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Preface to the web publication (by P. Hájek)

In 1966 the GUHA principle was formulated in Hájek-Havel-Chytil (1966). (GUHA
being the acronym for General Unary Hypotheses Automaton, only much later
we realized that GUHA is a frequent Indian surname). The principle means using
the computer to generate systematically all hypotheses interesting will respect to
the given data (hypotheses describing relations among properties of objects). A
milestone in the theoretical and practical development of this principle (GUHA
method) was the book, by me and Havránek, Mechanizing Hypothesis Forma-
tion (mathematical foundations for general theory), published by Springer-Velag
in 1978. Since then many things have changed: two of the pioneers of the GUHA
method died: Tomáš Havránek and Ivan Havel. Computers underwent tremen-
dous evolution. Various implementations of the GUHA method based on the book
were produced and theoretical development was combined. There were several
practical applications in various domains. I mention two special volumes of the
International Journal of Man-Machine Studies devoted to the GUHA method.
But it must be said that the GUHA method has never got broad recognition.
Citations of the book are counted in tens but not hundreds (some citations be-
ing rather prestigeous, e.g. by R. Fagin and others in relation to generalized
quantifiers in finite model theory).

When the terms “data mining” and “knowledge discovery in databases” emer-
ged their chose relation to the (much older) GUHA principle seemed absolutely
clear to us. The book, if sufficiently known, could contribute well to logical and
statistical foundations of them. There have been some papers trying to call the
attention of DM and KDD community to the GUHA method and theory (Hájek-
Holeňa (1998), Hájek (2001), Rauch (1997), Rauch (1998)), but the reply was
not as expected. One reason for this is undoubtedly the fact that the book by
me and Havránek has become more and more difficult to get.

This is why I decided to ask Springer-Verlag for permission to put a ver-
sion of the book on Internet for free copying. I am extremely grateful to the
representations of Springer-Verlag for explicit confirmation that Springer reverts
the copyright to the authors. The result is what you can see: a re-edition of
the book as a technical report of the Institute of Computer Science, whose elec-
tronic version is free for downloading and printing. My very sincere thanks go to
Mrs. Hana B́ılková for retyping the whole book in LATEX(the original book was
printed from typewritten pages with hand-written mathematical symbols). The
web publication of the book was partially supported by the COST Action 274
(TARSKI). The book remains unchanged (expect for some few corrected mis-
prints) and therefore does not contain any reference to later development. Only
here I list some selected references. The reader will have to judge in how far the
formulation presented in it are valuable for contemporary data mining and KDD.
I shall be grateful to comment of any kind.
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Hájek P. (guest editor): International Journal of man-Machine Studies, vol. 10, No 1
(special issue on Guha). Introductory paper of the volume is Hájek, Havránek:
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Hájek P. (guest editor): International Journal for Man-Machine Studies, vol. 15, No 3
(second special issue on GUHA).
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Holeňa M.: Exploratory data processing using a fuzzy generalization of the GUHA
approach, Fuzzy Logic, Baldwin et al., ed. Willey et Sons, New York, 1996,
pp. 213-229.
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Chapter 1

Introduction: What is a Logic of
Discovery

“Logic” and “Discovery” are certainly very familiar notions. The term “logic
and discovery” belonged originally to the philosophy of science; “philosophers of
science have repeatedly mentioned the process of discovery of scientific hypothe-
ses and the possibility or impossibility of formulating a logic for that process”
(Buchanan 1966). The problem of the possibility of a logic of discovery takes
on a new meaning as a problem of Artificial Intelligence (cf. the preface and
Buchanan 1966). In the present chapter we shall outline some basic notions of
the philosophy of science in a form which will lead us on the one hand to a certain
notion of logic of discovery and on the other to several mathematical notions.

1.1 Informal considerations

1.1.1 Science can be regarded as a cognitive activity sui generis. Scientific proce-
dures as elements of scientific cognitive activity can be characterized as operations
with data (cf. Tondl 1972). The aims of science are scientific explanation, pre-
diction, verification, constitution, reduction etc. It must be stressed that science
does not produce infallible truths; in science one formulates hypotheses and tries
to justify them (or reject them). The world “logic” in the term “logic of dis-
covery” refers not only to the analysis of various scientific languages but also
to a rational body of methods for finding and evaluating certain propositions
(cf. Plotkin).
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1.1.2 Consider three examples of hypothesis formation:

(1) This crow is black.
That crow is black.
All observed crows are black.
All crows are black.

(2) This crow is black.
That crow is black.
Many crows have been observed;
relative frequency of black
ones is high.
Crows have a considerable change of
being black.

(3) rat weight weight of the
no. g kidney mg

1 362 1432
2 372 1601
3 376 1436
4 407 1633
5 411 2262

The observed weights of the kidneys
have the same order as the
weights of the rats with one
exception.
The weight of rat’s kidney
is positively dependent
on the weight of the rat.

1.1.3 We shall stress some important features of these examples of “inductive
inference”. Each example consists of three parts. The first part describes our
evidence; it can have the form of simple sentences “This crow is black”, or, equiv-
alently, of a table or other similar form (Example 3). The second part is an
observational statement: it is a more or less complicated sentence which can be
asserted on the basis of the data. Finally, the third part is a theoretical state-
ment, the inductive generalization (cf. Carnap 1936). The theoretical statement
is not a consequence of the observational one; in Example 1, the observational
statement is a logical consequence of the theoretical one, but in Examples 2, 3
the situation is more complicated. Nevertheless, we feel that the transition from
the observational statement to the theoretical statement is justified by some rules
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of rational inductive inference, even if are not formulated explicitly. As a matter
of fact, some philosophers reject any possibility of formulating such rules and
probably there is nobody who believes that there can be universal rules for ratio-
nal inductive inference of theoretical statement from observational statements.
On the other hand, one can show that there are non-trivial rules of inductive
inference applicable under some well described circumstances and that some of
them are useful in mechanized inductive inference.

1.1.4 The scheme of inductive inference is as follows:

theoretical assumptions, observational statement(s)

theoretical statement
This means that having accepted the theoretical assumptions and having ver-

ified the observational statement(s) in question, we accept the theoretical state-
ment forming the conclusion. Having said “verified” we touched on semantics:
observational statements are statements about something, about our data. The
question of the semantic of theoretical statements is dealt with in later sections.
Let us stress the very important fact that it is an intelligent observation of the
data (observational statement) that leads to theoretical conclusions, not the data
themselves. One chooses the conceptual apparatus, i.e., one chooses both the
observational and the theoretical language one wants to use. For instance, in
Example 3 above, one could choose the notion of linear functional dependence;
one could assert: “The weight of the kidney of the observed rats is not a linear
function of the weight of the rat.” and try to make a theoretical inference.

This will be important in our attempt to formalize the whole situation. We
formulate our task into five questions (L0)-(L4) (our (L1)-(L4) are directly ana-
logue to Plotkin’s (H1)-(H4).

1.1.5 The questions of the logic discovery:

(L0) In what languages does one formulate observational and theoretical state-
ments? (What is the syntax and semantics of these languages? What is
their relation to the classical first order predicate calculus?)

(L1) What are rational inductive inference rules bridging the gap between obser-
vational and theoretical sentences? (What does it mean that a theoretical
statement is justified?)

(L2) Are there rational methods for deciding whether a theoretical statement is
justified (on the basis of given theoretical assumptions and observational
statements?)

(L3) What are the conditions for a theoretical statement or a set of theoreti-
cal statements to be of interest (importance) with respect to the task of
scientific cognition?
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(L4) Are there methods for suggesting such a set of sentences which is as inter-
esting (important) as possible?

Answers to (L0)-(L2) constitute a logic of induction; answers to (L3)-(L4) con-
stitute a logic of suggestion. Answers to (L0)-(L4) constitute a logic of discovery.
(Cf. Plotkin.)

Our aim is to develop a mathematical logic of discovery. This is certainly
necessary from the point of view of Artificial Intelligence: only mathematically
precise notions and results can be used as a basis for computer procedures. But let
us mention at this point that there are important extramathematical problems,
e.g. concerning the ways in which scientific data attain the mathematical form
assumed below; such questions are beyond the scope of this book.

1.1.6 We shall now give some preliminary answers to (L0)-(L4); these answers
indicate main standpoints, on which this book is based.

(L0) Our calculi will reflect the difference between observational and theoretical
sentences; we develop observational and theoretical calculi. We elaborate
both the syntax and semantics of these two kinds of calculi and, to some
extent, develop their autonomous logic. A typical feature of observational
calculi is effective calculability of the (truth) value of each sentence in each
observational structure. A typical feature of (statistically motivated) the-
oretical calculi is their “modal” character: theoretical sentences refer to
systems of “possible worlds” and probability is understood as a measure on
such a system of possible worlds.

(L1) Observational and theoretical calculi are interrelated by inductive inference
rules; from a theoretical frame assumption (background knowledge) and
observational statement (describing data) one can infer a theoretical hy-
pothesis. Rationality criteria for such rules can be formally expressed in
accordance with some accepted notions of statistical hypothesis testing.

(L2) To answer (L2) statistical measurability conditions must be reconciled with
notions concerning computability. This leads to a sort of computational
statistics. Such considerations are quite unusual for statisticians but, for-
tunately, most statistical procedures pass the computability test well and
hence can serve for definitions of particular observational quantifiers.

(L3) It is a very important fact that in many important inductive inference rules,
hypotheses (succedents) are in one-one correspondence with some specific
observational statements occurring in the corresponding antecedents. Thus
in many cases the search for hypotheses can be reduced to the search for
appropriate observational statements in a satisfactorily rich observational
language. This leads to the formal notion of an observational research
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problem and its solution. The observational research problem itself specifies
(among other things) a set of relevant observational questions; a solution
is a representation of true relevant observational questions; a solution is a
representation of true relevant observational statements, serving as “logical
patterns” – codes of theoretical hypotheses.

(L4) GUHA methods are methods for construction of solutions to observational
research problems. The output of a GUHA procedure is not the (single)
most interesting hypothesis but an important set of hypotheses. Kemeny
writes: “I am convinced that the formation of possible theories will forever
remain a job for the creative genius of the scientist. The choice may be
aided by rules but no rules will replace original thinking.” (cf. Buchanan,
p. 66). GUHA procedures are procedures for aiding the choice of hypothesis.
Statistical properties of the output set of hypotheses as a whole can be
satisfactorily clarified.

The reader is advised to return to these answers later when he has learned
some particular GUHA methods.

1.1.7 In most works on hypothesis formation, hypotheses are identified with some
formulae of the classical predicate calculus. There are at least two arguments in
favor of the predicate calculus from the point of view of logics of discovery:

(i) it has clear semantic and (ii) there are well-developed theorem proving
methods. The second argument is particularly important if induction is under-
stood deterministically, as inverse deduction. What are our reasons for modifi-
cations and generalizations of the classical predicate calculus? First, note that
our calculi will satisfy (i) and the significance of (ii) will be minimized by the
fact that we shall not equate induction with inverse deduction. The main reason
is the fact that observational sentences are useful as “logical patterns” in sta-
tistical inference rules, and also that theoretical sentences expressing hypotheses
are either only cumbersomely expresible or even not expressible in the classical
predicate calculus.

1.1.8 Let us make some remarks on the structure of Part A (Chapters 2-5).
Chapters 2 and 3 are logical in character; in Chapter 2 we introduce step by step
various observational and theoretical calculi and formulate their basic proper-
ties. In chapter 3 we develop the logic of observational calculi; in particular, we
introduce and study some important classes of observational generalized quanti-
fiers (associational and implicational quantifiers) and study calculi with models
with incomplete information. Chapters 4 and 5 have a more statistical flavor; in
Chapter 4 the usual theory of statistical hypothesis testing is presented in the
logical framework of the previous chapters and various particular statistical as-
sociational and implicational quantifiers are exhibited. Chapter 5 is devoted to
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modern rank tests; various classes of observational rank quantifiers are described
and their logical properties are investigated.

1.1.9 The next section contains various mathematical notions used throughout
the book. We shall not summarize the contents of Part B in more detail here; but
the reader is invited, after having read the rest of Chapter 1, to read Section 1
of Chapter 6, where basic notions o our logic of suggestion are presented using
only the apparatus of chapter 1. he reader interested in the logic of induction but
not in methods of mechanized hypothesis formation may read only Chapters 1-5.
On the other hand, the reader wanting to comprehend quickly the basic theory
of GUHA methods may read Chapter 1, Chapter 2 Sections 1, 2, Chapter 3
Section 2, Chapter 4 Section 1 and chapter 7 Sections 1-3 with the omissions
indicated there. In this case he will be informed on GUHA methods as methods
generating interesting observational statements, but will not know where these
statements come from and in what sense GUHA generates hypotheses.

1.1.10 Key words: Logic of induction, logic of suggestion, observational and
theoretical statements.

1.2 Some mathematical notions

In this section we shall be interested in several mathematical notions concerning
sentences. For the time being, we shall not analyze the structure of sentences,
but we shall deal with sentences as abstract entities. Our aim is the following:

(i) We shall ask what is meant by the inference of sentences from other sen-
tences and what is the meaning of sentences.

(ii) We shall relate these notions to notions concerning computability, recur-
siveness and other notions.

(iii) We shall introduce a formal notion of an observational language.

(iv) We shall be more specific on inductive inference rules relating theoretical
languages to observational languages.

1.2.1 Definition. Let Sent be a non-empty set; call its elements sentences. An
inference rule I on Sent is a relation consisting of some pairs 〈ϕ, e〉, where ϕ is a
sentence and e is a finite possibly empty set of sentences. We often write

e

ϕ
∈ I

instead of 〈ϕ, e〉 ∈ I, in agreement with the usual convention in expressing de-
duction rules; elements of e are antecedents and ϕ is the succedent of the pair
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〈ϕ, e〉. We say that ϕ is inferred from e by I if 〈ϕ, e〉 ∈ I. More generally, we call
ϕ an (immediate) conclusion from A ⊆ Sent (by I) if either ϕ ∈ A or there is an
e ⊆ A such that 〈ϕ, e〉 ∈ I. The set of all conclusions from A by I is denoted
by I(A).

1.2.2 Remark

(1) Note that at this stage we say nothing about the truth or falsehood of the
sentences or about the preservation of truth by inference rules. But if we
deal with a relation I as with a rule of inference we may (and shall) ask
what are rationality conditions for I, i.e. conditions guaranteeing that if
〈ϕ, e〉 ∈ I then having accepted e we may rationally accept ϕ.

(2) One could define inference rules in a more general way, considering map-
pings I : Sent × Pfin(Sent) → V , where V is a set of values. (Pfin(Sent)
denotes the set of finite subsets of Sent). Then the values I(ϕ, e) could
mean e.g. the degree of our belief in ϕ provided that e has been accepted.
Clearly, our notion of rules of inference introduced in 1.2.1 corresponds to
the case V = {0, 1}. We limit ourselves to this particular case.

1.2.3 Definition. Let I be an inference rule on Sent and let A ⊆ Sent. A finite
sequence ϕ1, . . . , ϕk of sentences is called a derivation (I-derivation) from A if for
each i = 1, . . . , k either ϕi ∈ A or there is an e ⊆ {ϕ1, . . . , ϕi−1} such that e

ϕi
∈ I

i.e. ϕ is inferred from some preceding sentences. A sentence ϕ is I-derivable
from A containing ϕ (notation A `I ϕ).

1.2.4 So far, we have not inquired whether sentences have some meaning or
whether they are true or false.

It is due to Frege that the two questions can be identified (see Church).
According to Frege we consider sentences to be special names. When speaking of
names we mean names of something (of some extralinguistic entity). Notice that
a single name can denote different entities of truth and falsehood; consequently,
a sentence is true iff its meaning (value, denotate) is truth, and is false iff its
meaning is falsehood. We have to distinguish the meaning of a name from the
sense of that name, for instance “Walter Scott” and “the author of Waverley”
have the same meaning but a different sense. Similarly, the sentences “2+2=4”
and “Prague is the capital of Czechoslovakia” have the same meaning – namely
the truth – but a different sense. The problem of the sense of sentences will
however not be discussed here.

We shall follow Frege intreating sentences as names of abstract values, but we
shall assume neither that we necessarily truth-values,i.e., that they are in some
sense conderned with validity, or, possibly, with the degree of our conviction
concerning validity.
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However, we shall take into account the fact that the value of a sentence
depends, on the one hand, on the sentence itself and, on the other hand, on the
extralinguistic entity which the sentence speaks of.

In accordance with the terminology usual in Mathematical Logic, the ex-
tralinguistic entities in which sentences are interpreted will be called models.
Consequently, the value (meaning) is a function of two arguments: sentences and
models. The theory of the relations between sentences and their meaning is called
semantic.

1.2.5 Definition. A semantic system is determined by a non-empty set Sent of
sentences, a non-empty set M of models, a non-empty set V of abstract values
and an evaluating function Val : (Sent×M) → V . If ϕ ∈ Sent and M ∈M then
Val(ϕ,M) is the value of ϕ in M ; it is often denoted by ‖ϕ‖M .

1.2.6 Examples and Comments. We begin with an abstract example; in (2)
we offer a possible interpretation.

(1) For each number n > 1, let Sn be a semantic system defined as follows:
Models are matrices of zeros and ones with n columns (and finitely many
rows). If such a model M has m rows we regard M as the result of the
evidence of n properties P1, . . . , Pn on m observed objects: If the element
in the i-th row and the j-th column is 1 then the i-th object has the prop-
erty Pj. For each non-empty e ⊆ {1, . . . , n} the partial model M/e results
from M by omitting all the columns ci for which i 6∈ e.
With each such e we associate a sentence ϕe and define ‖ϕe‖M = 1 iff
each row in M/e contains at least one zero (i.e., no row consists only of
ones); otherwise ‖ϕe‖M = 0. The sentence ϕe can be read “the proper-
ties Pi, for i ∈ e, are incompatible in the observed material” hence, e.g., for
e = {3, 4, 7} : “P3, P4, P7 are incompatible in the observed material”. If e
is a singleton, e = {i}, we read ϕe “Pi is absent in the observed material”.
Thus, M is the set of all matrices as described, Sent is the set of all ϕe

and V = {0, 1}.
(2) Consider, as a more concrete example, a research concerning mutational

changes caused by gamma rays. Here models can describe populations of
plants (e.g. marigolds) the seeds of which were subjected to gamma rays
(cf. Zindel). Such a population of m plants can be described by the matrix
having 1 in the i-th row and j-th column if the i-th plant in the population
exhibits the mutation Pj. The sentence ϕ{3,4,7} can be read “The mutations
P3, P4, P7 are incompatible in the observed population” or “The mutations
P3, P4 and P7 do not occur simultaneously in the observed population”.
Similarly, ϕ{i} could be read “The mutation Pi does not occur in the ob-
served population”. A possible inductive generalization is: “Gamma rays
do not cause the mutation Pi.
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(3) Remember semantic system in the first order predicate calculus: sentences
are (some) closed formulae, models are relational structures (of the appro-
priate type) and ‖ϕ‖M = 1 if ϕ is true in M the sense of Tarski. The
reader will meet this notion and its modification in Chapter 2 and will see
the relation of this notion to Example (1).

