR hakl@cs.cas.cz

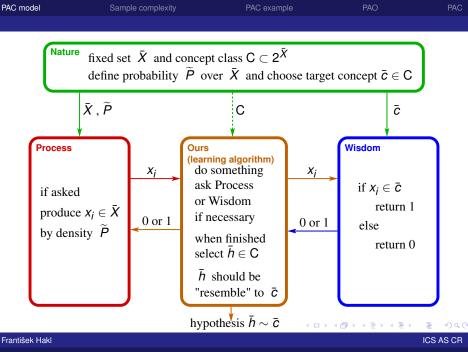
Mar 2013

František Hakl

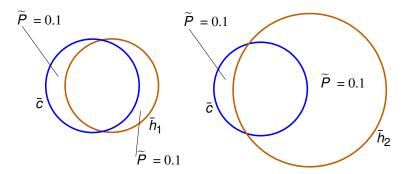
PAC learning model

ICS AS CR

(日)



" \bar{h} should be resemble to \bar{c} "



Definition

$$\ \ \, \bullet_{\widetilde{P}}\left(\bar{h},\bar{c}\right)\stackrel{\text{def}}{=}\widetilde{P}\left(\bar{c}\bigtriangleup\bar{h}\right)\left(=\left(\bar{c}\stackrel{\cdot}{-}\bar{h}\right)\cup\left(\bar{h}\stackrel{\cdot}{-}\bar{c}\right)\right) \\ \ \ \, \bullet_{\widetilde{P}}\left(\bar{c}\bigtriangleup\bar{h}\stackrel{\cdot}{-}\bar{c}\right) = \left(\bar{c}\overset{\cdot}{-}\bar{b}\stackrel{\cdot}{-}\overset{$$

3 \bar{h} is consistent if and only if $\{x_i, \ldots, x_m\} \cap (\bar{c} \bigtriangleup \bar{h}) = \emptyset$

František Hakl

PAC learning model

ICS AS CR

ヘロン ヘロン ヘビン ヘビン

PAC example

PAO

PAC

ICS AS CR

Definition (sample space)

Let $\breve{x} \stackrel{\text{def}}{=} \{x_1, \ldots, x_m\}, x_i \in \bar{X}, i \in \{1, \ldots, m\}$, $\vec{z} \in \{-1, +1\}^m$ and let $\bar{c} \subset \bar{X}$. Then the ordered tuple

$$\left(\breve{x}, \vec{z}\right)$$

is a *m*-SAMPLE OF CONCEPT \bar{c} if and only if

$$(\forall i \in \{1,\ldots,m\}) ((x_i \in \bar{c}) \Leftrightarrow (\bar{z}_i = 1)).$$

For concept class C define SAMPLE SPACE OF CONCEPT CLASS as

$$\bar{S}_{\mathsf{C}} \stackrel{\text{\tiny def}}{=} \bigcup_{m \ge 1} \left\{ \bigcup_{\bar{c} \in \mathsf{C}} \left\{ \left(\widecheck{x}, \vec{z} \right) \left| \left(\widecheck{x}, \vec{z} \right) \right. \text{ is a } m \text{-sample of concept } \bar{c} \right. \right\} \right\}.$$

František Hakl

Definition ((ϵ, δ)-learning algorithm)

• (ϵ, δ)-LEARNING ALGORITHM is each mapping $\widetilde{A^*} : \overline{S}_C \to C$ such that for all $\overline{c} \in C$, $\epsilon, \delta \in (0, 1)$ and \widetilde{P} on \overline{X} , the probability of the set

$$\left\{ \widecheck{\boldsymbol{x}} \left| \left(\widecheck{\boldsymbol{x}}, \overrightarrow{\boldsymbol{z}} \right) \text{ is } m \text{-sample of } \overline{\boldsymbol{c}} \text{ and } e_{\widetilde{\boldsymbol{P}}} \left(\overline{\boldsymbol{c}}, \widetilde{\boldsymbol{A}^*} \left(\left(\widecheck{\boldsymbol{x}}, \overrightarrow{\boldsymbol{z}} \right) \right) \right) \geq \epsilon \right\}$$

is smaller than the number δ .

If such a learning algorithm exists we say that C IS UNIFORMLY LEARNABLE.

