Jizerka, Sep'18

Blind Proxy Voting Implementation

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Blind Proxy Voting Implementation

František Hakl

hakl@cs.cas.cz

Institute of computer science, Prague

Sep 2018

hakl@cs.cas.cz

- Blind Proxy Voting Implementation
- František Hakl
- Requirements
- Actors and roles
- Data flow
- Keys and hash
- Key code example
- Ballot forms examples Matrix example Perm. example
- Rules & Axioms Rules Axioms
- Attacks analysis Table
- Conclusion

Motivation:

- long-term request of some colleagues for distance voting
- expected increase in the number of voters with a probable low participation in direct voting

Statutory requirements for the electoral process:

- **SR**_{No341} : have to meet law №. 341/2005 (Zákon o v.v.i.)
- SR_{§18(5)}: §18 (5) "přímá rovná tajná volba" (e.g. direct equal secret suffrage)

General requirement on electoral process:

- **GR**₁ : allows remote ballot
- **GR**₂ : subsequently check-able (after the voting)
- **GR**₃ : open-and-shut (easy to prepare, easy to vote, easy to evaluate)
- **GR**₄ : trustworthy and transparent
- **GR**₅ : private (should contain identity anti-disclosure mechanisms)
- **GR**₆ : resistant to sabotage and manipulation
- GR₇: not demanding special infrastructure (including internet protocols and connections)
- $\ensuremath{\mathsf{GR}_8}$: the possibility of documenting the election result and recalculation of votes

Sources:

- Haniková Z., "Blind Proxy Voting", Tech. Rep. No. V-1250, ICS AS CR, 2017
- Wikipedia

Human sets:

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

		defined	role	minimal	
		by		requirements	
voters	Ī	law	determine	meet law and	
			$ar{G}_i,\ ar{EB}$	internal regulations	
two	G ₁	Ī	generate and	$\left \bar{G}_{1}\right =\left \bar{G}_{2}\right =1$	
generators	\bar{G}_2		distribute keys	$(\bar{G}_1\cup \bar{G}_2)\cap \bar{V}=\emptyset$	
election	ĒB	Ī	evaluation	$ \bar{EB} \ge 3$	
board			of elections	(odd and >1)	
two	<i>P</i> _{1,v}	voter	represent	$\bar{P}_{1,v}$ and $\bar{P}_{2,v}$	
proxies	Ē _{2,v}	$v\in ar{V}$	voter	mutually unknown	
candidates	Ē	themselves	persons to be	meet law and	
			elected	internal regulations	

- in addition all sets \bar{G}_i , $\bar{P}_{i,v}$, $v \in \bar{V}$, \bar{EB} , \bar{C} must be mutually disjoint
- there is possible that proxy does not know the identity of his/her principal voter
- !!! proxy does not know who is the second proxy and vice-versa !!!

Data-flow sheet:

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Porm example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Cryptography hash functions:

- main properties of cryptography hash:
 - pre-image resistance: for hash h it is difficult to find m such that h = hash(m)
 - second pre-image resistance: for m₁, it is difficult to find a different m₂ such that hash(m₁) = hash(m₂)
 - collision resistance: it is difficult to find tuple $m_1 \neq m_2$ such that $hash(m_1) = hash(m_2)$
- in addition HMAC(K, m) = hash((K' ⊕ opad)||hash((K' ⊕ ipad)||m)) is resistant to length-extension attacks
- widely uses in electronic communication for password store & verification, file integrity check, proof-of-work, file or data identifier, pseudo-random generation, key derivation and other digest applications
- implemented in frequently used programming languages, including php and Python
 - Python 3.6 implements hashlib and hmac libraries: sha3_224(), sha3_256(), sha3_384(), sha3_512(), shake_128(), shake_256(), blake2b(), blake2s() (sha is developed and used by NSA)
 - php7.2: print_r(hash_algos()); lists approximately 50 hash functions (md5, sha, ripemd, whirlpool, tiger, snefru, gost, gost-crypto, adler, crc, fnv, joaat, haval)
- IMPORTANT: 2018 standard CPU (GPU) can compute approximately 10⁶ hashes per second for an input of the length 8