(4) We consider an example where V is the set of rational numbers. The
semantic system En is defined as follows: models are rational matrices with
n columns and finitely many rows. With each i ∈ {1, . . . , n} we associate a
sentence ϕi whose value is the mean of the i-th column, i.e. if

M =
(
ri
k

)i=1,...,n

k=1,...,m
then Val(ϕi,M) =

1

m

m∑

k=1

ri
k .

(in 1.2.8 we shall say in what sense such a sentence can be asserted.)

1.2.7 Definition

(1) Let S = 〈Sent,M, V, Val〉 be a semantic system and let V0 ⊆ V be a set
of designated values. A sentence ϕ is V0-true in a model M if ‖ϕ‖M ∈ V0

(notation M |=V0 ϕ). A sentence ϕ is a V0-tautology if ‖ϕ‖M ∈ V0 for each
M ∈ M (notation |=V0 ϕ). A sentence ϕ is a logical V0-consequence of a
set A of sentences if the following holds for each M ∈ M: if each element
of A is V0-true in M then ϕ is V0-true in M . The set of all sentences V0-true
in a model M is denoted by TrV0(M).
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(2) Let, moreover, I be an inference rule on Sent. I is V0-sound w.r.t. S if
the following holds for each M ∈ M and each 〈ϕ, e〉 ∈ I: if each element
of e if V0-true in M then ϕ is V0-true in M . In symbols: e ⊆ TrV0(M)
implies ϕ ∈ TrV0(M). One sees immediately that if I is V0-sound w.r.t.
S then the following holds: If ϕ is I-derivable from A then ϕ is a logical
V0-consequence of A. If I is a V0-sound inference rule w.r.t. S then we call
also I a V0-deduction rule for ϕ and say I-proof, I-provable or simply proof,
provable instead of I-derivation, I-derivable.

Let I be a V0-sound inference rule for S. I is V0-complete w.r.t. S if the
following holds for each A ⊆ Sent and ϕ ∈ Sent: if ϕ is a logical V0-consequence
of A then ϕ is V0-provable from A.

1.2.8 Remark. One V0-asserts a sentence ϕ if one wants to say that ϕ is V0-true
(in the model one is speaking about). For example, one asserts (i.e. {1}-asserts)
“the properties P3, P4 and P7 are incompatible” if one wants to say, that, in the
model one is speaking about, the properties mentioned are incompatible. We can
easily imagine a situation (in a research centre) where sentences are V0-asserted
e.g. for V0 being the set of all positive rational numbers. One has data M = (ri

k)
i
k

as in Example 1.2.6 (4) and one is interested in columns (quantities) with positive
average. Then one V0-asserts “the average of the third quantity” if one wants to
say that average is indeed positive.

1.2.9 Examples and Comments

(1) Remember Example 1.2.6 (1) and (2) with sentences of the form ϕe “the
properties Pi for i ∈ e are incompatible”. We have a {1}-sound deduction
rule In on Sent defined as follows:

In =

{
ϕe

ϕ′e
; ∅ 6= e ⊆ e′

}
· I · e ,

whenever e ⊆ e′ we can infer (deduce) ϕ′e from ϕe. Indeed, if for example
e = {3, 4, 7} and e′ = {1, 3, 4, 5, 7} and if, in a model M , P3, P4 and P7

are incompatible then a fortiori P1, P3, P4, P5 and P7 are incompatible.
(Think, for example, of mutations.)

(2) For Example 1.2.6 (3), we have well known deduction rules, for example
modus ponens: {

ϕ, ϕ → ψ

ψ
; ϕ, ψ ∈ Sent

}

(→ is the connective of implication, see chapter 2).

10



(3) Concerning Example 1.2.6 (4), it is easy to show that if V0 is a non-empty
proper set of rationals then the only V0-sound rule is the identity:

{
ϕ

ϕ
; ϕ ∈ Sent

}
.

1.2.10 Discussion

(1) We now turn our attention to notions concerning computability. As we
stated in the preface, we assume some knowledge of elementary recursion
theory.
Partial recursive functions are particular natural-valued functions; the do-
main of a k-ary partial recursive function consists of some k-tuples of natural
numbers and its range is included in N (N denotes the set of all natural num-
bers). One defines partial recursive functions by specifying initial partial
recursive functions and describing operations over functions that preserve
partial recursiveness. (Partial) recursive functions can be identified with
the (partial) functions mechanically computable in principle. i.e. without
any restrictions as to the time and space necessary for the calculation of a
particular value, except that they are requested to be finite. This identifi-
cation is the content of the well-known extended Church’s thesis.

(2) An alternative well-known approach is based on the notion of a Turing
machine. Here one works with words in a finite alphabet rather than
with natural numbers. Given a Turing machine T with the tape alpha-
bet {a1, . . . , an} and a word x in this alphabet, one defines the computation
of T with the input (initial tape inscription) x as a certain sequence of
steps; a tape inscription is associated with each step. One can ask whether
the computation halts or not; if it halts, one has the output computed by T ,
i.e. the final tape description.

(3) The two approaches are known to be equivalent. First, one can code (enu-
merate) words by some natural numbers (Gödel numbering). Conversely
one can represent numbers by words, e.g. one can represent n by 1, . . . , 1︸ ︷︷ ︸

(n+1)times

.

One can code tuples of numbers in a similar way. For our purposes, it
suffices to state the following fact: A function F from Nk into N is partial
recursive function iff there is a Turing machine T such that the following
holds: for each k-tuple 〈n1, . . . , nk〉 of natural numbers, the computation
of T with (the code of) 〈n1, . . . , nk〉 as input halts and gives the answer
F (n1, . . . , nk) whenever F (n1, . . . , nk) is defined; the computation does not
halt if 〈n1, . . . , nk〉 6∈ dom(F ). This equivalence is one of the arguments
supporting Church’s thesis.
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(4) However, one objection to Church’s thesis is that we do not always know
ahead of time how many steps will be required to compute F (n) for a
recursive function F . This has led to various theories of computational
complexity. We shall make use of the following definition:
Let T be a terminating Turing machine (halting for all inputs). t is said
to operate in polynomial time if there is a polynomial p such that, for
every word x in the tape alphabet, the number of steps of the computation
with the input x is bounded by p (length (x)). It is a reasonable working
hypothesis, by now widely accepted, that a problem concerning words in a
finite alphabet can be regarded as tractable iff there is an algorithm (Turing
machine) for its solution operating in polynomial time. See Karp [1972] for
information. We shall pay attention to questions of polynomial complexity
in two directions: in Chapter 3 we show that some problems concerning
certain observational calculi are closely connected with open problems of
complexity theory and in Part II we shall state various properties of the
described methods and of related notions in terms of polynomial complexity.
But, knowledge of complexity theory is not assumed for the main body of
the text.

(5) One is often interested in computational properties of elements of do-
mains D more general than the set of all natural numbers and/or the set of
all words in a finite alphabet. For instance, one considers functions whose
arguments and values are finite graphs, matrices, finite rational structures
etc. In this case one uses a simple encoding of elements of D by natural
numbers or by words; then the whole theory is shifted to D, naturally in
dependence on the chosen encoding. Note that Gödel numbering is an ex-
ample of coding of words by numbers. Hence each encoding e of elements
of D by words determines an encoding by numbers, namely the composition
of e with Gödel numbering.

(6) Let us go over some notions and facts. A set X ⊆ N is a recursive set if its
characteristic function is a total recursive function. Similarly for relations,
i.e. subset of Nk for some k.
A set X ⊆ N is recursively enumerable if there is a recursive relation R such
that X = {a; (∃b)R(a, b)}.
Facts: X is recursively enumerable iff X is the range of a partial recursive
function. X is recursive iff both X and the complement of X are recursively
enumerable. Clearly one calls a set Y of words recursively enumerable iff
the set of Gödel numbers of elements of Y is recursively enumerable. Fact:
A set Y of words in an alphabet Σ is recursively enumerable iff there is a
Turing machine T whose computation halts iff the input is in Y . These and
similar facts will be freely used in the sequel.
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1.2.11 Remark. Let us return to our notions concerning sentences. It is natural
to assume that sentences are finite objects, e.g. some finite words in a fixed
alphabet. Furthermore, it is natural to assume that sentences form a recursive
set; if inference rules are considered as rules it is natural to restrict oneself to
recursive inference rules. It makes sense to speak of recursive inference rules since
finite sets natural numbers can be naturally coded by natural numbers (finite sets
of words can be naturally coded by words). We can now relate the notions of
sound and complete deduction rules with notions concerning recursiveness.

1.2.12 Definition. Let Sent be a recursive set, let S = 〈Sent,M, V, Val〉 be a
semantic system and let V0 ⊆ V .

(1) S is V0-decidable if the set of all V0-tautologies is recursive. S is strongly
V0-decidable is the relation

{〈ϕ, e〉; ϕ ∈ Sent, e ∈ Pfin(Sent), e |=V0 ϕ}

of semantic consequence is recursive.

(2) S is V0-axiomatizable if the set of all V0-tautologies is recursively enumer-
able; S is strongly V0-axiomatizable if the relation

{〈ϕ, e〉; ϕ ∈ Sent, e ∈ Pfin(Sent), e |=V0 ϕ}

of semantic consequence is recursive enumerable.

1.2.13 Remark

(1) Having shown that a certain S is V0-undecidable (for a V0 we are interested
in), we can see that there is no mechanical procedure for deciding whether
a sentence is a V0-tautology or not. If we show S to be V0-decidable, then
we are faced with the important question whether there is a procedure
deciding S simple enough to be realizable (tractable).

(2) The term “axiomatizable” is justified by the following theorem, due in
essence to Craig (for strong axiomatizability se Problem (4)).

1.2.14 Theorem. Let Sent be a recursive set and let A be a recursively enumer-
able subset of Sent. Then there is a recursive inference rule I on Sent such that
A = {ϕ ∈ Sent; `I ϕ} (A consists of all sentences I-provable from the empty
set of assumptions).

Proof: Assume for simplicity that Sent ⊆ N. Our assertion is obvious if

A is finite: then I =
{
∅
ϕ
; ϕ ∈ A

}
. Assume A be infinite and let A = {x ∈
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Sent; (∃n)R(x, n)} where R is a recursive relation. Let B be an infinite recur-

sive subset of A. Put I =
{
∅
ϕ
; ϕ ∈ B

}
∪

{
ϕ
ψ
; (∃n < ϕ)R(ψ, n)

}
. Obviously, I is

recursive and putting D = {ϕ; ∅ `i ϕ} we have D ⊆ A. On the other hand, if
ψ ∈ A and if R(ψ, n) holds then there is a ϕ ∈ B such that ϕ > n since B is
infinite; the two element sequence ϕ, ψ is an I-derivation of ψ from ∅. We have
found A ⊆ D.

1.2.15 Corollary. Let Sent be a recursive set, let S = 〈Sent,M, V, Val〉 be a
semantic system and let V0 ⊆ V . S is V0-axiomatizable iff there is a recursive
V0-sound deduction rule on Sent such that I is V0-complete, i.e. V0-tautologies
coincide with sentences I-provable from the empty set of assumptions.

1.2.16 Example. For each n, the semantic system Sn of Example 1.2.6 (1) is
strongly {1}-decidable since the set of its sentences is finite, hence the relation
|={1} is also finite and therefore recursive. For another example see Problem (5).

1.2.17 We shall now formulate a definition of basic importance, namely of an
observational semantic system. The definition reflects a very important aspect of
the informal notion of observationality, namely that an observational model is a
finite set of observed data (hence the whole model is a finite object) and that one
has to be able to determine mechanically (compute) the value of each formula in
each observational model. (Note that we suppose data to be digital.)

1.2.18 Definition. A semantic system S = 〈Sent,M, V, Val〉 is an observational
semantic system if Sent, M, V are recursive sets and Val is a partial recursive
function.

1.2.19 The definition assumes that Sent, M, V are subsets of countable do-
main D that has been encoded by natural numbers (see the following example).
Note that V is a partial recursive function whose domain is a recursive set; hence
Val is restriction of a total recursive function to Sent×M.

1.2.20 Example. With Example 1.2.16 in mind we show how to encode Sent,M
and V in cases (1) and (4); then it is obvious that the systems Sn and En are
observational. We use coding by words.

(1) The alphabet is {0, 1,2, ∗}. Each sentence ϕe is coded by the word 2, ε1, . . . , εn

of the length n + 1 where εi = 1 iff i ∈ e. A matrix

M = (rj
i )

j = 1, . . . , n
i = 1, . . . , m

is coded by the word

∗, r11, . . . , r1n, ∗, . . . , ∗, rm1, . . . , rmn, ∗ (#)

and V is the set {0, 1}.
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(4) The alphabet is {0, . . . , 9,2, ∗, +,−, /}. Natural numbers are coded by their
usual decimal expansion; rational numbers are treated as signed fractions,
i.e.words of the form +x/y or −x/y where x and y are codes of natural
numbers, y not zero. For instance +3/17 is a word of length 5. Sentences
are coded as 2x where x is the code of a natural number between 1 and n.
Models are coded as in (1); rj

i is now a code of a rational number and the
expression (#) is to be understood as the juxtaposition of the respective
parts. For instance, the code of

(
3
17

, 2
3

0, 5

)

∗+ 3/17 ∗ −2/3 ∗+0/1 ∗+5/1.

1.2.21 Theorem. Let S = 〈Sent,M, V Val〉 be an observational semantic system
and let V0 be a recursive subset of V .

(1) S is V0-axiomatizable iff S is V0-decidable.

(2) S is strongly V0-axiomatizable iff S is strongly V0-decidable.

(3) The set SfV0 of all V0-satisfiable sentences (i.e. sentence ϕ such that there
is an M such that ‖ϕ‖M ∈ V0) is recursively enumerable. Similarly, the
complement of |=V0 ; i.e.the relation

{〈ϕ, e〉; ϕ is not a logical consequence of e, e ∈ Pfin(Sent)}

is recursively enumerable.

Proof. Let us first show (3). We have

SfV0 = {ϕ; (∃M)(ϕ ∈ Sent & M ∈M& ‖ϕ‖M ∈ V0}

and the relation ϕ ∈ Sent & M ∈ M & ‖ϕ‖M inV0 is recursive; hence SfV0 is
recursively enumerable. Similarly for for the more general case.

We show that (3) implies (1). Evidently, decidability implies axiomatizability.
Conversely, if S is V0-axiomatizable then the set TautV0 of all V0-tautologies is
recursively enumerable. Its complement (w.r.t. Sent) is the set SfV−V0 and V −V0

is recursive; be (3) SfV−V0 is recursively enumerable. Hence TautV0 is recursive.
Similarly for the second case.

1.2.22 Remark

(1) The reader familiar with the first order predicate calculus sees that ob-
servational semantic systems differ from the semantic systems of the first
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order predicate calculus (cf. Example 1.2.6 (3)); the semantic system of
each predicate calculus with at least one at least binary predicate is axiom-
atizable (i.e. {1}-axiomatizable) but not decidable. See the next chapter
for more details.

(2) We can replace the conditions of recursiveness in the definition of an ob-
servational semantic system by stronger conditions (primitive recursiveness,
computability in polynomial time etc.). In this way we obtain similar, more
restrictive notions. We shall pay attention to this fact; but we shall con-
sider the definition of an observational semantic system as one of our basic
definitions.

(3) In the rest of this section we introduce some formal notions concerning
observational and theoretical semantic systems and their relations; in par-
ticular, we introduce a formal notion of inductive inference rules.

1.2.23 Suppose we have a recursive set Sent whose elements are called sentences
and which is a union of recursive (not necessarily disjoint) sets Sent0, SentT ;
elements of Sent0 are called observational sentences and elements of SentT are
called theoretical sentences. An inference rule I on Sent will be called inductive
if it consists of some pairs of the form

Γ, ∆

Ψ
(∗)

where Γ is a finite set of theoretical sentences, ∆ is a non-empty finite set of
observational sentences and Ψ is a theoretical sentence. (Cf. 1.1.4). Now we want
to indicate the way in which we shall try to answer the question (L1), namely
what are the criteria of rationality (measures of rationality) of inferences using I.
We shall pay attention to the semantic properties of the sentences involved. This
means that the notions of rationality will be defined with respect to two semantic
systems: an observational semantic system S0 = 〈Sent0,M0, V 0, Val0〉 and a
“theoretical” system ST = 〈SentT ,MT , V T , ValT 〉. Note that we shall have to
answer our question (L0); the answer will consist in a detailed theory of the
appropriate structure of observational and theoretical systems.

Observational models will be considered as possible “parts” of partial infor-
mation on theoretical models; for the time being let us have an abstract relation
≺-a subset of M0 ×Mt; M0 ≺ MT is read “M0 is a part of MT ”. The pattern
of an act of inductive inference is as follows: one has an observational model M0

– evidence – which is, in some sense, a part of a theoretical universe MT . One is
interested in sentences true in MT but does not have MT as a totality at one’s
disposal. Let

Γ, ∆

Ψ
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be an element of I as above (cf. (*)). One has accepted that Γ is true in MT

(V T
0 -true for some V T

0 ⊆ V T ) and one has verified that ∆ is true in M0. Then
one accepts the hypothesis that Ψ is true in MT . The question of the rationality
of I is a question about the properties of this sort of reasoning.