Theorem

Let us assume that C is a concept class over finite set \bar{X} and H = C. Then, for each learning algorithm A^{*} requiring

 $\frac{1}{\epsilon} \ln \left(\frac{|\mathbf{C}|}{\delta} \right)$

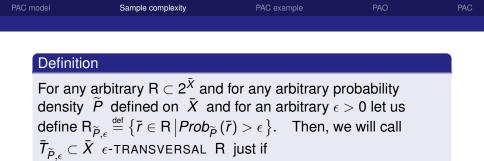
queries and producing for the given concept $\bar{c} \in C$ a consistent hypothesis it holds that

$$\operatorname{Prob}_{\widetilde{P}}\left(\operatorname{e}_{\widetilde{P}}\left(\overline{c},\widetilde{A^{*}}\left(\left(\widecheck{x},\overrightarrow{z}\right)\right)\right) \geq \epsilon\right) < \delta.$$

→ E → < E →</p>

ICS AS CR

František Hakl



$\left(\forall \overline{r} \in \mathsf{R}_{\widetilde{P},\epsilon} \right) \left(\overline{r} \cap \overline{T}_{\widetilde{P},\epsilon} \neq \emptyset \right)$

Example

$$\bar{X} = \langle 0, 1 \rangle^n$$
, \tilde{P} uniform on \bar{X} , $R = \{\bar{b} \subset \bar{X} | \bar{b} \text{ is a ball} \}$, $\epsilon = \frac{1}{z}$.
Then $\bar{T} = \{k\epsilon | k = 0, \cdots, \frac{1}{\epsilon}\}^n$ is a $\left(\frac{\pi^{\frac{n}{2}}(\sqrt{n}\epsilon)^n}{\tilde{\Gamma}(\frac{n}{2}+1)2^n}\right)$ -transversal of R.

・ロ・・聞・・思・・思・ のぐら

ICS AS CR

František Hakl

PAC

ICS AS CR

... if hypotheses \bar{h} produced by an algoritm is consistent and has $e_{\tilde{P}}(\bar{h}, \bar{c}) > \epsilon$, then $\{x_i, \ldots, x_m\}$ can't be ϵ -transversal of the system $R \stackrel{\text{def}}{=} \{\bar{h} \bigtriangleup \bar{c} | \bar{h} \in H\} \dots$

Definition

For each $m \ge 1$, $\epsilon > 0$ let

$$ar{Q}_{m,\epsilon} \stackrel{\text{\tiny def}}{=} \left\{ egin{array}{c} ec{x} \in ar{X}^m \, \Big| \, egin{array}{c} ec{x} \, \, ext{do not form } \epsilon ext{-transversal of R} \end{array}
ight\}$$

and (assume that $\breve{x}, \breve{y} \in \bar{X}^m$)

$$\bar{J}_{\epsilon}^{2m} \stackrel{\text{\tiny def}}{=} \Big\{ \widecheck{xy} \in \bar{X}^{2m} \left| \left(\exists \bar{r} \in \mathsf{R}_{\widetilde{P},\epsilon} \right) \left(\widecheck{x} \cap \bar{r} = \emptyset \text{ and } \left| \widecheck{y} \cap \bar{r} \right| \geq \frac{\epsilon m}{2} \right) \Big\}.$$

... the probability of the set $\bar{Q}_{m,\epsilon}$ is a probability of producing consistent hypothesis with error $e_{\tilde{P}}(\bar{h}, \bar{c}) > \epsilon \dots$

František Hakl

Definition

- The class H is well-behaved if the sets $\bar{Q}_{m,\epsilon}$ and \bar{J}_{ϵ}^{2m} are measurable for any probability \tilde{P} , any $m \ge 1, \epsilon > 0$, and any system of sets $R \stackrel{\text{def}}{=} \{\bar{h} \bigtriangleup \bar{c} | \bar{h} \in H\}$, where \bar{c} is an arbitrary Borelian set.
- 2 The class $H \subset 2^{\bar{X}}$ is universally separable, if there exists a countable subset T of the class H such that for all $\bar{h} \in H$ there exists a sequence $\{\bar{h}_i\}_1^\infty$ of sets from T such that

$$(orall x \in ar{X}) \ (\exists n \geq 1) \ ((orall i \geq n) \ (x \in ar{h}_i \ ext{ if and only if } x \in ar{h})) \ .$$

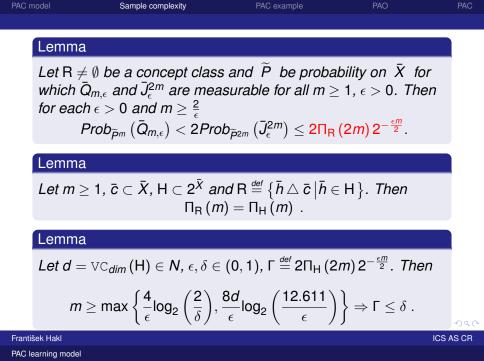
・ロト ・回ト ・ヨト ・ヨト

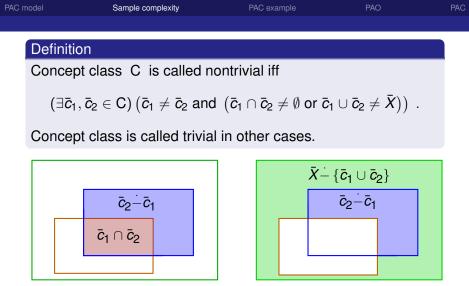
ICS AS CR

Theorem

If H is universally separable, then H is well-behaved.