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Axioms

Attacks analysis Table

Conclusion

Keys (suggested example):

\bar{G}_1 generate LETTER keys set

Key	Salt	hash
AfGkDT	f19f774a23ab46b89356f7ce77f6a203	hash(salt.AfGkDT.salt)
DsEgju	08609e5cb43d4b69ba48dd46d73303eb	hash(salt.DsEgju.salt)
DwEjKI	19dd4a6303824e6396b4b971c98fa3ee	hash(salt.DwEjKI.salt)
eERviA	436d52511b0646389f1ab45c0191d7c7	hash(salt.eERviA.salt)
HGEShY	23e28e51a9904b47a667220bf9847ec4	hash(salt.HGEShY.salt)
HSWEja	f5cb0c491729441d98ebf3a6224032aa	hash(salt.HSWEja.salt)
lahdFT	f25cebd3078b4512ad5cad33d502376b	hash(salt.lahdFT.salt)
ldfyFg	74cdb89d710c479e97aa952be9828e27	hash(salt.ldfyFg.salt)
lSiKaF	27c295a0406a4106a1a470a249281925	hash(salt.lSiKaF.salt)
sdgEda	aef5b316c04b47db85f86038bfb61108	hash(salt.sdgEda.salt)
sDhHda	6f8fb80daa944bca89e061b0051eb71c	hash(salt.sDhHda.salt)

\bar{G}_2 generate DIGIT keys set

Key	Salt	hash
136471	a343e926a85740f9b1fc21b1537c1d29	hash(salt.136471.salt)
156434	56cabdf213ca4d0aa9ac26a6fb083a6f	hash(salt.156434.salt)
451587	55e441d45523432cb771f441bf90b681	hash(salt.451587.salt)
458365	3a8b4a6afd0e48bbb49b742c10343a94	hash(salt.458365.salt)
658745	e15dc2e41b3540b19368f25d5a8a91ef	hash(salt.658745.salt)
712732	eb83bc95c1014e6592fac8bb739f2cbc	hash(salt.712732.salt)
746212	98a0c0e7d9fc4440b0d21928e23b3b15	hash(salt.746212.salt)
918396	2e8e013cb8e44d6991479a5382355533	hash(salt.918396.salt)
925319	dd8129a63c944cd5952ad707185105b5	hash(salt.925319.salt)

hakl@cs.cas.cz

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Keys:

- ordered tables of unique keys, salts and hashes are generated by \bar{G}_1 and \bar{G}_2 independently and in secret
- · salts should be at least of 32 hex number
- number of keys generated in each set is roughly four-fold than the number of voters
- both lists of hashes are published
- hash method used is published
- both lists of keys and salts remain secret
- keys and corresponding salts are put into envelopes (separately by both G
 ₁ and G
 ₂, one corresponding tuple (key,salt) per envelope)
- voter randomly chooses just four envelopes with two LETTER (*L*1, *L*2) and two DIGIT (*D*1, *D*2) keys against the signature
- the voter can check to get the keys from the lists (hash method is published, salt is known by voter)

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

```
Ballot forms
examples
Matrix example
Perm. example
```

Rules & Axioms Rules Axioms

```
Attacks
analysis
Table
```

Conclusion

Code generating keys Python3

```
#!/usr/bin/python3
import uuid, hashlib, random, time, string
key array = []; salt array = []; key salt array= []; hash array = [];
sal = string.ascii letters
random seed = input ('Please enter any randomize string:')
random.seed(random seed+str(time.time())) # time prevents retake keys
pool size = input('Please enter pool size (int):')
for v in range(int(pool size)) :
    key v = str(random.randint(100000, 999999)) # DIGIT kevs
#
    key v = ''.join([random.choices( sal )[0] for x in range(6)]) # LETTER keys
    salt v = uuid.uuid4().hex
    en salt = salt_v.encode()
    hash v = hashlib.sha256(en salt + key v.encode() + en salt ).hexdigest()
    hash array.append(hash v + ' \setminus n')
    kev salt arrav.append('\perpage{' + key_v + '}{' + salt_v + '}\n')
key salt array = list( set( key salt array))
sksa = sorted( key salt array); sh = sorted(hash array)
fh = open("./keys/keysandsalts unsorted privat.tex", "w");
fh.writelines(key salt array) ; fh.close()
fh = open("./keys/hashes_sorted_public.txt", "w");
fh.writelines(sh) : fh.close()
fh = open("./keys/keys sorted for eb.txt", "w");
fh.writelines(sksa) ; fh.close()
# the following tuple of rows check key validity
# salt = "put salt here"; my key = "put key here";
# print(hashlib.sha256(salt.encode()+my_key.encode()+salt.encode()).hexdigest())
as.cz
```