1.2.24 We shall pause here for a simple example. Here the “part of”-relation is
inclusion; let us stress that this is not the only possibility. As a matter of fact,
our main attention will be paid to more general “part of”-relations.

Remember Example 1.2.6 (1) (cf. 1.2.20 (1)). We fix an n and let Sn be
an observational semantic system S0 = 〈Sent0,M0, V 0, Val0〉. Hence models are
matrices of zeros and ones with n columns; if e ⊆ {1, . . . , n} then the sentence Se

is read “the properties Pi for i ∈ e are incompatible in the observed model”.

Our theoretical system ST has for each e ⊆ {1, . . . , n} a sentence Ψe which
reads “the properties Pi (i ∈ e) are incompatible in the theoretical model”.
Theoretical models are matrices of zeros and ones with n columns and countably
many rows (the rows form a sequence indexed by all natural numbers). The
evaluation function ValT is the obvious modification of Val0. ≺ is defined by: M0

is a part of MT if M0 results from MT by omitting all but finitely many rows.
The inference rule is

I =

{
ϕe

ψe

; e ⊆ {1, . . . , n}
}

.

The reader realizes that this is an inference rule related to Example 1.1.2 (1) (all
crows are black): If we verify that P1, P3, P4 are incompatible in the observed
model, we accept the hypothesis that those properties are incompatible in the
universe. Concerning the rationality of this inference rule, we can say that I is
a sort of inverse deduction: for each M0 ≺ MT and each e, ‖ψe‖MT

= 1 im-

plies ‖ϕe‖M0
= 1 and (ϕe is the “logically weakest” element of SentT with this

property).

1.2.25 A general definition would be as follows. Let S0, ST , be as above, let
I be an inductive inference rule and let V 0

0 , V T
0 be some sets of observational

and theoretical values respectively. I is deterministic (w.r.t. to the things just
named) if the following holds for each M0 ≺ MT and each Γ,∆

Ψ
∈ I: the V T

0 -
truthfulness of (each element of) Γ and of Ψ in MT implies the V 0

0 -truthfulness
of all elements of ∆ in M0. Let us stress now that we shall be mainly interested
in rule that are not deterministic. We want to formalize inferences like those in
Example 1.1.2 (2), (3), where the inferred theoretical sentences express something
about chance or belief. In particular, our aim is to analyze statistical inferences
in the present terms. Our task will be to find some appropriate structure of
observational and theoretical systems, including appropriate “part of”-relations,
for this purpose. Our main notion will be the notion of a state-dependent struc-
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ture, related to the semantics of some modal calculi. Cf. (Scott and Krauss) and
references given there.

1.2.26 Key words: Inference rule, derivation, semantic system (sentences + mod-
els + values + evaluation), soundness and completeness (of an inference rule w.r.t
a semantic system), axiomatizability, decidability, observational semantic system,
inductive inference rules (deterministic or otherwise).

PROBLEMS AND SUPPLEMENTS TO CHAPTER 1

(1) Let I be an inference rule on Sent. I is transitive if, for each X ⊆ Sent,
I(X) = I(I(X)). (I is transitive iff I-derivability coincides with being
an (immediate) I-conclusion). I is regular if the following holds for each
ϕ ∈ Sent and each e1, e2 ∈ Pfin(Sent):

(i)ϕ
ϕ
∈ I ,

(ii)
(

e1

ϕ
∈ I and e1 ⊆ e2 implies e2

ϕ
∈ I

)
.

(a) Show that for each I there is a regular rule I ′ on Sent such that, for
each A ⊆ Sent, I(A) = I ′(A).

(b) Show that for each I, the rule I ′ = {〈ϕ, e〉; ϕ is I-derivable from e}
is a regular transitive inference rule and I-derivability coincides with
I ′-derivability.

(2) Let S = 〈Sent,M, V Val〉 be a semantic system and let V0 ⊆ V . The
relation {〈ϕ, e〉; ϕ ∈ Sent & e ∈ Pfin(Sent) & e |=V0 ϕ} is regular transitive
inference rule.

(3) The following is a generalization of Craig’s theorem:
Theorem. Let Sent be a recursive set and let K be a recursively enumer-
able regular transitive inference rule of Sent. Suppose that for each finite

set e of sentences, the set K(e) =
{

ϕ; e
ϕ
∈ K

}
is infinite. Then there is a

recursive inference rule I on Sent such that, for each e and ϕ,

e

ϕ
K iff ϕ is I − derivable from e .

Hint: Use the following fact from recursion theory:
Let X, y ⊆ N be recursive sets, let R ⊆ X × Y be recursively enumerable
and suppose that for each n ∈ Y , the set {m ∈ X; R(m,n)} is infinite.
Then there is a recursive relation R0 ⊆ R such hat for each n ∈ Y the set
{m ∈ X; R0(m,n)} is infinite.
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Let e
ϕ
∈ K iff (∃n)S(ϕ, e, n) where S is a recursive relation. Let K0 be a

subrelation of K such that, for each e, K0(e) is infinite. Put

I = K0

⋃ {
e, ϕ

ψ
; (∃n < ϕ)S(ψ, e, n)

}
.

(4) Corollary. Let S = 〈Sent,M, V, Val〉 be a semantic system and let V0 ⊆ V .
Assume that for each ϕ ∈ Sent the set {ψ; ϕ |=V0 ψ} is infinite. Then the
following holds:
S is strongly V0-axiomatizable iff there is a recursive V0-sound inference
rule I on Sent such that I is strongly V0-complete. (i.e. e |=V0 ϕ iff e `I ϕ
for each ϕ and each e.
Remark. The infinity condition is quite natural: it suffices if we can
express each formula in infinitely many mutually V0-equivalent ways. For
example, in the predicate calculus

ϕ, ϕ&ϕ, ϕ&ϕ&ϕ, . . . are equivalent .

(5) We modify the example 1.2.6 (1) of an observational semantic system
(cf. 1.2.20 (1)).
The semantic system S∗ is defined as follows: V = {0, 1}; models are ar-
bitrary matrices of zeros and ones (with finitely many rows and columns).
With each finite set e of positive natural numbers we associate a sentence ϕe

(read: the properties Pi for i ∈ e are incompatible). ‖ϕe‖M is defined as
follows: if M has n columns and e ⊆ {1, . . . , n} then the definition is an
in 1.2.6 (1). If e is not included in {1, . . . , n} and if m = max(e) then
we define ‖ϕe‖M as ‖ϕe‖M ′ where M ′ results for M by adding to M an
(n + 1)-th, . . . , m-th column, all added columns consisting only of zeros –
non-interpreted properties are always assumed not to hold.

(a) Show that the system S∗ is an observational semantic system.

(b) Consider the rule

I =

{
ϕe1

ϕe2

; e1 ⊆ e2

}
.

Show that I is transitive, {1}-sound and {1}-complete. (Easy.)

(6) Remark. There is an alternative approach to recursion theory, in which
recursive functions are defined as functions on hereditarily finite sets (finite
sets of finite sets of finite sets . . . ). Put V0 = ∅ and for each n let Vn+1 be
the set of all subsets of Vn. Then the set HF of hereditarily finite sets is
the union

⋃
n∈N

Vn (cf. Rödding, Jensen and Karp).

This approach would be very useful for our purposes; unfortunately, it is
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relatively little known. We also mention the informal treatment of recur-
sive functions in Shoenfield [1971] based on an informal notion of a finite
object; Shoenfield’s treatment can easily be formalized using recursion on
hereditarily finite sets by identifying finite objects with hereditarily finite
sets. But we decide in favour of an approach that is well known.
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Part I

A Logic of Induction
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Chapter 2

A Formalization of Observational
and Theoretical Languages

Recall our notion of a semantic system as consisting of sentences, models, ab-
stract values and an evaluation function assigning to each sentence and each
model M the value ‖ϕ‖M of ϕ in M . In the present chapter we are going to
analyse possible structures of sentences and of models and the dependence of
‖ϕ‖M on the structure of ϕ and of M . Our aim is to generalize and modify the
classical predicate calculus in various ways, in particular by admitting general-
ized quantifiers. (The following are preliminary examples of sentences containing
generalized quantifiers: (i) For sufficiently many x, P (x). (ii) The property Q(x)
is associated with R(x).)

Our plan is to divide our generalizations and modifications into several easy
steps. We obtain various formal calculi similar to the classical predicate calculus
and find conditions under which they can be naturally called observational. We
also describe calculi that will be used as our formalization of theoretical languages.
We shall illustrate defined notions by examples and state basic facts about them.
At the end of the chapter we shall be able to offer our answer to the questions
of the logic of induction ((L0)-(L2) of 1.1.5). Systematic mathematical theory
of observational and theoretical calculi is postponed to Chaptetrs 3 and 4; but
at the end of each section (except Section 1) the reader will be informed which
parts of Chapters 3 and 4 can be read as an immediate continuation.

2.1 Structures

2.1.1 We are going to present the definition of V -valued structures as a familiar
generalization of relational structures. V -valued structures will play the role of
models in the sense of sematic systems. A relational structure consists of a non-
empty domain M and some relations R1, . . . , Rn on M of various arities. In
symbols,
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M = 〈M,R1, . . . , Rn〉 .
Obviously, relations can be replaced by two-valued functions on M of the

appropriate arity, i.e. characteristic functions of the relations. This can be gen-
eralized by allowing functions with values in an abstract set V . For example,
the question “are x, y related?” defines a two-valued binary function (binary
relation); the question “what is the degree of relationship of x, y?” defines a
binary function with more general values. We make the following definition.

2.1.2 Definition (1) A type is a finite sequence 〈t1, . . . , tn〉 of positive natural
numbers. A V -structure of the type t = 〈t1, . . . , tn〉 is a tuple

M = 〈M, f1, . . . , fn〉
where m is a non-empty set called the domain (or field) of M and each fi is
a mapping from M ti into V . A V -structure N = 〈N, g1, . . . , gn〉 of type t is a
substructure of M if N ⊆ M and each gi is the restriction of fi to N ti . A one-one
mapping j of M onto N is an isomorphism of M , N if it preserves the structure,
i.e. for each i and o1, . . . , oti ∈ M we have fi(o1, . . . , oti) = gi(j(o1), . . . , j(oti)).

2.1.3 Examples

(1) Let V be the set of non-negative reals. A metric space is a V -structure
〈M, d〉 of type 〈2〉 satisfying the well known assumptions.

(2) Let N denote the set of natural numbers. The arithmetical structure on N
(addition and multiplication) can be characterized

(a) as a {0, 1}-structure 〈N, ad, mt〉 of type 〈3, 3〉 where ad(i, j, k) = 1 iff
i + j = k and mt(i, j, k) = 1 iff i · j = k, or

(b) as an N-structure 〈N, a, m〉 of type 〈2, 2〉 where a(i, j) = i + j and
m(i, j) = i · j.

(3) Let M be a finite set and let ≤ be a linear ordering of M . The set M
ordered by ≤ can be expressed

(a) as a {0, 1}-structure 〈M, f〉 of type 〈2〉 such that f(o1, o2) = 1 iff
o1 ≤ o2, or

(b) as a N-structure 〈M, r〉 of type 〈1〉 where r(o) is the rank of o w.r.t. ≤,
i.e. r(o) = 0 iff o is the least element, r(o) = 1 iff o is the immediate
successor of the least element etc.
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2.1.4 Denote by MV
t the set of all V -structures M of type t such that the domain

of M is a finite set of natural numbers. Thus each V -structure M ′ of type t with
a finite domain is isomorphic to a member of MV

t .

In addition, let V be a recursive set of natural numbers. It is easy to define
a natural coding of MV

t by some natural numbers. For example, remember that
there is a natural coding of all tuples of natural numbers by natural numbers. A
type is a tuple of natural numbers; a V -valued function on a finite set M ⊆ N can
be represented as a tuple of tuples of natural numbers, using the natural ordering
of N; a structure can be represented as a tuple consisting of the domain, the type
and the respective V -valued functions.

Elements of MV
t where V is a recursive set can be called observational V -

structures of type t. Note that V may become a subset of N using a coding; thus
it makes sense to speak for example of observational Q-structure where Q is the
set of all rationals. Note also that it makes sense to speak of a recursive function
some arguments of which vary over observational V -structures of a given type.
This remark will be used in the definition of observational calculi.

2.1.5 A further generalization, also well known, consists in the “parametrization”
of the V -valued function by a new argument ranging over an abstract set Σ of
“states”. This corresponds to the classical idea of a system of “possible worlds”
rather that a single “world”. We shall define Σ-state dependent V -structures.
Such structures have been used in modal logic (Kripke) and also in robotics
(Mc Carthy-Hayes). Our treatment of state dependent structures will differ from
that in the literature.

2.1.6 Definition A Σ-state dependent V -structure of type t = 〈t1, . . . , tn〉 is a
tuple

U = 〈U, f1, . . . , fn〉
where U 6= ∅ and each fi, maps U ti × Σ into V .

Let V , U be fixed. Any mapping of Σ into V is called a state dependent
variate. Obviously, for each i, each ti-tuple o1, . . . , oti of elements of U deter-
mines a state dependent variate V i

o1,...oti
(σ) = fi(o1, . . . , oti , σ) called the variate

determined by o1, . . . , oti . On the other hand, each σ determines a V -structure
Uσ = 〈U, f1(−, σ)〉 called the structure determined by σ. A sample is a finite
(non-empty) subset M of U . The sample structure MU

σ determined by a sam-
ple M and a state σ is the substructure of U whose domain is M . If there is no
danger of a misunderstanding we write Mσ instead of MU

σ .

2.1.7 One often assumes, using state dependent structures, that the set of states
is endowed with a structure. For example, if we have a linear ordering on Σ we
may understand elements of Σ as moments of time; Uσ is the state of U in the
moment σ.
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Our idea is to understand a state dependent structure as a structure U =
〈U, f1, . . . , fn〉, where the value of each fi for o1, . . . , oti is not determined by
o1, . . . , oti themselves but depends on some random factors. Suppose we have a
system E of subsets of Σ such that X ⊆ Y ∈ E implies X ∈ E ; call elements of E
small subsets. Then we say that the value of fi for o1, . . . , oti has little chance of
belonging to V0 ⊆ V if

{σ; fi(o1, . . . , oti , σ) ∈ V0} ∈ E .

In Chapter 4 we shall study random structures: Suppose we have a probability
measure P on Σ, i.e. P maps some subsets of Σ into the real interval [0, 1] and
satisfies the usual conditions. WriteR for the domain of P and call Σ = 〈Σ,R, P 〉
a probability space (see Chapter 4, Section 1 for details). Any Σ-state dependent
structure may be called a Σ-random V -structure. The probability measure on Σ
defines various notions of small sets. Take an α ∈ [0, 0.5] and define Eα = {X ⊆ Σ;
for some Y ⊇ X, Y ∈ R, P (Y ) ≤ α}. This is a typical example of a system of
small subsets of Σ.

2.1.8 We are now able to be more specific on rationality criteria for inductive
inference rules. Let V be a set of abstract values; for simplicity, assume V to
be a recursive set. Let Σ be a set of states; let E be a system of small subsets
of Σ. Assume we have a theoretical semantic system ST with abstract values V
and with Σ-state dependent V -structures of type t as models. Furthermore, let
us have an observational semantic system S0 with abstract values V and with
finite V -structures of type t as models. (More precisely, the set of models of S0 is
MV

t , cf. 2.1.4.) Note that saying “observational” we assume that the evaluation
function of S0 is recursive. The “part of” – relation ≺ of 1.3.1 is now defined as
follows: M ≺ U iff M is a sample structure from U .

Let I be an inductive inference rule w.r.t. SentT and Sent0 and assume for
simplicity that I is formed by triples Φ,ϕ

Ψ
(Φ, Ψ ∈ SentT , ϕ ∈ Sent0). we may

consider the following rationality criteria concerning V0-truthfulness (V0 ⊆ V ),
just to mention two possibilities:

(a) I is rational if for each state dependent structure U and each finite non-
empty M ⊆ U we have the following: Φ,ϕ

Ψ
∈ I, ‖Φ‖U ∈ V0 and ‖Ψ‖U 6∈ V0

implies {σ; ‖ϕ‖Mσ
∈ V0‖ ∈ E .

(b) I is rational if for each U and M we have: Φ,ϕ
Ψ

∈ I, ‖Φ‖U ∈ V0 and
‖Ψ‖U ∈ V0 implies {σ; ‖ϕ‖Mσ

6∈ V0‖ ∈ E .

The criterion (a) says: If Ψ is inferred from Φ and ϕ then V0-falsehood of Ψ
implies that ϕ is V0-true in Mσ for only a few σ. Hence if we accept Φ and
have verified ϕ in the observed sample structure then we accept Ψ since if ϕ were
V0-false then our observation would be unlikely. This criterion will be used for
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various statistical inference rules in Chapter 4. Note that if Σ is a one-element
set (Σ = {σ}) and “a few” means “no” (E = {∅}) then (a) guarantees that I is
sound inverse deduction: If Φ,ϕ

Ψ
∈ I and Φ, Ψ are V0-true in U then ϕ is V0-true

in M . (Each M determines a unique M .)

2.1.9 Remark If V is not recursive, e.g. if V = R (reals) then the observational
system must have another set of values V 0 which is (coded by) a recursive set
(e.g. V 0 = Q-rationals). Then we have to approximate sample structures by
V 0-structures. See Chapter 4, Section 2.

2.1.10 Key words: type, structure, isomorphism, observational structures; state
dependent structures, state dependent variates, sample structures; systems of
small subsets od states, rationality criteria for inductive inference rules.

2.2 Observational predicate calculi

2.2.1 By “the classical first order predicate claculus of type t t = 〈t1, . . . , tn〉”
we mean the following: Formulae are built up from predicates P1, . . . , Pn of arity
t1, . . . , tn respectively, variables, logical connectives and quantifiers in the usual
way. {0, 1}-structures of type t serve as models: satisfaction and truth are de-
fined inductively; for each closed formula ϕ (i.e. formula without free variables)
and each model M , we define ‖ϕ‖M = 1 iff ϕ is true in M and ‖ϕ‖M = 0 oth-
erwise. Note that we obtain a semantic system in this way: sentences are closed
formulae, models are as described and the evaluation function ‖ϕ‖M is defined.
By the classical results of Gödel and others, this semantic system is axiomatiz-
able (completeness theorem), but if it is rich enough (more precisely, if ti > 1 for
some i) then it is not decidable. These are commonly known facts. We now start
our generalizations and modifications.