František Hakl





Two cases of minimal content of nontrivial concept class. (colored sets are nonempty)

ICS AS CR

František Hakl

PAC

ICS AS CR

Theorem (main result of PAC theory)

Let C be a nontrivial, well-behaved class. Then:

- If $\operatorname{VC}_{dim}(C) = d < +\infty$. Then
 - for any $0 < \epsilon < \frac{1}{2}$ there is no (ϵ, δ) -learning algorithm with number of queries less than

$$\max\left(\frac{1-\epsilon}{\epsilon}\ln\left(\frac{1}{\delta}\right), d\left(1-2\left(\epsilon\left(1-\delta\right)+\delta\right)\right)\right) .$$
 (1)

2) for arbitrary 0 $<\epsilon<$ 1, any learning algorithm using at least

$$\max\left(\frac{4}{\epsilon}\log_2\left(\frac{2}{\delta}\right), \frac{8d}{\epsilon}\log_2\left(\frac{12.611}{\epsilon}\right)\right)$$
(2)

queries and returning a consistent hypothesis is an (ϵ, δ) -learning algorithm.

2 C is uniformly learnable if and only if $VC_{dim}(C) < +\infty$.

František Hakl

I AO IIIOdel	Cample complexity	I AO EXample	170	TAO
Sketch	of the proof:			

- Sketch of the p
 - ^{1−ε}/_ε ln (¹/_δ): (c&c) Any nontrivial concept class can be reduced to one of the cases discussed above. For uniform probability we get a contradiction.
 - $d(1-2(\epsilon(1-\delta)+\delta))$: (c&c) Reduce \bar{X} to *d*-element subset with uniform probability. Then use the "matrix" $Z_{\bar{c},\bar{h}} \stackrel{\text{def}}{=} e_{\tilde{P}}(\bar{c},\bar{h})$ to show, that $m > d(1-2(\epsilon(1-\delta)+\delta))$ imply that $(\exists \bar{h}^*)$ contradicts (ϵ, δ) -property ... "broadly speaking".
 - See previous slides.
 - \leftarrow (construction) Use Zermelo's well-ordering theorem to well-order \overline{H} . Let algorithm get *m*-sample of \overline{c} and return the first hypothesis consistent with \overline{c} . The statemet follows from 1)-2).

ICS AS CR

• \Rightarrow (by contradiction) For any $d \in N$ we carry out steps 1)-1)-(second term). Choose (ϵ, δ) such that $(1 - 2(\epsilon(1 - \delta) + \delta)) > 0$. Hence *m* can't be upper-bounded.

)

PAC

Definition (discrete delta rule)

Let $(\vec{x}_1, y_1), \dots, (\vec{x}_t, y_t)$ be a given sequence of tuples in $\Re^n \times \{-1, +1\}, t \ge 1$. Further, let vector's sequence $\{\vec{w}_i\}_1^\infty$ satisfy the following recursive formulas

1 put
$$\vec{w}_1 \stackrel{\text{\tiny def}}{=} \vec{\mathbf{0}}, k = 1$$

$$\textbf{2} \text{ let } k = k + 1 \text{ and } \overline{J} \stackrel{\text{\tiny def}}{=} \{ j \in \{1, \dots, t\} \left| \widetilde{sgn} \left(\left\langle \vec{\boldsymbol{w}}_k \left| \vec{\boldsymbol{x}}_j \right\rangle \right) \neq y_j \right\} \right.$$

• if
$$\overline{J} = \emptyset$$
 put $\vec{w}_{k+1} = \vec{w}_k$ and STOP,

2 else let $j_k \in \overline{J}$ be arbitrary. Then put

$$\vec{\boldsymbol{w}}_{k+1} \stackrel{\text{def}}{=} \vec{\boldsymbol{w}}_k + y_{j_k} \vec{\boldsymbol{x}}_{j_k}$$

and REPEAT step 2).

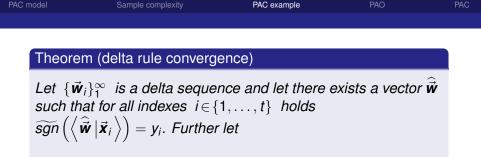
Then we say that $\{\vec{w}_i\}_1^\infty$ is DELTA SEQUENCE of $(\vec{x}_1, y_1), \dots, (\vec{x}_t, y_t)$.