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Elections to the ICS Institution Board 2021 Election round N_2 : 2

SALT: 7360f21fb824400f974d1954769fa018

KEY: coLvPR

Use the following Python code to check validity of the key obtained:

import hashlib, string salt = "7360f21fb824400f974d1954769fa018" mykey = "coLvPR" print(hashlib.sha256(salt.encode()+mykey.encode()+salt.encode()).hexdigest())

List of hash values is available at: http://url.to.hash.list

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples

Matrix example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot form: examples Matrix example

Matrix example

Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Ballot forms example (minimal handwriting, fixed number of fields):

(odt/docx blank files will be available, blue text is filled by voter)

CANDIDATE part	't L2-D1 keys IGEShY-458365 'x' exactly!	CHECKBOX part L2-D1 keys HGEShY-458365 Fill in 10 rows with 'x' exactly!
K H L J a 0 i 0 r n b s e z o s l a r f	J A o I S e e n f a 2 3 4 4 x 5 5 6 6 7 7 x 8 9 0 10 11 11 2 12 x 14 x 15	1 x 2 3 x 3 x 4 x 5 6 6 x 7 x 8 9 9 x 10 x 11 x 12 13 13 x 14 15 D2 key: 136471

(Honza, Libor, Alena selected)

CHECKBOX shoot

Blind Proxy Voting Implementation

František Hakl

Actors and

Data flow

Key code example

Perm. example

Axioms

Attacks analysis

	(odt/docx	blank files will be	e availa	ble, blue	text is	filled by voter)	
ANDIDA	TE sheet		L2-D1	keys	CH		
	HG	EShY-458365		HGES	hY-458	3365	
A=number of	filled fields in rov	vs 1–15		X=number of "x" in rows			
B = 6232				Y = 3291			
X * 14	131 – Y * 2092 ·	+ 9785 = Ω		Ω =	A * 1	5220 - B * 1	
Alena	Nobody	1		1	X		
Honza	Beatles	2		2			
Josef		3		3	X		
Karel	blah blah	4		4			
Libor		5		5			
	Karel, Libor	6		6			
	Alena	7		7	X		
	Karel	8		8			
	Ferrari	9		9			
	Libor	10		10	X		
		11		11	X		
	Josef	12		12			
	Honza	13		13	X		
	Mozart	14		14			
	Libor	15		15	X		
L1 key: sdg	da						

Ballot forms example (text version with variable number of fields):

GES	hY-458	365	
X=n	umber o	f "x" in row	/s 1–15
$\mathbf{Y} =$	3291		
Ω =	A * 15	220 – B *	1124 + 46058
1	X		
2			
3	X		
4			
5			
6			
7	x		
8			
9			
10	X		
11	X		
12			
13	X		
14			
15	X		
			D2 kev: 13647

(Honza, Libor, Alena selected, $\Omega = -6776070$)