We shall use the term “a predicate calculus” for each calculus similar to the
classical predicate.calculus provides it uses two abstract values 0, 1, i.e. formu-
lae are interpreted in (some) {0, 1}-structures. But we admit more quantifiers
than ∀, ∃. The study of generalized quantifiers was initiated by Mostowski and
continued by many scholars (cf. Lindström 1966, 1969, Tharp 1973, Keisler 1970).
We shall investigate generalized quantifiers in predicate calculi from a point of
view different from that of Mostowski and his followers, (who are interested
mainly in the behaviour of formulae with generalized quantifiers in infinite mod-
els) since we shall study predicate calculi called observational. The main point is
that we shall admit only finite structures as models and make other assumptions
such that the following will be true: Closed formulae, models and the evaluation
function of an observational predicate calculus form an observational semantic
system (see 2.2.5 bellow). The reader will see later (especially in Chapter 4)
that some generalized quantifiers are very natural in formalizing observational
languages. Let us make a precise definition.
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2.2.2 Definition A predicate language of type t = 〈t1, . . . , tn〉 consists of the
following:

• predicates P1, . . . , Pn of arity t1, . . . , tn respectively, an infinite sequence
x0, x1, x2, . . . of variables;

• junctors 0, 1 (nullary), ¬ (unary), &, ∨, →, ↔ (binary), called falsehood,
truth, negation, conjuction, disjunction, implications and equivalence;

• quantifiers q0, q1, q2, . . . of types s0, s1, s2, . . . respectively. The sequence of
quantifiers is either infinite or finite (non-empty). Each quantifier type is
a sequence 〈1, 1, . . . , 1〉. If there are infinitely many quantifiers then the
function associating the type si with each i is recursive.

A predicate language with identity contains furthermore an additional binary
predicate = distinct from P1, . . . , Pn (the equality predicate).

Formulae are defined inductively, the notion of atomic formulae and the in-
duction step for connectives being as usual.

Each expression Pi(u1, . . . , uti) where u1, . . . , uti are variables in an atomic
formula (and u1 = u2 is an atomic formula); 0 and 1 are formulae; if ϕ is a
formula then ¬ϕ is; if ϕ, ψ are formulae then ϕ&ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψare
formulae.

If qi is a quantifier of type 〈1si〉, if u is a variable and if ϕ1, . . . , ϕsi
are formulae

then (qu)(ϕ1, . . . , ϕsi
) is a formula. This completes the inductive definition.

Free and bound variables are defined as usual. The induction step for
(qu)(ϕ1, . . . , ϕs) is as follows: a variable is free in (qu)(ϕ1, . . . , ϕs) iff it is free
in one of the formulae ϕ1, . . . , ϕs and is distinct from u. A variable is bound in
(qu)(ϕ1, . . . , ϕs) iff it is bound in one of the formulae ϕ1, . . . , ϕs or it is u.

Formulae of this language can be coded (Gödel numbered) by natural numbers
in the same manner as formulae of the classical predicate calculus. We fix such a
coding; note that then the set of all codes fro closed formulae becomes recursive.

Example. The classical quantifiers ∀, ∃ have type 〈1〉. The quantifier “is
associated with” has type 〈1, 1〉 (until now we have not said anything about the
semantics of quantifiers; this is our next task).

2.2.3 Associated functions of the junctors of a predicate calculus show how the
value of a composed formula depends on the value of its components. The asso-
ciated function of a nullary junctor is simply its value: the value of 0 is 0, the
value of 1 is 1. The following tables define the usual associated functions of other
junctors:

¬ & 0 1 ∨ 0 1 → 0 1 ↔ 0 1
0 1 0 0 0 0 0 1 0 1 1 0 1 0
1 0 1 0 1 1 1 1 1 0 1 1 0 1
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2.2.4 What determines the meaning of a formula beginning with a quantifier?
Consider (∀x)P (x) where P is unary. Let P be interpreted in a model M by a
function f . The truth value of (∀x)P (x) is fully determined by the model 〈M, f〉:
we have ‖(∀x)P (x)‖M = 1 iff f is identically 1 on M . Similarly for ∃. Let Asf∀
be the function defined on all models of type 〈1〉 such that Asf∀(〈M, f〉) = 1 iff
f is identically 1 on M . Call this function the associated function of ∀ and note
that it completely determines the semantics of ∀.

More generally, the associated function of quantifier of type 〈1s〉 will be a
mapping from all models of type 〈1s〉 into {0, 1} which is invariant under isomor-
phism.

We shall give some examples. In accordance with the convention at the end
of 2.2.1, “model” means “a finite {0, 1}-structure”. (This is important for exam-
ple (f) below.)

(a) Universal quantifier ∀ – type 〈1〉. Asf∀ (〈M, f〉) = 1 iff f(o) = 1 for all
o ∈ M ; otherwise Asf∀ (〈M, f〉) = 0.

(b) Existential quantifier ∃ – type 〈1〉. Asf∃ (〈M, f〉) = 1 iff f(o) = 1 for some
o ∈ M ; otherwise Asf∃ (〈M, f〉) = 0.

These quantifiers are called classical quantifiers.

(c) Plurality quantifier W (Rescher 1962) – type 〈1〉. AsfW (〈M, f〉) = 1 iff
the cardinality of {o ∈ M ; f(o) = 1} is larger that the cardinality of {o ∈
M, f(o) = 0} (most objects have the value 1).

(d) The quantifier of implication ⇒ (Church 1951), type 〈1, 1〉 (not to be con-
fused with the junctor (“logical connective”) of implication). Asf⇒ (〈M, f, g〉) =
1 iff for each o ∈ M such that f(o) = 1 we have g(o) = 1 i.e., there is no
object o ∈ M , with f(o) = 1 and g(o) = 0.

(e) The quantifier of simple association ∼ – type 〈1, 1〉. For M = 〈M, f, g〉 put
aM = card{o ∈ M ; f(o) = g(o) = 1},
bM = card{o ∈ M ; f(o) = 1 and g(o) = 0},
cM = card{o ∈ M ; f(o) = 0 and g(o) = 1},
dM = card{o ∈ M ; f(o) = g(o) = 0},
Asf∼(M) = 1 iff aMdM > bMcM (i.e., coincidence predominates over differ-
ence – in the present simple sense).

(f) The quantifier of founded p-implication ⇒p,a a ∈ N, p rational, 1 ≤ p ≤ 1.
Asf⇒p,a (M) = 1 iff aM ≥ p(aM + bM) and aM ≥ a.

2.2.5 Definition An observational predicate calculus OPC of type t is given by
the following:
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(i) a predicate language L of type t,

(ii) for each quantifier qi of L, its associated function Asfqi
, mapping the set

M{0,1}
si of all models of type si whose domain is a finite subset of N into

{0, 1} such that the following is satisfied:

(iia) Each Asfqi
is invariant under isomorphism, i.e., if M,N ∈ M{0,1}

si are
isomorphic then Asfqi

M = Asfqi
N ,

(iib) Asfqi
M is a recursive function of two variables qi, M .

The OPC of type t with classical quantifiers is the OPC of type t having two
quantifiers ∀, ∃ with their ususal associated functions.

2.2.6 Definition. (Values of formulae). Let P be an OPC, let M = 〈M, f1, . . . , fn〉
be a model and let ϕ be a formula; write FV (ϕ) for the set of free variables of ϕ.
An M -sequence for ϕ is a mapping e of FV (ϕ) into M . If the domain of e is
u1, . . . , un and if e(ui) = mi then we write

e =
u1, . . . , un

m1, . . . , mn

.

We define inductively ‖ϕ‖M [e] – the M -value of ϕ for e.

(a)

‖Pi(u1, . . . , uk)‖M

[
u1, . . . , uk

m1, . . . , mk

]
= fi(m1, . . . , mk) ;

‖u1 = u2‖M

[
u1, u2

m1,m2

]
= 1 iff m1 = m2 .

(b)
‖0‖M [∅] = 0 , ‖1‖M [∅] = 1 , ‖¬ϕ‖M [e] = 1− ‖ϕ‖M [e] .

If FV (ϕ) ⊆ dom(e) then write e/ϕ instead of e ¹ FV (ϕ) (restriction). If ι
is &, ∨, →, ↔, then

(c)
‖ϕιψ‖M [e] = Asfι (‖ϕ‖M [e/ϕ] , ‖ψ‖M [e/ψ]) .

If dom(e) ⊇ FV (ϕ) − {x} and x 6∈ dom(e) then letting x vary over M we
obtain a unary function on M

‖ϕ‖e
M [m] = ‖ϕ‖M

[(
e ∪ x

m

)
/ϕ

]

(‖ϕ‖M can be viewed as a k-ary function, k being the number of free vari-
ables of ϕ. Now all variables except x are fixed according to e: x varies
over M .)
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(d)

‖(qx)(ϕ1, . . . , ϕk‖M [e] = Asfq

(〈M, ‖ϕ1‖e
M , . . . , ‖ϕk‖e

M〉
)

2.2.7 Example Let R be a binary predicate. In the following formulas (denoted
ϕ1, ϕ2, ϕ3) x is free and y is bound.

ϕ1 : (∀y)R(x, y)

ϕ2 : (∃y)R(x, y)

ϕ3 : (Wy)R(x, y) .

The following are then closed formulas:

ψ1 : ϕ1
x⇒ ϕ2

ψ2 : ϕ1
x∼ ϕ2

We should write (⇒ x)(ϕ1, ϕ2); however, if there is no danger of misunderstanding
we simply write ϕ1 ⇒ ϕ2 and similarly for the other quantifiers of type 〈1, 1〉.

Let M = 〈M, f〉 be the {0, 1}-structure of type 〈2〉 with six objects 0, . . . , 5
and with the function defined by the following table:

0 1 2 3 4 5 ‖ϕ1‖M ‖ϕ2‖M ‖ϕ3‖M

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 1 0 0 2 0 1 0
3 1 1 1 1 1 1 3 1 1 1
4 0 0 0 1 0 1 4 0 1 0
5 1 1 1 1 1 1 5 1 1 1

In the right-hand table we have the function ‖ϕi‖M ; verify that ‖ψ1‖M =
‖ψ2‖M = 1, i.e., that both ψ1 and ψ2 are true in M ; ‖ϕ1 ⇒ ϕ3‖M = 0.

2.2.8 Theorem. Let P be an OPC of type t and let S be the semantic system
whose sentences are closed formulas of P , whose models are elements of M{0,1}

t

and whose evaluation function is defined by

Val(ϕ,M) = ‖ϕ‖M [∅] .
The S is an observational semantic system.
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Proof. The only thing to be proved is that the function Val is recursive in ϕ
and M . (Remember that Sent andM{0,1}

t are recursive infinite sets.) This follows
from the fact that ‖ϕ‖M [e] is a recursive function of ϕ, M , e. The last fact follows
from the inductive definition of ‖ϕ‖M [e]; details are left to the reader. (Hint: Let
G(M, ei) − fi(e1, . . . , eti if e = 〈e1, . . . , eti〉, M = 〈M, f1, . . . , fn〉, 1 ≤ i ≤ n and
fi is ti-ary; let G(M, e, i) = 0 otherwise. G is recursive.)

2.2.9 Definition and Remark. Let P be an OPC.
Suppose that ϕ, ψ are two formulae such that FV (ϕ) = FV (ψ) (ϕ and ψ

have the same free variables). ϕ and ψ are said to be logically equivalent if
‖ϕ‖M = ‖ψ‖M for each M ∈M.

Note that in general the last equality is an equality of functions (with the same
domain; if both ϕ and ψ are closed then ‖ϕ‖M = ‖ψ‖M expresses the equality
of two values). The definition can be easily generalized for arbitrary pairs of
formulae.

2.2.10 We are going to summarize facts not involving quantifiers that are true for
each OPC and are proved exactly as for the classical predicate calculus. Assume
an OPC to be given, ⇔ is used as the symbol of logical equivalence.

(1) ϕ&ψ ⇔ ψ&ϕ, (2) ϕ ∨ ψ ⇔ ψ ∨ ϕ (commutativity),
(3) ϕ&ϕ ⇔ ϕ, (4) ϕ ∨ ϕ ⇔ ϕ (idempotence),
(5) ϕ&(ψ&χ) ⇔ (ϕ&ψ)&χ, (6) ϕ ∨ (ψ ∨ χ) ⇔ (ϕ ∨ (ψ ∨ χ) (associativity),
(7) ϕ&1 ⇔ ϕ ∨ 0 ⇔ ϕ,
(8) ϕ&0 ⇔ 0, ϕ ∨ 1 ⇔ 1,
(9) (ϕ → ψ) ⇔ (¬ϕ ∨ ψ) ⇔ ¬(ϕ&¬ψ),

(10) ϕ&(ψ ∨ χ) ⇔ (ϕ&ψ) ∨ (ϕ&χ), (distributivity),
(11) ϕ ∨ (ψ&χ) ⇔ (ϕ ∨ ψ)&(ϕ ∨ χ), (distributivity),
(12) ¬¬ϕ ⇔ ϕ,
(13) ¬(ϕ&ψ) ⇔ ¬ϕ ∨ ¬ψ, (de Morgan law),
(14) ¬(ϕ ∨ ψ) ⇔ ¬ϕ&¬ψ, (de Morgan law),
(15) ϕ&¬ϕ ⇔ 0, (16) ϕ ∨ ¬ϕ ⇔ 1 (complementation).

2.2.11 If B = {ϕ1, . . . , ϕn} then we write
∧

B or
n∧

i=1

ϕi with the usual meaning:

the conjunction of ϕ1, . . . , ϕn; if B is empty then
∧

B means 1. Similarly,
n∨

i=1

ϕi

or
∨

B is the disjunction of ϕ1, . . . , ϕn;
∨ ∅ is 0.

Let A, B be disjoint finite sets of formulae. Then

(17)
∧

(B
⋃

A) ⇔ ∧
B&

∧
A, (18)

∨
(B

⋃
A) ⇔ ∨

B ∨∨
A,

(19)
∧

B ∨∧
A ⇔ ∨{ϕ&ψ; ϕ ∈ B and ψ ∈ A},

(20)
∨

B&
∨

A ⇔ ∧{ϕ ∨ ψ; ϕ ∈ B and ψ ∈ A},
(21) ¬∧

B ⇔ ∨{¬ϕ; ϕ ∈ B}, (22) ¬∨
B ⇔ ∧{¬ϕ; ϕ ∈ B}.
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2.2.12 A formula is open if it contains no quantifiers. Particular open formulae:
atomic formulae; literals, i.e., atomic formulae or negated atomic formulae; el-
ementary conjunctions, i.e., formulae of the form

∧
B where B is a non-empty

set of literals such that for no atomic formula both ϕ ∈ B and ¬ϕ ∈ B; elemen-
tary disjunctions (analogous); formulae in conjunctive normal form (multiple
conjunctions of elementary disjunctions); formulae in disjunctive normal form
(disjunctions of elementary conjunctions).
Fact: For each open formula ϕ different from 1 there is a logically equivalent for-
mula in conjunctive normal form containing only predicates and variables which
occur in ϕ. The same is true for open formulas different from 0 and disjunctive
normal form.

2.2.13 For each closed formula ϕ and each finite set B of closed formulae, ϕ is a
logical {1}-consequence of B (in the sense of 1.2.7) iff (

∧
B) → ϕ is a tautology.

“Closed” means “having no free variables”.

2.2.14 Corollary. Let P be an OPC and let I be a {1}-sound deduction rule. I is
strongly {1}-complete (w.r.t. the semantic system given by all closed formulae)
iff I is {1}-complete and for each closed formula ϕ and each finite set B of closed
formulae we have

B,
(∧

B
)
→ ϕ `I ϕ . (∗)

Proof. (⇒) is evident. Conversely, assume the condition and let B be a finite set
of closed formulae and ϕ a closed formula such that B |={1} ϕ. Then (

∧
B) → ϕ

is a tautology and hence `I (
∧

B) → ϕ. This yields B `I ϕ by (∗).

2.2.15 In accordance with 1.2.12 we call an OPC P decidable if the set TautP
of all closed formulae that are {1}-tautologies is recursive. We could define P to
be axiomatizable if TautP is recursively enumerable; but it follows immediately
from 1.2.15 that TautP is recursive iff it is recursively enumerable. This shows
that properties of OPC’s may differ considerably from properties of the classical
predicate calculus which is axiomatizable but not decidable (provided its type is
rich enough, cf. 2.2.1). We shall study OPC’s in Chapter 3; here we only present
a classical result due to Trachtenbrot concerning OPC’s with classical quantifiers.
The theorem is the counterpart of Gödel’s completeness theorem (for the classical
predicate calculus) in the logic of OPC’s.

2.2.16 Theorem (Trachtenbrot 1950). There is a type t such that the OPC of
the type t whose only quantifiers are classical quantifiers ∀, ∃ is not decidable
(and hence not axiomatizable).

The original proof is rather complicated. We outline a proof using later results
(in particular, Matijasevič’s result on Diophantine sets) in Chapter 3, Section 5.
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2.2.17 Remarks

(1) One can show that if t is not monadic (ti > 1 for some i) then the OPC
of type t with classical quantifiers is not decidable. In Chapter 3 we show
that each monadic OPC (without equality) with classical quantifiers (and,
moreover, each OPC with finitely many quantifiers) is decidable. We also
prove other facts concerning (un)decidability. (Cf. Ivánek.)

(2) Section 1, 2, 5 of Chapter 3 may be read immediately after the present
section.

2.2.18 Key words: Predicate language (with equality), formulae, free and
bound variables; associated functions of junctors and of (generalized) quantifiers,
observational predicate calculi, the value of a formula in a model for a sequence;
open formulae, literals, elementary conjunctions and disjunctions.