František Hakl

PAC learning model

ICS AS CR

→ E → < E →</p>



$$\alpha \stackrel{\text{\tiny def}}{=} \max_{i \in \{1, \dots, t\}} \left\{ \left\| \vec{\boldsymbol{x}}_i \right\|^2 \right\} \quad \text{and} \quad \beta \stackrel{\text{\tiny def}}{=} \min_{i \in \{1, \dots, t\}} \left\{ \left| \left\langle \widehat{\vec{\boldsymbol{w}}} \right| \vec{\boldsymbol{x}}_i \right\rangle \right| \right\} > 0 \; .$$

Then there exists an natural number z > 0 satisfying $\vec{w}_{z+1} = \vec{w}_z$ and z can be estimated as

$$z \leq rac{lpha \left\| \widehat{ec{m{w}}}
ight\|^2}{eta^2} + 1 \; .$$

イロト イ団ト イヨト イヨト

ICS AS CR

František Hakl

Theorem (delta rule complexity)

There exists a linearly separable dichotomy of the $\{-1,+1\}^n$ such that any integer linear separator (\vec{w},t) of this dichotomy satisfies estimation

$$2^{\frac{n-2}{2}} \leq \sum_{k=1}^n \left| \vec{\boldsymbol{w}}_k \right| + |t|.$$

イロト イヨト イヨト イヨト

ICS AS CR

František Hakl

PAC example

PAC

ヘロン 人間 とくほ とくほう

PAC

Definition (Mangasarian LP)

Let $\bar{A} \stackrel{\text{def}}{=} \{ \vec{a}_1, \dots, \vec{a}_i \}$ and $\bar{B} \stackrel{\text{def}}{=} \{ \vec{b}_1, \dots, \vec{b}_j \}$ be a finite subsets of the \Re^n . Then MANGASARIAN LINEAR PROBLEM is defined as the problem find vectors $\vec{y} \in \Re^i$, $\vec{z} \in \Re^j$, $\vec{w} \in \Re^n$ and $t \in \Re$ that minimizes

$$\sum_{\alpha=1}^{i} \vec{\mathbf{y}}_{\alpha} + \sum_{\beta=1}^{J} \vec{\mathbf{z}}_{\beta}$$

subject to

$$\vec{\boldsymbol{y}}_{\alpha} + \left\langle \vec{\boldsymbol{w}} \mid \vec{\boldsymbol{a}}_{\alpha} \right\rangle - t \geq 1 \quad \text{for} \quad \alpha \in \{1, \dots, i\} \\ \vec{\boldsymbol{z}}_{\beta} - \left\langle \vec{\boldsymbol{w}} \mid \vec{\boldsymbol{b}}_{\beta} \right\rangle + t \geq 1 \quad \text{for} \quad \beta \in \{1, \dots, j\} \\ \vec{\boldsymbol{y}}_{\alpha} \geq 0 \quad \text{for} \quad \alpha \in \{1, \dots, i\} \\ \vec{\boldsymbol{z}}_{\beta} \geq 0 \quad \text{for} \quad \beta \in \{1, \dots, j\} .$$

František Hakl

PAC learning model

ICS AS CR

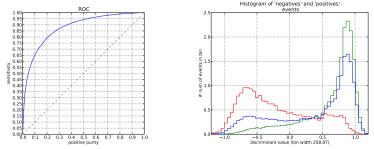
Theorem

Let $\bar{A} \stackrel{\text{\tiny def}}{=} \{ \vec{a}_1, \dots, \vec{a}_i \}$ and $\bar{B} \stackrel{\text{\tiny def}}{=} \{ \vec{b}_1, \dots, \vec{b}_j \}$ be a finite subsets of the \Re^n . Then

- There exists a linear separator of the sets A and B if and only if the optimal value of the corresponding Mangasarian LP is zero.
- 2 If the optimal value of the corresponding Mangasarian LP is zero and $(\vec{y}^*, \vec{z}^*, \vec{w}^*, t^*)$ is optimal solution, than (\vec{w}^*, t^*) is linear separator of the sets \bar{A} and \bar{B} .

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

...a real case ...



The necessary condition on consistency of hypotheses produced is unsatisfied, PAC model isn't applicable. We have to use

Probably Approximately Optimal (PAO) model

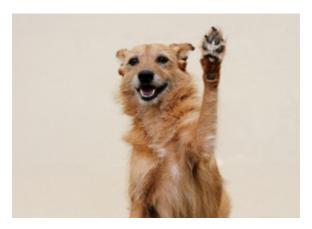
František Hakl

PAC learning model

ICS AS CR

PAC

 $\mathcal{P} \mathcal{A} \mathcal{C}$



・ロト・雪・・雪・・雪・・ 白・ シック・

ICS AS CR

František Hakl