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example

Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Code generating OG vectors

Python3

```
#!/usr/bin/pvthon3
import random, time, string
random seed = input ('Please enter any randomize string: ')
random.seed(random seed+str(time.time())) # time prevent recalculation
A = int(input('Please enter value of "A" (int): '))
X = int(input('Please enter value of "X" (int); '))
B = random.randint(1000, 10000); Y = random.randint(1000, 10000)
AA = random.randint(10000, 50000); BB = random.randint(1000, 10000)
XX = random.randint(10000, 50000); YY = random.randint(1000, 10000)
Z = random.randint(1000, 10000)
omega = X * XX - Y * YY + Z
C = omega - A*AA + B*BB
while( C < 3000 ) :</pre>
    B = B + 1
    C = omega - A*AA +B*BB
while( C > 50000 ) :
    BB = BB - 1
   C = omega - A*AA +B*BB
left str = "X * d - Y * d + d = Omega" (XX, YY, Z)
right str = "Omega = A * %d - B * %d + %d"%(AA, BB, C)
print("A = %d"%(A)); print("B = %d"%(B)); print( left_str+"\n" )
print("X = %d"%(X)); print("Y = %d"%(Y)); print( right_str+"\n" )
print("Omega = %d"%(omega))
```


Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm example

Rules & Axioms

Rules Axioms

Attacks analysis Table

Conclusion

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms

Rules Axioms

Attacks analysis Table

Conclusion

Evaluation rules:

- $\mathbf{R}_{\mathbf{K}}$: $\overline{G}_{1,2}$ publish lists of all keys with salts and size of $\overline{S}_1 \cap \overline{S}_2$, where $\overline{S}_{1,2}$ are signature lists corresponding to $\overline{G}_{1,2}$
- R_V : a tuple (CANDIDATE, CHECKBOX) of sheets is valid iff
 - R_{VA} : all keys L1, L2, D1, D2 are in key lists and
 - R_{VK}: L2 D1 keys tuple is the same on both sheets and
 - R_{VO} : numbers of filled fields on the opposite sheets are correct and
 - R_{V1}: for a given L2 D1 keys only one such CANDIDATE sheet and one such CHECKBOX sheet are in the ballot box
- $\mathbf{R}_{\mathbf{R}}$: any sheets which does not form a valid tuple will be removed
- R₂: if L1, L2, D1, D2 and L1*, L2*, D1*, D2* are keys for two valid tuples and {L1, L2, D1, D2} ∩ {L1*, L2*, D1*, D2*} ≠ Ø remove both valid tuples
- R_N: the candidate received a vote in a valid tuple if his/her name is in the row in which "x" is present in the CHECKBOX sheet
- **R**_{PL} : finally the following items will be published:
 - **R**_{PL1} : list of *L*2 and *D*1 keys in all valid tuples will be published (without bounds between *L*2 and *D*1)
 - R_{PL2} : list of all keys in invalid sheets will be also published
 - R_{PL3}: for all valid tuples of sheets both of them will be published but WITHOUT upper parts of tables containing L2 – D1 keys and number of filled fields in the second sheet

- František Hakl
- Requirements
- Actors and roles
- Data flow
- Keys and hash
- Key code example
- Ballot forms examples Matrix example Perm. example
- Rules & Axioms Rules Axioms
- Attacks analysis Table
- Conclusion

- Axioms:
 - $\mathbf{A}_{\mathbf{EB}}$: election board is undoubtedly credible and trustworthy
 - A_G : each generator is undoubtedly credible and trustworthy
 - Akeys : the probability of keys matching is negligible
 - A_{hash}: it is infeasible to generate a key from its hash value except by trying all possible salt.key.salt
 - AVPP : each voter know and trust his/her proxy(ies)
 - A_{PP} : proxies does not know each other
 - A_P : each proxy has electoral intentions similar to that of his/her principal voter or does not know who is
 - A_{PI} : proxy identity is known to his/her principal voter only
 - \mathbf{A}_{disj} : \overline{G}_i , $\overline{P}_{i,v}$, $v \in \overline{V}$, \overline{EB} , \overline{C} are mutually disjoint

Validity of election process:

- V_1 : election process is invalid if the number of valid tuples is greater than size of signature lists intersection
- V₂ : election process is invalid if the number of valid tuples is less than predefined number (mainly one half of all voters)

František Hakl

Requirements

- Actors and roles
- Data flow
- Keys and hash
- Key code example
- Ballot forms examples Matrix example Perm. example
- Rules & Axioms Rules Axioms

Attacks analysis

Table

Conclusion

Objectionable secret behavior:

("secret" behavior means that the originator(s) of the action will remain(s) unknown for everybody and forever)

- secret Sabotage of the electoral process (any action which results in the invalidity of the electoral process)
- secret intentional Manipulation of voting result (somebody has the possibility to change voting of someone else in a specific manner)
- secret voter's identity Disclosure (somebody knows the voting of somebody else voter or provides an information leading to such knowledge)
- secret Randomization of voting result (somebody has the possibility randomly change voting of someone else)
- secret Targeted Invalidation of voter's vote (any action which results in the invalid voting of known someone else)
- secret Random Invalidation of voter's vote (any action which results in the invalid voting of unknown someone else)

d Proxy g Imple- ntation	Analys	is of <mark>secret</mark> vio	lation of	election	$1: \left(\frac{1}{a \text{ reason}}\right)$	why ca n that violate	an do / why s the secrecy	can not do or impediments to a	action
išek Hakl			\bar{G}_1	$\bigcup_i \bar{G}_i$	$\bar{P}_{1,v}$	$\bigcup_i \bar{P}_{i,v}$	$m\bar{EB} \cup \bar{P}_{1,v}$	$m\bar{E}B \cup (\bigcup_i \bar{P}_{i,v})$	
			UOK	КК	UOK	UOK	ex post	ex post	
irements		Sabotage	A _G , R _{VA}	A _G , R _{PL}	R _{VA}	no info	ex post	ex post	
s and				(+1)			A _{EB}	A _{EB}	
flow			UOK	МІ	UOK	КК	ex post	ex post	
now		Manipulation	A_{G}, R_{VA}	A _G	A _P ,A _{PP}	A _P ,R _{PL3}	ex post	ex post	
and							A _{EB}	A _{EB}	
ode			MI	MI	КК	КК	КК	КК	
ple		Disclosure	AG	AG	R _{VPP}	AVPP	A _{EB} , A _{VPP}	A _{EB} , A _{VPP}	
forms							A _{PI}	A _{PI}	
pies example			UOK	MII	КК	КК	ex post	ex post	
example		Randomization	A_G, R_{VA}	A _G	A _P ,R _{PL3}	A _P ,R _{PL3}	ex post	ex post	
8							A _{EB}	A _{EB}	
15			UOK	MII	КК	КК	ex post	ex post	
		Targeted Inval.	A_G, R_{VA}	A _G	AVPP, RPL3	AVPP, RPL3	ex post	ex post	
ks sis							A _{EB}	A _{EB}	
			UOK	КК	UOK	UOK	ex post	ex post	
usion		Random Inval.	A_G, R_{VA}	A_G, R_2	R _{VA}	R _{VA}	ex post	ex post	
				(+1)			AFR	AFR	

Blin Votir me Frant Requ

Keys hash Key c

Matrix Perm. Rules Axion

Attack analy Table

UOK - unknown other keys, MII - missing identity information, KK- known keys, mEB - member of EB

František Hakl

Requirements

Actors and roles

Data flow

Keys and hash

Key code example

Ballot forms examples Matrix example Perm. example

Rules & Axioms Rules Axioms

Attacks analysis Table

Conclusion

Conclusion:

Suggested process:

- in the case of axiom validity no one person or tuple of persons can do
 objectionable secret action
- meets general requirements GR1-8
- ??? meets statutory requirement SR_{No341} ??? legal analysis is needed

Practical notes:

- paper version of sheets is recommended due to lack of meta-info (which is included in electronic formats like PDF, jpeg, doc(x), ...)
- practical realization of sheets should be the same for all voters in order to keep privacy of distant voters
- public printers in ICS are accessible for everyone use your own local printer or print directly via USB stick on printer with USB input port

Blind Proxy Voting Imple- mentation	
František Hakl	Electronical (www) implementation:
Requirements	
Actors and roles	
Data flow	
Keys and hash	
Key code example	222 tructure the and transporter 222
Ballot forms examples Matrix example Perm. example	<pre>??? trustworthy and transparent ???</pre>
Rules & Axioms ^{Rules} Axioms	
Attacks analysis Table	
Conclusion	