2.3 Function calculi

2.3.1 The aim of the present section is to generalize the classical predicate calcu-
lus in order to obtain formal language appropriate for expressing statements on
V -structures for any set V will be a subset of the set R of real numbers, or a sub-
set of R∪{x} where x is an abstract value for missing information (cf. Chapter 3,
Section 3). There are various means of constructing languages for V -structures.
In many-valued logics, one considers elements of V as generalized truth values
(e.g. degrees of certainty); one generalizes associated functions of junctors and
quantifiers to appropriate V -valued functions and often makes use of a structure
given on V . (Cf. Rosser-Turquette 1952, Chang-Keisler 1966.) Suppes works
with finite real-valued structures but has only three truth-values meaning “true”,
“false” and “meaningless”. The reader is recommended to read Suppes’s paper;
but we shall choose another way.

We shall allow formulae to have arbitrary values from V , (i.e. we shall work
with V -valued associated functions of various junctors and quantifiers) but we
shall not deal with vaues from V as truth values. Instead, we shall work with var-
ious subsets V0 ⊆ V and investigate the notions of V0-truth and V0-consequence.
(Cf. the discussion 1.2.8 on V0-assertions.)

2.3.2 Definition. Let t be a type. A language of type t consists of the following:
function symbols F1, . . . , Fn of arities t1, . . . , tn respectively;
variables x1, x1, . . . (infinite sequence);
junctors ι0, ι1, . . . of artities j0, j1, j2, . . .

respectively; the sequence of junctors is finite or infinite and if it is infinite then
the sequence j0, j1, . . . as a function over the natural numbers is recursive;

quantifiers q0, q1, . . . of types s0, s1, . . . respectively.

34



The sequence of quantifiers is finite (non-empty) or infinite; each quantifier
type is a tuple of ones. If there are infinitely many quantifiers then the function
i → si is recursive.

Atomic formulae have the form Fi(u1, . . . , uti) where the uj are variables. If ι
is a k-ary junctor and if ϕ1, . . . , ϕk are formulae then ι(ϕ1, . . . , ϕn) is a formula.
If q is a quantifier of type 〈1k〉 and ϕ1, . . . , ϕk are formulae and if u is a variable
then (qu)(ϕ1, . . . ϕk is a formula.

The definition of free and bound variables generalizes trivially for the present
notion of formulae. Given a language, we fix a Gödel numbering of formulae by
natural numbers.

2.3.3 Definition. Let t be a type and let V be an abstract set of values. A
V -valued functor calculus F of type t consists of the following:

a language of type t,

a non-empty class M of V -structures of type t, called models of F;

for each k-ary junctor ι, a mapping Asfι : V k → V called the associated

function of ι;

for each quantifier q of type 〈1k〉, a mapping Asfq, called the associated

function of q.

Say that a V -structure 〈M, f1, . . . fk〉 of type 〈1k〉 belongs to M if there is a
structure 〈M, g1, . . . gn〉 having the same domain. Asfq maps all V -structures of
type 〈1k〉belonging to M into V .

For example, if M concists of all finite V -structures of type t then dom(Asfq)

consists of all finite V -structures of the type 〈1k〉 .

2.3.4 Examples

(1) Each OPC is a function calculus whose class M of models is M{0,1}
t of all

{0, 1}-structures of type t whose domain is a finite set of natural numbers.

(2) The classical predicate calculus is a function calculus whose class of models
is formed by all {0, 1}-structures of type t.

(3) We give a very simple example of natural valued calculi. For each n ≥
1 we denote by Fn the function calculus defined as follows: the set of
abstract values is N , M is MN

〈1n〉(the set of all N -structures of type 〈1n〉
whose domain is a finite set of natural numbers). The language is specified
as follows: it has n unary function symbols, junctors +, · (binary) and
z (unary), quantifiers

∑
and

∏
of type 〈1〉. The associated function of +

and · is addition and multiplication respectively; Asf≤(p, q) = 1 iff p ≤ q
and = 0 otherwise. Asfz(p) = 1 iff p = 0, = 0 otherwise. AsfQ (〈M, f〉) =∏
o∈M

f(o), AsfP (〈M, f〉) =
∑

o∈M

f(o) (sum and product over the model).
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Since FN is a very simple but natural calculus call it the pocket calculus of
type 〈1n〉.

(4) En is a real-valued calculus with n unary function symbols M = MR
〈1n〉,

there are no junctors and there is one quantifier ρ of type 〈1, 1〉 called the
correlation coefficient; Asfρ is defined as follows: If 〈M, f, g〉 is a model let
f denote the arithmetic mean of {f(o); o ∈ M} and similarly for g.

Asfρ (〈M, f, g〉) =

∑
o∈M

(f(o)− f)(g(o)− g)

√ ∑
o∈M

(f(o)− f)2
∑

o∈M

(g(o)− g)2
(∗)

(and Asfρ (〈M, f, g〉) = 0 if the denominator of (*) is zero).

(5) We can restrict ourselves to rational-valued models in the above example,
i.e. take M = MQ

〈1n〉. If we want to declare Q as our set of abstract values
we must modify the definition of the associated function of the quantifier
in order to guarantee that its values will be rational, hence, we may work
with the quantifier ρ∗ defined by

Asfρ∗ (〈M, f, g〉) = sgn

(∑
o∈M

(f(o)− f)(g(o)− g)

)

( ∑
o∈M

(f(o)− f)(g(o)− g)

)2

∑
o∈M

(f(o)− f)2
∑

o∈M

(g(o)− g)2

(signed square of the correlation coefficient), which gives equivalent infor-
mation.

2.3.5 Definition. (Values of formulas). The definition is fully analogous to 2.2.6.
For an atomic formula Fi(u1, . . . , uk),

‖Fi(u1, . . . , uk)‖M

[
u1, . . . , uk

m1, . . . , mk

]
= fi(m1, . . . , mk) ;

if ι is a k-ary junctor then

‖ι(ϕ1, . . . ϕk)‖M [e] = Asfι (‖ϕ1‖M [e/ϕ1], . . . , ‖ϕk‖M [e/ϕk]) ;

if q is a quantifier of type 〈1k〉 then

‖(qu)(ϕ1, . . . ϕk)‖M [e] = Asfq

(〈M, ‖ϕ1‖e
M , . . . , ‖ϕk‖e

M〉
)

.
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2.3.6 Remark

(1) If V contains 0 and 1 (and perhaps other values) then sentences taking only
values 0, 1 i.e. {0, 1}-tautologies can be called proper sentences. Given a
V0 ⊆ V , we may introduce a new unary junctor ι whose associated function
is the characteristic function of V0 over V (Asfι(v) = 1 if v ∈ V0, = 0
if v ∈ V − V0). Then for each sentence ϕ and each M , ‖ϕ‖M ∈ V0 iff
‖ιϕ‖M = 1; ιϕ is a proper sentence.

(2) We could construct function calculi with equality as an extra binary func-

tor = such that ‖u1 = u2‖M

[
u1,u2

m1,m2

]
= 1 iff m1 = m2, otherwise = 0

(provided 0, 1 ∈ V ).

2.3.7 Definition. A function calculus F is observational (OFC) if the following
holds:

(a) V is a recursive set,

(b) Asfι(v) is a recursive function of ι and v,

(c) Asfq(M) is a recursive function of q and M .

2.3.8 Pedantically we should say: “Asfι(v) is a partial recirsive function of ι
and v” and similarly for Asfq(M). But under our recursiveness assumptions
concerning V and the coding of formulae (e.g. we quietly assume that the set of
all junctors is recursive etc.), the domain of Asf is a recursive set; hence we could
equivalently say “there is a (total) recursive function whose restriction is Asf”.
Thus there is no danger of confusion. The following theorem is then obvious
(cf. 2.2.8).

2.3.9 Theorem. Let F be an OFC, then the semantic system S whose sentences
are closed formulas of F , whose models are models of F and whose evaluation
function is

Val(ϕ,M) = ‖ϕ‖M [∅]
is an observational semantic system.

2.3.10 Remark

(1) Trachtenbrot’s theorem gives an example of undecidable OFC’s; in Chap-
ter 3 we shall show other results. Note that, for reasonable V0, the pocket
calculi are undecidable (Hájek 1973).
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(2) The definition 2.2.9 can be used for arbitrary function calculi: ϕ and ψ are
logically equivalent if ‖ϕ‖M = ‖ψ‖M for each M ∈M.

(3) Section 2 and 3 of Chapter 3 can be read immediately after this section
provided the reader has already read Chapter 3, Section 1.

2.3.11 Key words: language, formulae, free and bound variables; V -valued
function calculus, values of formulae; observational function calculi.

2.4 Function calculi with state dependent mod-

els (state dependent calculi)

2.4.1 In the present short section we generalize function calculi to calculi whose
models are state-dependent structures (cf. 2.1.6-7). According to 2.1.8 semantic
system with state-dependent models are useful as possible formalizations of theo-
retical languages since they make it possible to speak about chance. We shall now
analyse the structure of sentences interpretable in state-dependent structures in
more details.

Generalizing function calculi we first introduce a new variable, say s, for states;
and we modify the definition of an atomic formula as follows: if Fi is k-ary and
if u1, . . . , uk are object variables then Fi(u1, . . . , uk, s) is formula. Naturally, the
value of such a formula in a Σ-state dependent V -structure U = 〈U, f1, . . . , fn〉
for a sequence

e =
u1, . . . , uk, s

o1, . . . , ok, σ

is

‖Fi(u1, . . . , uk, s)‖U [e] = fi(o1, . . . , ok, σ) .

There is no problem concerning junctors; but we must be careful about quan-
tifiers. We distinguish quantifiers of three kinds: Object-quantifiers binding an
object variable, state-quantifiers binding the state variable and mixed quantifiers
binding both an object variable and the state variable. We turn now to exact
definitions; they will be followed by examples.

2.4.2 Definition. Let t = 〈ti, . . . , tn〉 be a type.

(1) A state dependent language of type t consists of the following:
function symbols F1, . . . , Fn of arities t1, . . . , tn respectively,
object variables xo, x1, . . ., a state variable s,
junctors ι0, ι1, . . . of arities j0, j1, . . .
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respectively satisfying the usual recursiveness condition,
quantifiers q0, q1, . . .. With each quantifier qi we associate its kind ki ∈
{ob, st, mx} and its quantifier type (a tuple of ones). The function i → ki, si

is a recursive function if the sequence of quantifiers is infinite.

(2) Atomic formulae are defined according to 2.4.2; if ι is a k-ary junctor and
if ϕ1, . . . , ϕk are formulae then ι(ϕ1, . . . , ϕk) is a formula. If q is an object
quantifier of type 〈1k〉, if u is an object variable and if ϕ1, . . . , ϕk are for-
mulae then
(i) (qu)(ϕ1, . . . , ϕk)
is a formula. Similarly for q a state quantifier; then
(ii) (qs)(ϕ1, . . . , ϕk)
is a formula. Finally, if q is a mixed quantifier; then
(iii) (qu, s)(ϕ1, . . . , ϕk)
is a formula.
The definition of free and bound variables is clear when we postulate that
q binds u in (i), q binds s in (ii) and q binds u, s in (iii).

2.4.3 Definition. Let Σ be a fixed abstract set of states, let V be an abstract
set of values and let t be a type. A v-valued function calculus F with Σ-state
dependent models of type t (briefly, a s.d. function calculus) is determined by the
following:

a s.d. language of type t;
a non-empty class M of Σ-state dependent V -structures called models of F ;
for each k-ary junctor ι, its associated function Asfι : V k → V ;
for each quantifier q of type 〈1k〉, its associated function Asfq with the following
properties:
Say that a structure (or a state dependent structure) M belongs to M if there

is a state dependent structure in M having the same domain as M .

(i) If q is an object quantifier then Asfq maps the class of all state dependent
structures of type 〈1k〉 belonging to M into V .

(ii) If q is a mixed quantifier then Asfq maps the class of all Σ-state dependent
structures of type 〈1k〉 belonging to M into V .

(iii) If q is a state quantifier then Asfq maps the class of all k-tuples of Σ-state
dependent variates into V . (Hence Asfq (〈g1, . . . , gk〉) is defined iff each gi

maps Σ into V .)

39



2.4.4 Examples. Assume V = {0, 1}.
(1) Object quantifiers of type 〈1〉: ∀ with the usual associated function; ∃∞

(Mostowski’s quantifier); Asf∃∞ (〈M, f〉) = 1 iff {o; f(o) = 1} is infinite.

(2) Object quantifiers of type 〈1, 1〉: H (Härtig’s quantifier); AsfH (〈M, f, g〉) =
1 iff {o; f(o) = 1} has the same cardinality as {o; g(o) = 1}.

(3) Mixed quantifiers of type 〈1k〉: Full. For each Σ-state dependent structure
U = 〈U, f1, . . . , fk〉, AsfFull(u) = 1 iff for each finite {0, 1}-structure N of
type 〈1k〉 there is a finite M ⊆ U and a state σ such that N is isomorphic
to MU

σ (each finite structure can be obtained as a sample from U).

(4) Let E be a system of small sets on Σ. We have the state quantifier few of
type 〈1〉 defined as follows:

Asf few (〈g〉) = 1 iff {σ; g(σ) = 1} ∈ E .

2.4.5 Examples with real values. Since we are often forced to work with
associated functions that are not always defined, put V = R ∪ {undef} where
undef is the value “undefined”. Let M be the class of all V -structures whose
domains is N (the set of all natural numbers).

(1) Object quantifier lim of type 〈1〉:

Asf lim (〈M, f〉) = lim
n→∞

f(n) , if defined

= undef otherwise .

(2) The mixed quantifier Full (2.4.4. (3)) makes sense for all V -valued models
and AsfFull is alway either 1 or 0.

(3) The state quantifier E (expectation): let P be a probability measure on
〈Σ,R〉 then

AsfE (〈q〉) =

∫
gdP if defined , = undef otherwise .

2.4.6 Remark and Convention. Let ϕ be an open formula in a state dependent
function calculus and suppose that the free variables of ϕ are u1, . . . , un, s. If U
is a model (i.e. state dependent structure) then U and ϕ determine a mapping
of Uk × Σ into V associating with each o1, . . . , on ∈ U and σ ∈ Σ the value

‖ϕ‖U

[
u1,...,un,s
o1,...,on,σ

]
. Without any danger of misunderstanding this mapping can be
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denoted by ‖ϕ‖U . If ϕ1, . . . , ϕk are open formulae and if U is a model with
domain U then we have the Σ-state dependent structure

Uϕ1,...,ϕk
= 〈U, ‖ϕ1‖U , . . . , ‖ϕk‖U〉

we say that Uϕ1,...,ϕk
is derived from U with the help of ϕ1, . . . , ϕk.

2.4.7 Remark. Let Φ be a sentence (closed formula) of a s.d. calculus F of type
t = 〈1k〉. We may extend F to a.s.d. calculus F ′ having exactly one more mixed
quantifier q of type t such that

Asfq(U) = ‖Φ‖U .

Observe that for each k-tuple of open formulas ϕ1, . . . , ϕk containing exactly
one free object variable u and the state variable s we have

‖Φ‖Uϕ1,...,ϕk
= ‖(qu, s)(ϕ1, . . . ϕk)‖U

Thus Φ says about Uϕ1,...,ϕk
the same as (qu, s)(ϕ1, . . . , ϕk) about U . This fact

will be used in Chapter 4.

2.4.8 Let us now discuss the state of the questions (L0)-(L2) of the logic of
induction (see 1.1.5).

(L0) We shall use state dependent function calculi as our formalization of the-
oretical languages, since they make it possible to express (and interpret)
statements concerning chance. We shall use observational function calculi
as our formalization of observational languages, since they have recursive
syntax and semantics and, therefore, sentences can be generated and eval-
uated by a machine (in principle).

(L1) The notion “a theoretical hypothesis is justified by some (true) observa-
tional statements (in a certain theoretical context)” is formalized by our
notion of inductive inference rules; we gave a criterion of rationality of such
a rule, which is an extract of statistical inference rules as we shall see. (We
shall formulate further rationality criteria in Chapter 4.)

(L2) The question concerning methods of deciding whether a hypothesis is jus-
tified by some observational statement reduces to the requirement of recur-
siveness of the inductive inference rule chosen or, better, to an easy (e.g.
polynomial) recognizability of the rule. This requirement will be trivially
fulfilled for the rules of Chapter 4.

2.4.9 Remark. The reader may read Chapter 4 Section 1-5 as the immediate
continuation of the present section without Chapter 3.
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2.4.10 Key words: function calculi with state dependent models (s.d. func-
tion calculi); the structure derived from another structure with the help of open
formulae.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 2

(1) Prove the following lemma (on renaming free variables):
Let F be a function calculus.
Let ϕ be a formula with free variables x1, . . . , xn and let y1, . . . , yn be a
sequence of variables such that, for each i = 1, . . . , n, either yi is xi or yi

does not occur in ϕ. Let ϕ′ be the result of replacing all occurrences of xi

in ϕ by yi (i = 1, . . . , n) and, for each M -sequence e for ϕ,
if e = x1,...,xn

m1,...,mn
, let e′ be the sequence y1,...,yn

m1,...,mn
. Then ‖ϕ‖M [e] = ‖ϕ′‖M [e′].

(2) Prove the following theorem (on renaming bound variables);
Let F be a function calculus, let q be a quantifier and let ϕ = (qu)(ϕ1, . . . , ϕn)
be a formula. Finally let y be a variable not occurring in ϕ. For i =
1, . . . k denote by ψi the formulae resulting from ϕi be replacing each oc-
currence of u in ϕi by y. Then (qy)(ψ1, . . . , ψn) is logically equivalent to
ϕ = (qu)(ϕ1, . . . , ϕn).

(3) (Rescher) Prove that the following are tautologies (W is Rescher’s plurality
quantifier):

(i) (∀x)ϕ(x) → (Wx)ϕ(x) (ii) (Wx)ϕ(x) → (∃x)ϕ(x),
(iii) (Wx)ϕ1(x)&(Wx)ϕ2(x) → (∃x)(ϕ1(x)&ϕ2(x)),
(iv) (Wx)ϕ(x) → ¬(Wx)¬ϕ(x),
(v) ((∀x)ϕ(x)&(Wx)(ϕ(x) → ψ(x))) → (Wx)ψ(x),
(vi) ((Wx)ϕ(x)&(∀x)(ϕ(x) → ψ(x))) → (Wx)ψ(x).

Consider a model with three elements a, b, c and the binary relation R such
that a is in relation R to nothing, b only to a and b, and c only to b and c.
Show that the sentence (Wx)(Wy)R(x, y) → (Wy)(Wx)R(x, y) is not true
in this model.

(4) (Chytil 1975). Let ≡ be the junctor of equivalence
Asf(u, v) = 1 iff u = v and, for each n ≥ 2, let En and On be n-ary junctors
defined as follows:

AsfEn(u1, . . . , un) = 1 iff
n∑
1

ui is even

AsfOn(u1, . . . , un) = 1 iff
n∑
1

ui is odd.

Consider a predicate calculus whose junctors are those just defined, nega-
tion, 0 and 1. Show that each open formula built up from atomic formulas
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using ≡ and ¬ is logically equivalent to a formula of one of the following
forms:

0, 1, En(ϕ1, . . . , ϕn) , On(ϕ1, . . . , ϕn) ,

where ϕ1, . . . , ϕn are distinct atomic formulas.

(5) Show that (2) remains valid if we replace “function calculus” by “state
dependent calculus”, “variable” by “object variable” and “quantifier” by
“object quantifier” (Modify appropriately (1)).

(6) Show that the following formulas are not logically equivalent

(∀x)(fews)ϕ(x, s) ,

(fews)(∀x)ϕ(x, s) .

(7) (Fraissé) Consider {0, 1}-structures of a type t; let p be a natural number.
Put M 'p N if each substructure M0 of M , M0 of cardinality ≤ p is
isomorphic to a substructure of N and vice versa. (Then call M nad N
p-equivalent).

(a) 'p is an equivalence relation with finitely many equivalence classes.

(b) There is a natural number r(t, p) such that each structure has a p-
equivalent substructure of cardinality ≤ r(t, p).

(c) There is a natural number s(t, p) such that for each finite structure
M of cardinality ≥ s(t, p) there is a p-equivalent countably infinite
structure M ′.

(8) Let Σ be a set of states and let ¹ be a linear quasiordering on a field R of
subsets of Σ (i.e. a transitive relation such that for all X, Y (X ¹ Y or
Y º X) and suppose that X ⊆ Y implies X ¹ Y for each X, Y ∈ R).
Define a state quantifier More of type 〈1, 1〉 for state dependent predicate
calculi putting

AsfMore (〈g1, g2〉) = 1 iff {σ ∈ Σ; g1(σ) = 1} ¹ {σ ∈ Σ; g2(σ) = 1}
= 0 otherwise .

Read a formula (More s)(ϕ(s), ψ(s)) “ψ is more likely than ϕ”. Find some
tautologies for More. (For example, if P is a probability measure on Σ, one
can define X ¹ Y iff P (X) ≤ P (Y ).)
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Chapter 3

The Logic of Observational
Functor Calculi

Observational calculi are logical systems similar to the first order predicate cal-
culus; thus it is possible to consider them from the logical point of view. In
particular, questions concerning decidability, axiomatizability, and definabiblity
can be naturally asked. It appears that observational calculi could and and
should be studied also in the “pure” symbolic logic; but our question is what is
the importance of the logic of observational calculi for AI and, more generally,
for computer science. We claim three things:

(1) Questions concerning decidability of observational calculi are relevant for
Hypothesis Formation. Reason: nobody would call a tautology an intelli-
gent observation concerning particular data, if he knew that it is a tautol-
ogy. Can we recognize tautologies of an observational calculus we are using?
Naturally, the decidability question is only the beginning. If the answer is
yes, the next question concerns the complexity of the decision problem. If
the answer is no, the next task is to find natural subclasses Sent0 of the set
Sent of all sentences such that the tautology problem restricted to Sent0 is
decidable.

(2) The notion of an immediate consequence can be used for optimized rep-
resentation of sets of observational statements. This is typical for GUHA
methods (see Part B): one finds simple sound deduction rules and uses them
in a non-iterative way to represent relevant observational truths.

(3) There are close relations between logical notions concerning observational
calculi and notions concerning recognizability of language in polynomial
time. Hence the logic of observational calculi is related to and can be used
in the theory of computational complexity.

The chapter is arranged as follows: Section 1 deals with Monadic observational
predicate calculi, i.e. OPC’s all of whose predicates are unary (except the equality
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predicate, if present). The reader will see that these simple observational calculi
do have non-trivial theory thanks to generalized quantifiers. Note also that the
particular methods of suggestion described in Part II are based on monadic OPC’s
and their generalizations/monadic observational function calculi. In Section 2,
we investigate a very important class of observational quantifiers in OPC’s, called
associational quantifiers and its subclass of implicational quantifiers. These are
natural classes of quantifiers. These are natural classes of quantifiers and we
shall see in Chapter 4 that various important statistically motivated quantifiers
are are associational or even implicational. Section 3 is devoted to the problem
of incomplete information: we describe a uniform way of extending each OFC to
an OFC having one more additional value ×-=unknown (missing information).
In Section 4, we shall investigate calculi having finitely many abstract values
without any preferred structure on the values; such calculi are called calculi with
nominal or qualitative values. Results of the first four sections will be utilized in
Chapter 4 and in Part II.

Section 5 surveys abstract model theory of the OPC’s and describes its con-
nection with the well known problems of complexity theory. It shows how OPC’s
differ from the predicate calculi with both finite and infinite models in questions
concerning the interpolation theorem and related problems. (Full treatment of
this matter will be published elsewhere.) Section 5 may be omitted on a first
reading.

3.1 Monadic observational predicate calculi

3.1.1 Definition and conventions. Observational predicate calculi (OPC’s)
were defined in Chapter 2, Section 2. An OPC is monadic if all its predicates are
unary, i.e. if its type is 〈1, . . . , 1〉. We write MOPC for “monadic observational
predicate calculus”. A MOPC whose only quantifiers are the classical quanti-
fiers ∀, ∃ is called a classical MOPC or CMOPC. Similarly for a MOPC with
equality, in particular a CMOPC with equality.

3.1.2 Definition. Let P be a MOPC. The first variable x0 is called the designated
variable. Open (= quantifier free) formulas containing no variable distinct from
the designated variable x are called designated open formulas. Let 〈Pi, i < n〉 be
the sequence of predicates of P . An n-ary card is a sequence 〈ui; i < n〉 of zeros
and ones. If M = 〈M, 〈pi, i < n〉〉 is a model (a {0, 1}-structure of type 〈1n〉) and
if o ∈ M then the M -card of o is the tuple CM(o) = 〈pi(o); i < n〉; it is evidently
an n-ary card.

3.1.3 Lemma. Let ϕ(x) be a designated open formula, let M be a model and
let o ∈ M . Then the value ‖ϕ‖M [o] depends only on CM(o), i.e., whenever M ′ is
a model and CM(o) = CM ′(o) then ‖ϕ‖M [o] = ‖ϕ‖M ′ [o]. Moreover, if Pi1 , . . . , Pik
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are the predicates occurring in ϕ then ‖ϕ‖M [o] depends only on the i1-th,. . . ,ik-th
members of CM(o), i.e., whenever M ′ is a model, o′ ∈ M ′ and CM(o) coincides
with CM ′(o′) on the i1-th,. . . ,ik-th place then ‖ϕ‖M [o] = ‖ϕ‖M ′ [o′].

3.1.4 Notation. If u is an M -card and if ϕ is a designated open formula then
‖ϕ‖[u] is defined as ‖ϕ‖M [o] for each M such that CM(o) = u.

3.1.5 Definition. Let P be a MOPC of type 〈1n〉 and let q be a qunatifier of
type 〈1k〉, k ≤ n ·q is definable in P if there is a sentence Φ of P not containing q
such that the sentence (qx)(P1(x), . . . , Pk(x)) is logically equivalent to Φ.

3.1.6 Lemma. Let P and q be as in 3.1.5. q is definable in P iff each sentence
of P is logically equivalent to a sentence not containing the quantifier q.
Proof. ⇐ is trivial. To prove ⇒, one shows by induction on the complexity of
formulae that the following holds:

For each formula ϕ(x0, . . . , xk) of P there is a formula ϕ̂(x0, . . . , xk) not con-
taining q and logically equivalent to ϕ. The only non-trivial step concerns the
case that ϕ(x) has the form (qy)(ϕ1, . . . , ϕk) occurs in Φ Let Φ∗(x) be the formula
resulting from Φ be replacing each occurrence of Pi(z) by ϕi(x, z) (i = 1, . . . , k);
then evidently Φ∗(x) is logically equivalent to ϕ(x).

In the sequel we shall study CMOPC’s (first without equality, then with
equality). We shall see that CMOPC’s are uninteresting since their expressive
power is too weak; hence it is reasonable to turn to MOPC’s with non-classical
quantifiers. Let P be a fixed CMOPC without equality.

3.1.7 Definition. A canonical sentence (of P) is a sentence of the form (∀x)ϕ
where x is the designated variable and ϕ is a designated elementary disjunction
(i.e., an elementary disjunction containing only the designated variable).

3.1.8 Theorem (Normal form). Each sentence of P is logically equivalent to
a Boolean combination of canonical sentences (i.e., to a sentence built up from
canonical sentences using only the junctors &, ∨, ¬).

Proof: We prove the following slightly more general assertion concerning ar-
bitrary formulas: For each formula ϕ (with the free variables u, . . . , v) there is a
logically equivalent formula ϕ̂ (with the same free variables) which is a Boolean
combination of canonical sentences and atomic formulae.

We prove the last assertion by induction on the complexity of ϕ. If ϕ is atomic
then the assertion is trivial. The induction step for connectives is also trivial.
Let ϕ be (∀z)ψ and let ψ ⇔ ψ̂ where ψ̂ is a Boolean combination of canonical
and atomic formulae. Call a formula δ a quasielementary disjunction if there
are pairwise distinct canonical and/or atomic formulae χ1, . . . , χe (e ≥ 1) such
that δ results from them as follows: One first negates some (possibly none) of
them and then joins the resulting sequence by the sign ∨. Thus quantifier-free
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quasielementary disjunctions are just elementary disjunctions. We may assume
that our ψ̂ is a conjunction δ1& . . . &δk of quasielementary disjunctions. Then,
evidently, ϕ ⇔ (∀z)δ1& . . . &(∀z)δk and it suffices to show that each (∀z)δi can
be reduced to the desired form. Thus, let i be fixed and suppose that δi is the
disjunction α1(z) ∨ . . . ∨ αp(z) ∨ ω1 ∨ . . . ∨ ωq where the α’s contain z free and
the ω’s do not.

Then (∀z)(α1(z)∨. . .∨αp(z)) by (∀x)(α1(x)∨. . .∨αp(x)), which is a canonical
sentence, since α1(x) ∨ . . . ∨ αp(x)) is an elementary disjunction.

3.1.9 Definition. Let M be a model of type 〈1n〉. The characteristic of M is the
mapping χM of the set of all n-cards into {0, 1} defined as follows: χM(u) = 1 iff
there is an o ∈ M whose card CM(o) is u.

3.1.10 Theorem (on the characteristic). Let P be the CMOPC with predicates
P1, . . . , Pn and let M1, M2 be models. If χM1

= χM2
then, for each sentence Φ,

M1 |= Φ iff M2 |= Φ.

Proof: By the Normal form theorem 3.1.8, it suffices to suppose Φ to be a
canonical sentence (∀x)δ. Then M i |= Φ iff, for each object o ∈ Mi, ‖δ‖M i

[o] = 1.
However by 3.1.2, the M i-value of δ for o depends only on the M i-card of o; hence
if M1, M2 have the same cards and ‖δ‖M1

[o] = 1 for all o ∈ M1 then ‖δ‖M2
[o] = 1

for each o ∈ M2.

3.1.11 Corollary (stability). Let P be as above, let M be a model and Φ a
sentence. M |= Φ iff there is a submodel M0 ⊆ M such that M0 has at most
2n elements and, for each M1,M0 ⊆ M1 ⊆ M implies M1 |= Φ.

Proof: For each card occurring in M select an object with this card; all selected
objects form M0.

3.1.12 Corollary (decidability). each CMOPC is decidable.
Proof: By 3.1.11, if Φ is a sentence containing n predicates then Φ is a tautol-

ogy iff Φ is true in all models having at most 2n elements; thus, to decide whether
Φ is a tautology it suffices to consider all (finitely many) models with the domain
{0, . . . , i} (for all i ≤ 2n − 1) and verify whether Φ is true in all of them.

3.1.13 Lemma. For each function χ mapping the set of all n-cards into {0, 1}
and not identically equal to 0:

(1) There is a model M such that χ = χM ;

(2) There is a sentence Φχ such that, for each M , M |= Φχ iff χ = χM .
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Proof:

(1) Let K be the set of all n-cards, let M = {u ∈ K; χ(u) = 1}; let, for
u = 〈u1, . . . , un〉, pi(u) = ui. Then, for M = 〈M, p1, . . . , pn〉, we have
χ = χM .

(2) Let, for u = 〈u1, . . . , un〉 ∈ K, uiPi be pi if ui = 1 and uiPi be ¬Pi if

ui = 0. Let κu be u1P1& . . . &unPn. Let Φ be the formula

(
∧

χ(u)=1

(∃x)κu

)

&

(
(∀x)

∨
χ(u)=1

κu

)
.

3.1.14 Theorem (definability of quantifiers). Let P be the CMOPC with the
predicates P1, . . . , Pn and let P ′ be the extension of P resulting from the addition
of a new quantifier q of type 〈1k〉 (k ≤ n) · q is definable in P ′ iff Asfq is constant
on models with equal characteristic i.e., iff χM = χM ′ , implies

Asfq(M) = Asfq(M
′) .

Proof: The implication ⇒ follows from Theorem 5.1.10 on the characteristic.
Conversely, suppose k = n (ignore Pk+1, . . . , Pn) and let X be the set of all
characteristics χM such that Asfq(M) = 1 iff χM ∈ X. Let Φ be

∨
χ∈X

Φχ; then

‖Φ‖M = 1 iff χM ∈ X, i.e., Φ defines q.

3.1.15 Remark. The preceding results concerning CMOPC’s by no means con-
stitute a novelty but the authors were not able to find appropriate references.

We shall now consider CMOPC’s with the equality predicate. We shall see
how this generalization increases the expressive power of CMOPC’s; we show that
the equality predicate can be replaced by infinitely many quantifiers ∃k (there
are k objects such that . . .; k a natural number) and we shall argue that, from
our point of view, such quantifiers yield a generalization of CMOPC’s which is
more natural than the equality predicate. Hence we are led again to MOPC’s
with arbitrary quantifiers. Our exposition is based on Slomson [1968] but the
results (except 3.1.28) are older; cf. Jensen [1965].

3.1.16 Definition.

(1) For each natural number k > 0, ∃k is a quantifier of type 〈1〉 whose asso-
ciated function is defined as follows: For each finite model M = 〈M, f〉,
Asf∃k(M) = 1 iff there are at least k elements o ∈ M such that f(o) = 1.

(2) If P is a CMOPC then P= denotes the corresponding CMOPC with equality
and P∗ denotes the extension of P= by adding all the quantifiers ∃k (k a
natural number).
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3.1.17 Lemma. Let k be a natural number and let Pk be the extension of P=

by ∃k. Then ∃k is definable in Pk by the following formula

Φk : (∃x1, . . . , xk)

( ∧

i6=j,1≤i,j≤k

xi 6= xj&
∧

1≤i≤k

P1xi

)

The proof is obvious.

3.1.18 Conventions and Definition

(1) In the next few paragraphs, we consider a fixed CMOPC P= with equality
and n unary predicates.

(2) K denotes the set of all n-cards. A genus is a mapping of K into natural
numbers not identically equal to 0. With each model M we associate the
genus gM such that gM(u) = i iff the number of objects in M having the
card u is i. Note that M is finite. If g is a genus and p ∈ N then g/p is the
genus defined as follows: g/p(u) = min(g(u), p).

(3) Let M be a model and let m = 〈m0, . . . ,mk−1〉, n = 〈n0, . . . , nk−1〉 be k-
tuples of elements of M . m and n are M-similar (notation: m 'M n) if
(a) CM(mi) = CM(ni) for each i < k and (b) ni = nj iff mi = mj for each
i, j < k.

3.1.19 Lemma. Let M be a model, let m, n be k-tuples of elements from M
such that m 'M n and let ϕ be a formula with the free variables x0, . . . , xk−1.
Then

‖ϕ‖M [m] = ‖ϕ‖M [n] .

Proof: Let m = 〈m0, . . . , mk−1〉 and n = 〈n0, . . . , nk−1〉. Put ι(o) = 0 for
each o ∈ M distinct from all the members of m and n, and let ι(mi) = ni and
ι(ni) = mi for i = 1, . . . , k − 1. Then ι is an isomorphism between M and M
(an automorphism of M) and hence preserves the values of the formulae. Thus,
‖ϕ‖M [m] is equal to ‖ϕ‖M [n].

3.1.20 Lemma. Let M be a model and let ϕ(v0, . . . , vk−1) be a formula contain-
ing less than p variables (both free and bound; the free ones are v0, . . . , vk−1). Sup-
pose that N is a submodel of M such that gN = gM/p. Then ‖ϕ‖M [m] = ‖ϕ‖N [m]
for each k-tuple m of elements of N .

Proof: We use induction on the complexity of ϕ. If ϕ is atomic then the assertion
os obvious. The induction step for connectives is also obvious. Thus, suppose
ϕ to be the formula (∃vk)ψ(v0, . . . , vk) and let the assertion hold for ψ.
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Let m0, . . . , mk−1 ∈ N , m = 〈m0, . . . , mk−1〉. First, suppose ‖ϕ‖N [m] =
1. Then there is an mk ∈ N such that ‖ψ‖N [m0, . . . , mk−1,mk] = 1, hence
‖ψ‖M [m0, . . . , mk−1,mk] = 1 by the induction assumption. Consequently,
‖(∃vk)ψ(v0, . . . , vk)‖M [m0, . . . , mk−1] = 1.

Conversely, suppose ‖ϕ‖Mm = 1. Then there is an mk ∈ M such that
‖ψ‖M [m0, . . . , mk] = 1. If mk ∈ N we obtain ‖ψ‖N [m0, . . . , mk] = 1 which
implies ‖ϕ‖N [m] = 1.
If mk ∈ M −N and if u is the card of mk in M then there are at least p objects
in M with the card u; exactly p of them belong to N . Thus, there is an mk ∈ N
such that m̂k 6= m0, . . . , mk−1 and CM(mk) = CM(m̂k).
Then 〈m0, . . . , mk−1,mk) 'M 〈m0, . . . ,mk−1, m̂k〉 and, by Lemma 3.1.19, we have
‖ψ‖M [m0, . . . , mk] = 1. Then ‖ψN [m0, . . . , mk] = 1 and ‖ϕ‖N [m] = 1.

3.1.21 Remark. The preceding lemma can be generalized as follows: The as-
sumption gN = gN/p can be replaced by the assumption that, for each card u,
(i) whenever gM(u) < p, gM(u) = gN(u) (all elements with the card u belong
to N), (ii) whenever gM(u) ≥ p, gN(u) is at least p (and, obviously, gN(u) ≤
gM(u)).

3.1.22 Theorem (stability). Let P+ be the CMOPC with equality and n unary
predicates; let Φ be a sentence containing less than p variables. M |= Φ iff there
is a submodel M0 ⊆ M such that M0 has at most p · 2n elements and, for each
M1,M0 ⊆ M1 ⊆ M implies M1 |= Φ.

Proof: Take for M0 a model with the genus gM0
= gM/p. Use 3.1.20.

3.1.23 Corollary (decidability). Each CMOPC with equality is decidable.

Proof: By 3.1.22, if Φ is a sentence containing n predicates and p variables then
Φ is a tautology iff Φ is true in all models having at most p · 2n elements.

3.1.24 Remark and Definition. Let u = 〈u0, . . . , un−1〉 be an n-card; for each

i < n, let λi be Pi(x) if ui = 1 and let λi be ¬Pi(x) if ui = 0. Let κu be
n−1∧
i=0

λi

the elementary conjunction given by u. Let M be a model. Let k > 0. Then

(a) M |= (∃kx)κu iff at least k objects in M have the card u;

(b) M |= (∃kx)κu&¬(∃k+1x)κu iff exactly k objects in M have the card u;

(c) M = ¬(∃1x)κu iff no object in M has the card u. Note that the formula
(∃kx)κu contains only the designated variable x and does not contain the
equality predicate. Each formula of the form (∃kx)κu (where u is a card)
will be called a canonical sentence (for CMOPC’s with equality).
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3.1.25 Theorem (normal form). Let P= be a CMOPC with equality and let P∗
be the extension of P= by adding the quantifiers ∃k (k a natural number). Let Φ
be a sentence from P=. Then there is a sentence Φ∗ from P∗ logically equivalent
to Φ (in P∗) and such that Φ∗ is a Boolean combination of canonical sentences.
(In particular, Φ∗ contains neither the equality predicate nor any variable distinct
from the canonical variable).

Proof: Suppose that Φ contains n predicates and p variables. Let N be a model
(of type 〈1n〉) having ≤ p · 2n elements. For each card u, let ϕN,u be a Boolean
combination of canonical sentences such that

(i) if gN(u) < p then ϕN,u says “exactly gN(u) objects have the card u”,

(ii) if gN(u) ≥ p then ϕN,u says “at least p objects have the card u”.

(Use 3.1.24.) Let ϕN be
∧

u card

ϕN,u and let Φ∗ be
∨

N |=Φ

ϕN . (Observe that this is a

disjunction of finitely many formulae.) We claim that Φ∗ is logically equivalent
to Φ. Indeed, if M = Φ then, by 3.1.20, there is an N ⊆ M such that N |= Φ
and gN = gM/p; then M |= ϕN . Conversely, if M |= ¬Φ and M |= ϕN for
some N then let N0 be a submodel of M with the genus gM/p. Then N0 can be
considered to be a submodel of M and a submodel of N ; by 3.1.20, M |= Φ iff
N0 |= Φ, hence N |= ¬Φ. We have proved M |= ¬Φ∗.

3.1.26 Theorem (definability of quantifiers). (Tharp 1973). Let P= be a
CMOPC with equality and unary predicates P1, . . . , Pn and let P ′ be its ex-
tension by adding a quantifier q of type 〈1k〉 (k ≤ n). q is definable in P ′ iff
there is a natural number m such that the following holds for ε = 0, 1 and each
model M of type 〈1k〉:

Asfq(M) = ε iff (∃M0 ⊆ M)(M0 has ≤ m elements and (∀M1)(M0 ⊆ M1 ⊆ M

implies Asfq(M1) = ε)) .

Proof: If q is definable then the condition follows immediately from the stability
theorem.

Conversely, let the condition hold. Call a sentence Φ classically expressible
if there is a sentence not containing q and logically equivalent to Φ. Our aim is
to prove that q(P1, . . . , P`) is classically expressible. Assume that this is not the
case. We shall construct more and more special non-expressible sentences and
at the end arrive at a contradiction. Let u1, . . . , u2` be all the cards. Remember
the sentence (∃kx)κui

saying that there are at least k objects with the card ui

and the sentence (∃kx)κui
&¬(∃k+1x)κui

saying that there are exactly k objects
with the card ui. We denote the former sentence by |ui| ≥ k and the second
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by |ui| = k. Note that both sentences are expressible. Put χ+
0 = q(P1, . . . , Pk)

and χ−0 = ¬q(P1, . . . , Pk). By assumption, neither χ+
0 nor χ−0 is expressible.

We proceed in steps i = 1, . . . , 2k. In step i we define the numbers ki and
formulae χ+

0 , χ−0 . Let m be the number from our assumption.
In step 1 we consider u1.

(a) If there is a k1 < m such that χ+
0 &|u1| = k1 is not expressible then choose

one such k1, and put χ+
1 = χ+

0 &|u1| = k1, χ−1 = χ−0 &|u1| = k1. Neither χ+
1

nor χ−1 is expressible (if χ−1 were then χ+
1 would also be expressible since

χ+
1 is equivalent to ¬χ−1 &|u1| = k1).

(b) If there is no such k1 we put k1 = m and

χ+
1 = χ+

1 &|u1| ≥ k1, χ−1 = χ−0 &|u1| ≥ k1 .

In the present case neither χ+
1 nor χ−1 is expressible. (Note that χ+

0 is
equivalent to the disjunction

[
(χ+

0 &|u1| = 0) ∨ . . . ∨ (χ+
0 &|u1| = m− 1)

] ∨ (χ+
0 &|u1| ≥ m) :

if all disjuncts were expressible, χ+
0 would be too.)

Suppose that step (i− 1) has been completed; in step i we consider ui.

(a) If there is a ki < m such that (χ+
i−1&|u1| = ki) is not expressible we choose

such a ki and put

χ+
i = χ+

i &|ui| = ki, χ−i = χ−i−1&|ui| = ki ,

(b) otherwise, we put ki = m and put

χ+
i = χ+

i−1&|ui| ≥ ki, χ−i = χ−i−1&|ui| ≥ ki .

Neither χ+
i nor χ−i is expressible.

Put χ+ = χ+
2` , χ− = χ−

2` . Let M |= χ+, N |= χ−. There are such examples;
otherwise χ+ and χ− would be expressible. Let M0 be a submodel of Mwith at
least m elements such that all models between M0 and M satisfy χ+

0 ; the same
holds for N0, N and χ−0 . Then, we can find M1 and N1such that M0 ⊆ M1 ⊆ M ,
N0 ⊆ N1 ⊆ N and

(∗) M1, N1 |=
2k∧
i=1

|ui| = ki
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Note that M1 |= χ+ and N1 |= χ−; but (*) implies that M1 and N1 are isomor-
phic, so that, e.g., N1 |= χ+, which is a contradiction.

3.1.27 Remark. q is not definable iff for each m there is an ε = 0, 1 and
a model M with Asfq(M) = ε such that for each M0 ⊆ M with at most m
elements there is an M1 between M0, M such that Asfq(M1) 6= ε. Examples
cf. 2.2.4.

(1) The plurality quantifier W : Given m, take a model M with 2m+3 objects,
f(o) = 1 for m + 2 objects, f(o) = 0 for the rest. Each submodel with
m objects can be extended to a submodel with m ones and m + 1 zeros.
Thus, W is not definable.

(2) The simple associational quantifier ∼: For the sake of simplicity, assume
m = 2e. Let M be a model with 4e + 3 objects such that aM = bM =
dM = e + 1, cM = e. Each submodel with 2e elements can be extended to
a submodel M1 with aM1

= cM1
= dM1

= e, bM1
= e + 1. Thus, ∼ is not

definable.

(3) We know that ∃k is definable; we can take k for the constant m in 3.1.26.
Indeed, if Asf∃k (〈M, f〉) = 1 then take M0 ⊆ M such that f is identically 1
on M0; if Asf∃k (〈M, f〉) = 0 then take an arbitrary non-empty M0 ⊆ M
with at most m elements.

3.1.28 We shall now consider arbitrary MOPC’s (without equality). We show
that we have a normal form theorem and, under the assumption that the number
of quantifiers is finite, we prove decidability. However, we shall show that there
are undecidable MOPC’s with finitely many quantifiers and equality.

We shall consider a MOPC P . Recall that the type of a quantifier q is a tuple
of ones. Since the notation for the general case is somewhat cumbersome we
shall use, in our proofs, a typical example of a quantifier q of type 〈1, 1〉; hence
Asfq is defined on models of the form 〈M, f, g〉, where f , g, are mappings of M
into {0, 1}. If ϕ, ψ are formulas and x is a variable then (qx)(ϕ, ψ) is a formula.
Assume that the free variables of ϕ and ψ are, x, z and let e be the mapping z

a
.

Then

‖(qx)(ϕ(x, z), ψ(x, z)‖M [e] = Asfq

(〈M, ‖ϕ‖e
M , ‖ψ‖e

M〉
)

.

3.1.29 Definition. A closed formula is pure prenex if it begins with a quantifier
and if the subformulae joined by this quantifier are open (do not contain any
quantifiers). Hence, (qx)(ϕ, ψ) is a pure prenex formula iff ϕ, ψ are open and
contain only the variable x.
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3.1.30 Lemma. Each formula ϕ is logically equivalent to a Boolean combina-
tion ψ of pure prenex formulae and atomic formulae such that ϕ and ψ have the
same free variables.

Proof. We proceed by induction on the complexity of formulae. If ϕ is atomic
or 0 or 1 then ϕ is itself a Boolean combination of the desired form; if ϕ is ¬ϕ0 and
the assertion holds for ϕ0 or if ϕ is ϕ1&ϕ2 or ϕ1∨ϕ2 or ϕ1 → ϕ2 and the assertion
holds for ϕ1 and ϕ2 then it evidently holds for ϕ. Thus, suppose that ϕ begins
with a quantifier, say ϕ is (qx)(ϕ1, ϕ2) and let the assertion hold for ϕ1, ϕ2.

Thus, ϕ1 is equivalent to the formula
m∨

i=1

(ϕ〈1,i〉(x)&ψ〈1,i〉), where each ϕ〈1,i〉(x)

is an elementary conjunction built up from atomic formulae of the form Pj(x)
and ψ1i is a (quasi) elemntary conjunction built up from atomic formulas with
variables other than x and from some formulae, similarly for ϕ2. A state is a
system

ε =

(
ε11, . . . , ε1m

ε21, . . . , ε2n

)

of m + n zeros and ones; the corresponding state description is the formula

Sε = (ε11ψ11& . . . &ε1mψ1m)&(ε21ψ21& . . . &ε2mψ2m)

where ε11ψ11 is ψ11 if ε11 = 1 and ¬ψ11 if ε11 = 0 etc. Clearly,
∨
ε

Sε is a tau-

tology (by truth-tables); hence, we have the following equivalence (⇔ stands for
“logically equivalent”):

ϕ ⇔ ϕ&
∨
ε

Sε ⇔
∨
ε

[
Sε&(qx)

(∨
i

(ϕ1i(x)&ψ1i),
∨
j

(ϕ2j(x)&ψ2j)

)]
⇔

⇔
∨
ε

[
Sε&(qx)

(∨
i

(ϕ1i(x)&ε1i),
∨
j

(ϕ2j(x)&ε2j)

)]
⇔

⇔
∨
ε




Sε& (qx)


 ∨

ε1j=1

ϕ1j(x),
∨

ε2j=1

(ϕ2j(x)




︸ ︷︷ ︸
(∗)




.

But each Sε is a Boolean combination of the desired form and each (∗) is a
pure prenex formula; thus, the induction step is concluded.

3.1.30 Corollary. (Pure prenex normal form.) Each sentence is logically eauiv-
alent to a Boolean combination of pure prenex formulae.
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3.1.31 Theorem (presentation). If the MOPC P under consideration has finitely
many quantifiers then there is a finite set S of sentences such that each sentence
is logically equivalent to a sentence from S; there is a recursive function nf such
that, for each sentence ϕ, nf(ϕ) ∈ S and ϕ is logically equivalent to nf(ϕ).

Proof. There is a recursive function dof associating with each designated open
formula (i.e., open formula containing no variable except x) a logically equivalent
formula from a finite set OF of designated open formulas; we may require that
each predicate occurring in dof(ϕ) then it occurs in ϕ. (OF consists of designated
open formulae in normal disjunctive form and, in addition, of 1.) It is easy to
show that OF has 1 + 2(3n−1) elements; one could find another set with exactly
22n

elements.
By 3.1.30 (using the proof of 3.1.29), there is a recursive function associat-

ing with each sentence Φ a logically equivalent sentence Φ′ which is a Boolean
combination of pure prenex sentences. Now, each pure prenex sentence can be ef-
fectively replaced by another pure prenex sentence Φ′′ such that the open formulae
joined in Φ′′ by the quantifier of Φ′′ are all in OF . Similarly for our Boolean com-
bination Φ′ of pure prenex formulae. Clearly, there are finitely many such pure
prenex sentences (call them OF -pure prenex sentences); each Boolean combina-
tion Φ′′ of OF -pure prenex sentences can be effectively transformed to another
combination Φ′′, which is either 1 or a disjunction of (quasi) elementary conjunc-
tions built up from OF -pure prenex sentences. The set of all sentences Φ′′′ is
finite and can be taken as S; the mapping nf associating with each sentence Φ
the sentence Φ′′′ is recursive.

3.1.32 Theorem (decidability). If P is a MOPC with finitely many quantifiers
then P is decidable.

Proof. Let S and nf be as above, i.e. S is a finite set of sentences, nf is a
recursive function and if Φ is a sentence, then nf(Φ) ∈ S and Φ is equivalent
to nf(Φ). Let t be a function on S such that t(Φ) = 1 iff Φ is a tautology and
t(Φ) = 0 otherwise. Note that the domain of t is finite; if we extend t to the set of
all sentences putting t(Φ) = 0 for Φ 6∈ S then the resulting function is recursive.
Hence, the function t(nf(Φ)) is recursive and it is the characteristic of Taut.

3.1.33 Remark

(1) Theorem 3.1.32 is proved in [Mostowski] for the case that the type of each
quantifiers is 〈1〉.

(2) Our proof of 3.1.32 does not make decidability transparent. Even if we
agree that the function is very reasonable, we see that the function t is
recursive because it equals 0 except for finitely many exceptions. It would
be difficult not to call such a function recursive: but it is possible that,
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for a ϕ ∈ S, we do not know whether ϕ is a tautology or not. Thus, we
conclude that our decidability result does not give any result concerning
transparency. The following theorem supports our last claim.

3.1.34 Theorem

(1) There is a MOPC P1 with one predicate and infinitely many quantifiers
(without equality) which is not decidable.

(2) There is a MOPC P2 with one predicate, two quantifiers and equality, which
is not decidable.

Proof. Let R be a binary (primitive) recursive relation such that the set
A{n; (∃m)R(m,n)} is not recursive. We define the calculi P1, P2, and in each
calculus we find a recursive sequence {ϕn; n ∈ N} of sentences such that ϕn has
a model iff n ∈ A. Consequently, n ∈ A iff ¬ϕn 6∈ Taut and, hence, Taut is not
recursive.

Both P1 and P2 will contain a quantifier Rsuch that Asf R(〈M, f〉) = 1 iff
R(aM , bM), (aM is the cardinality of {o ∈ M ; f(o) = 1}, bM is the cardinality of
{o ∈ M ; f(o) = 0}. Futhermore, P1 will contain the quantifiers ∃!k (k a natural
number, ∃!k of type 〈1〉) saying “there are exactly k objects such that . . . ”. Let
P be the only predicate of P2; ϕn is (∃!nx)Px&( Rx)Px. Clearly, the sequence
{ϕn, n ∈ N} satisfies our containing only P, ∃, = variables and connectives.

3.1.35 Remark

(1) We can obtain an undecidability result for finitely many quantifiers, no
equality and infinitely many predicates; for a precise formulation see Prob-
lem 4.

(2) Section 5 of the present Chapter, which is devoted to a general theory of
OPC’s, can be read as an immediate continuation of the present section.

Key words: classical monadic observational predicate calculi (with or without
equality), normal form theorems, definability of quantifiers, pure prenex normal
form for MOPC’s, decidability.

3.2 Associational and implicational quantifiers

In the present section, we are going to study MOPC’s with some particular quan-
tifiers of type 〈1, 1〉, called associational quantifiers. The formal definition of
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associational quantifiers formalizes the following intuitive relation of two proper-
ties: Coincidence of the two properties predominates over difference. This can be
made precise in many ways, both statistical and non-statistical. Some simple ex-
amples will be presented below: statistically motivated associational quantifiers
will be obtained in Chapter 4.

Let an observational predicate calculus be given.

3.2.1 Definition

(1) Let M be a model, denote by aM , bM , cM , dM the cardinality of the set of
objects having the card 〈1, 1〉, 〈1, 0〉, 〈0, 1〉, 〈0, 0〉, respectively. remember
that the card of an object o ∈ M in M = 〈M, f1, f2〉is 〈f1(o), f2(o)〉. We
put

qM = 〈aM , bM , cM , dM〉 .
(2) In the sequel, when saying “quadruple” we mean a quadruple 〈a, b, c, d〉 of

natural numbers whose sum is positive so that there is an M such that
a = aM , b = bM , c = cM , d = dM . If q = 〈a, b, c, d〉 then we put Sum(q) =
a + b + c + d. If it does not lead to a misunderstanding, we shall write m
for Sum(q).

3.2.2 Definition

(1) A quadruple q2 = 〈a2, b2, c2, d2〉 is a-better than a quadruple q1 = 〈a1, b1, c1, d1〉
if a2 ≥ a1, b2 ≤ b1, c2 ≤ c1, d2 ≥ d1 (a comes from “associational”).

(2) A model M2 is a-better than M1 if qM2
is a-better than qM1

.

(3) A quantifier ∼ of type 〈1, 1, 〉 is associational if the following holds for all
models M1, M2 of type 〈1, 1〉: If Asf∼(M1) = 1 and if M2 is a-better than
M1 then Asf∼(M2) = 1.

3.2.3 examples of associational quantifiers (cf. 2.2.4): (a) the quantifier of simple
association; the quantifier of implication; the quantifier of founded p-implication.
(Further see Section 4 of chapter 4.)

3.2.4 Lemma. Let M1, M2 be models of type 〈1, 1〉. If M2 is not a-better than
M1 then one can define an associational quantifier ∼ such that Asf(M1) = 1 and
Asf(M2) = 0.

Proof. For each model M , put Asf∼(M) = 1 iff qM is a-better than qM1
. By

the transitivity of “a-better”, this is an associational operator; Asf(M1) = 1 and
Asf(M2) = 0.
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We wish to introduce an “improvement” relation between 2-cards such that
the following holds: If a 2-card v a-improves a 2-card u then changing the card u
to v in a model M changes M into an a-better model. We need auxiliary no-
tation also useful for the next sections. So we give the definition for arbitrary
V -structures (of type 〈1, 1〉), but the generalization for type 〈1k〉 is evident.

3.2.5 Definition. Let M = 〈M, f1, f2〉 be a V -structure, let A ⊆ M and let
u = 〈u1, u2〉 ∈ V 2. Then M(A : u) is the model 〈M, g1, g2〉, where gi(o) = fi(o)
for o 6∈ A and gi(o) = ui for o ∈ A (cards of elements of A are changed to be u).
In particular, if o ∈ M then M(o : u) means M{o} : u)and if v ∈ V 2 then
M(v : u) means M(A : u) for A = {o ∈ M ; the card of o is v}.

3.2.6 Remark. If o1 6= o2 then M(o1 : u)(o2 : v) = M(o2 : v)(o1 : u). If
A = {o1, . . . , on} then M(A : u) = M(o1 : u)(o2 : u) . . . (on : u).

3.2.7 Definition. Let u, v ∈ {0, 1}2. v a-improves u (notation: u ≤a v) if for
each model M of type 〈1, 1〉 and each o ∈ M , we have the following: If the card
of o is u then M(o : v) is a-better than M .

3.2.8 Remark

(1) Evidently, ≤1 is a quasiordering.

(2) An alternative definition reads as follows u ≤a v iff for each model M of
type 〈1, 1〉 and each o ∈ M we have: If the card of o is v then M is a-better
than M(o : u).

3.2.9 Theorem. The relation ≤a is an ordering described by the following
conditions

(a) 〈1, 0〉 <a 〈1, 1〉 , 〈1, 0〉 <a 〈0, 0〉 ,
〈0, 1〉 <a 〈1, 1〉 , 〈0, 1〉 <a 〈0, 0〉 ,

(b) {〈1, 1〉 , 〈0, 0〉} and {〈1, 0〉 , 〈0, 1〉}
are incomparable pairs.

1,0 0,1

0,0 1,1

1,0 0,1

0,0 1,1

1,0 0,1

0,0 1,1

1,0 0,1

0,0 1,1
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Proof

(a) Evidently, 〈1, 1〉 ≥a 〈1, 0〉. To prove that 〈1, 1〉 ≤a 〈1, 0〉 does not hold, it
suffices to take a model M of type 〈12〉 with at least one card 〈1, 0〉 = CM(o)
and observe that for N = M (o : 〈1, 1〉)qM

is not a-better that qN .

(b) Let CM(o) = 〈1, 1〉 in a model M , put N = M (o : 〈0, 0〉). Then qN =
〈aM − 1, bM , cM , dM + 1〉 so that neither is qM a-better that qN nor is qN

a-better than qM . This shows that 〈1, 1〉, 〈0, 0〉 are incomparable.

All the remaining cases are treated similarly.
We shall study some particular associational quantifiers called implicational

quantifiers; they have some properties of the quantifier of implication.

3.2.10 Definition

(1) A quadruple q2 = 〈a2, b2, c2, d2〉 is i-better than a quadruple q1 = 〈a1, b1, c1, d1〉
if a2 ≥ a1, b2 ≤ b1.

(2) A model M2 is i-better than M1if qM2
is i-better than qM1

.

(3) A quantifier ∼ of the type 〈1, 1〉 is implicational if the following holds for
any models M1, M2 of type 〈1, 1〉: If Asf∼(M1) = 1 and M2 is i-better
than M1 then Asf∼(M2) = 1.

3.2.11 Lemma

(1) If q2 is a-better than q1 then q2 is i-better than q1.

(2) Consequently, each implicational quantifier is associational.

3.2.12 Remark. The reader easily sees that the quantifiers of implication and of
founded p-implication (2.3.4) are implicational whereas the quantifier of simple
association is not implicational. Cf. 4.5.1, 4.5.4.

3.2.13 Definition. A 2-card v i-improves a 2-card u (notation: v ≥i u) if for
each model M of type 〈1, 1〉 and each o ∈ M we have the following: If the card
of o is u then M(o : v) is i-better than M .

3.2.14 Theorem

(1) v ≥a u implies v ≥i u.
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(2) ≥i is a quasiordering completely described by the following conditions:

〈1, 0〉 <i 〈0, 0〉 ≡i 〈0, 1〉 <i 〈1, 1〉 .
Proof. (1) is evident. By (1), it remains to show the following:

〈1, 1〉 �i 〈0, 0〉, 〈0, 0〉 ≤i 〈0, 1〉 and 〈0, 0〉 �i 〈1, 0〉 .
We show two of the above relations; the remaining one being proved analogously.
〈1, 1〉 �i 〈0, 0〉: Let M be a model with a o ∈ M , CM(o) = 〈1, 1〉: put N = M(o :
〈0, 0〉). Then qN = 〈aM − 1, bM , cM , dM〉 so that M is i-better than N .

〈0, 0〉 ≤i 〈0, 1〉: Similarly if CM(o) = 〈0, 0〉 in a model M and if we put
N = M(o : 〈0, 1〉) then N is i-better than M .

3.2.15 Remark and Definition. Our next aim is to offer some transparent
deduction rules sound for each implicational quantifier. For the sake of simplicity,
call a formula ϕ designated if its only free variable is the designated variable x.
Obviously, if ϕ, ψ are designated and ∼ is a quantifier of type 〈1, 1〉 then ϕ ∼ ψ
is a sentence; pedantically, it should be written (∼ x)(ϕ, ψ).

3.2.16 Lemma. Let a MOPC be given. If ∼ is an implicational quantifier then
the following rules are sound:

(a)

{
ϕ ∼ ψ

ϕ ∼ (ψ ∨ χ)
; ϕ, ψ, χ designated

}
;

(b)

{
(ϕ&¬χ) ∼ ψ

ϕ ∼ (ψ ∨ χ)
; ϕ, ψ, χ designated

}
.

Proof

(a) Let M be a model. Put M1 = 〈M, ‖ϕ‖M , ‖ψ‖M〉 and M2 = 〈M, ‖ϕ‖M , ‖ψ∨
χ‖M〉. Denote by mijk the number of objects such that ‖ϕ‖M [o] = i,
‖ψ‖M [o] = j and ‖χ‖M [o] = k. Then

aM1
= m110 + m111, aM2

= m111 + m110 + m101,

bM1
= m101 + m100, and bM2

= m100 .

Hence, M2 is i-better than M1.

(b) Similarly, put M1 = 〈M, ‖ϕ&¬χ‖M , ‖ψ‖M〉 and let M2 and mijk be as
above. Then

aM1
= m110, aM2

= m110 + m101 + m111, and bM1
= bM2

= m100 .

Hence, M2 is i-better than M1.
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3.2.17 We present two simple deduction rules for certain reasonable associational
quantifiers,

(a) The rule of symmetry is

SYM =

{
ϕ ∼ ψ

ψ ∼ ϕ
; ϕ, ψ designated

}
.

(b) The rule of simultaneous negation is

NEG =

{
ϕ ∼ ψ

¬ϕ ∼ ¬ψ
; ϕ, ψ designated

}
.

3.2.18 Remark. Observe that the above two rules are sound for the simple
associational quantifier but neither the implication nor the founded p-implication.
Cf. also 4.5.2.

3.2.19 In the remainder of this section we restrict ourselves to monadic OPC’s;
an MOPC is supposed to be fixed in the sequel. We shall investigate designated
elementary conjunctions and disjunctions, i.e. open formulae of the form

ε1Pi1(x)& . . . &εkPik(x) or

ε1Pi1(x) ∨ . . . ∨ εkPik(x)

respectively, where each εj is either the negation symbol ¬ or the empty symbol
(cf. 2.2.12) and x is the designated variable. Such formulae can be viewed as the
simplest open formulae: sentences of the form ϕ ∼ ψ where ϕ, ψ are designated
elementary conjunctions and/or disjunctions and ∼ is an associational quantifier
(in particular, an implicational quantifier), will play an important role in the
method described in Chapter 7.

Our first aim is to modify the rules of 3.2.16 (sound for each implicational
quantifier) as follows: First, we shall be more specific as regards the formulae
ϕ, ψ, χ. We are interested in formulae with ∼ having a designated elementary
conjunction on the left-hand side and a designated elementary disjunction on the
right-hand side. Secondly, we shall join both rules into a single rule allowing the
transfer of a part of the left-hand side onto the right-hand side by new disjuncts.
Some definitions will be useful: EC abbreviates “elementary conjunction”, ED
abbreviates “elementary disjunction”.

3.2.20 Definition. An elementary association is a designated sentence of the
form κ ∼ δ, where κ is a designated EC or the empty conjunction, δ is a designated
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ED and κ, δ have no predicates in common. In the sequel, κ, κ1, κ2, . . . denote a
designated EC or 1, δ, δ1, δ2, . . . denote a designated ED. For each EC κ, let neg(κ)
be the ED logically equivalent to ¬κ; put neg(1) = 0. Similarly for neg(δ). Two
formulae are disjoint if they have no predicates in common.

Let κ1 ∼ δ1, κ2 ∼ δ2 be elementary associations. One says that κ1 ∼ δ1 results
from κ2 ∼ δ2 by specification if either κ1 ∼ δ1 is identical with κ2 ∼ δ2 or there
is an ED δ0 disjoint from δ1 such that δ2 is logically equivalent to δ1 ∨ δ0 and κ1

is logically equivalent to κ2&neg(δ0). (E.g. P1&P3&¬P5 ∼ P2 ∨ P4 results from
P1&¬P5 ∼ P2 ∨ ¬P3 ∨ P4 by specification.) We also say that κ1 ∼ δ1 despecifies
to κ2 ∼ δ2. One says that κ1 ∼ δ1 results from κ2 ∼ δ2 by reduction or κ1 ∼ δ1

dereduces to κ2 ∼ δ2 if κ1 is identical with κ2 and δ1 is a subdisjunction of δ2.
(E.g. P1&¬P5 ∼ P2 ∨¬P3 ∨ P4 results from P1&¬P5 ∼ P2 ∨¬P3 ∨ P4 ∨¬P6 ∨ P7

by reduction.)

We denote by SpRd the inference rule on the set of all elementary associations
defined as follows (the despecifying-dereducing rule):

κ1 ∼ δ1

κ2 ∼ δ2

∈ SpRd

iff κ1 ∼ δ1 results from κ2 ∼ δ2 by successive reduction and specification. (In
other words, if there is a δ3 ⊆ δ2 such that κ1 ∼ δ1 despecifies to κ2 ∼ δ3 and
κ2 ∼ δ3 dereduces to κ2 ∼ δ2. For example P1&¬P5 ∼ P2 ∨ ¬P3 ∨ P4 ∨ ¬P6 ∨ P7

is inferred from P1&P3&¬P5 ∼ P2 ∨ P4.

3.2.21 Theorem. If ∼ is an implicational quantifier then SpRd is a sound
deduction rule, i.e., if κ2 ∼ δ2 is SpRd-inferred from κ1 ∼ δ1 and if ‖κ1 ∼ δ1‖M =
1 then ‖κ2 ∼ δ2‖M = 1.

Proof. Evident from 3.2.16.

3.2.22 Theorem. The rule Sp Rd is transitive.

Proof. It suffices to prove that if κ1∼δ1
κ2∼δ2

∈ Sp Rd and if κ2∼δ2
κ3∼δ3

∈ Sp Rd then
κ1∼δ1
κ3∼δ3

∈ Sp Rd. Since, evidently, the composition of two dereductions (despec-
ifications) is dereductions (despecifications) it suffices to show that successive
dereductions and despecifications can be replaces by successive despecifications
and dereductions. More precisely, let κ1&κ2 ∼ δ1 dereduce to κ1&κ2 ∼ δ1 ∨ δ2

and let the last formula despecify to κ1 ∼ δ1 ∨ δ2 ∨ neg(κ2). Then κ1&κ2 ∼ δ1

despecifies to κ1 ∼ δ1 ∨ neg(κ2), which dereduce to κ1 ∼ δ1 ∨ neg(κ2) ∨ δ2 which
is in turn identical with κ1 ∼ δ1 ∨ δ2 ∨ neg(κ2):

(κ1&κ2 ∼ δ1) −→ (κ1&κ2 ∼ δ1 ∨ δ2)
↓ ↓

(κ1 ∼ δ1 ∨ neg(κ2)) −→ (κ1 ∼ δ1 ∨ δ2 ∨ neg(κ2)) .
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The despecifying – dereducing rule is certainly not sound for each associational
quantifier. We shall isolate a simple property of quantifiers that causes that rule
to be “as invalid as possible”.

3.2.23 Definition. Let ∼ be an associational quantifier in a MOPC F . The
quantifier ∼ is called saturable if the following holds:

(1) For each quadruple 〈a, b, c, d〉 with d 6= 0 there is an a′ ≥ a such that
Asf∼(M) = 1 whenever qM = 〈a′, b, c, d〉.

(2) For each quadruple 〈a, b, c, d〉 with a 6= 0 there is a d′ ≥ d such that
Asf∼(M) = 1 whenever qM = 〈a, b, c, d′〉.

(3) For each model M there is a model M ′ containing M and such that Asf∼(M ′) =
0.

Note that the simple associational quantifier is saturable (and cf. 4.5.3).

3.2.24 Theorem. Let ∼ be a saturable associational quantifier. Let κ1 ∼ δ1

and κ2 ∼ δ2 be two elementary associations (κ1, κ2 not 0) such that

κ1 ∼ δ1

κ2 ∼ δ2

∈ SpRd .

If κ2 ∼ δ2 logically follows from κ1 ∼ δ1 (i.e., ‖κ1 ∼ δ1‖M = 1 implies ‖κ2 ∼
δ2‖M = 1 for each M) then κ1 = κ2 and δ1 = δ2.

Proof

(a) First, assume that κ1 ∼ δ1 dereduces to κ1 ∼ δ1 ∨ δ2; let M be such that
‖κ1 ∼ δ1 ∨ δ2‖M = 0 and let u be a card such that ‖κ1‖[u] = 0, ‖δ1‖[u] = 0
and ‖δ2‖[u] = 1. Extend M to a model M ′ by adding so many objects
with the card u that ‖κ1 ∼ δ1‖M ′ = 1 (this is possible by 3.2.23 (2)).
Note that ‖κ1 ∼ δ1 ∨ δ2‖M ′ = 0 since extending 〈M, ‖κ1‖M , ‖δ1 ∨ δ2‖M〉 to
〈M ′, ‖κ1‖M ′ , ‖δ1 ∨ δ2‖M ′〉 we only add many times the card 〈0, 1〉, hence,
we make the model a-worse.

(b) Assume now that we have κ1&κ2 ∼ δ1 and κ1 ∼ δ1 ∨ neg(κ2)∨ δ2 (where δ2

can be 1). Take a model M with ‖κ1 ∼ δ1∨neg(κ2)∨δ2‖M = 0 and let u be
a card such that ‖κ1‖[u] = ‖δ1‖[u] = ‖κ2‖[u] = 0. Extend M to a model M ′

by adding so many objects with the card u that ‖κ1&κ2 ∼ δ1‖M = 1 (this
is possible by 3.2.23 (2)).

Note that ‖κ1 ∼ δ1∨neg(κ2)∨δ2‖M ′ = 0 since ‖κ1‖[u] = 0 but ‖δ1∨neg(κ2)∨
δ2‖[u] = 1. Thus κ1&κ2 ∼ δ 2 κ1 ∼ δ ∨ neg(κ2) ∨ δ2.
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3.2.25 Corollary: If I ⊆ SpRd and I is sound for each associational quantifier
then I is the identity, i.e.,

κ1 ∼ δ1

κ2 ∼ δ2

∈ I

implies that κ2 ∼ δ2 is the same as κ1 ∼ δ1.

3.2.21 Remark and Definition. Theorem 3.3.21 can be reformulated in the
following way:

Let L be any language containing a quantifier ∼ of type 〈1, 1〉. Whenever

κ1 ∼ δ1

κ2 ∼ δ2

∈ SpRd

then the sentence

(∗) (κ1 ∼ δ1) → (κ2 ∼ δ2)

is a scheme of implicational tautologies, i.e., (∗) is a tautology of each MOPC
with the language L in which ∼ is an implicational quantifier.

We ask what the situation is for the (broader) class of associational quantifiers.
First, we define: Let L be a language whose only quantifier is a quantifier ∼ of
type 〈1, 1〉 and let Φ be a sentence of L. Φ is a scheme of associational tautologies
in L if Φ is a tautology in each MOPC with the language L in which ∼ is an
associational quantifier.

Corollary 3.2.25 can be interpreted as saying that there is no non-trivial
schema of associational tautologies of the form (∗). On the other hand, there
are various schemes of associational tautologies, e.g.

(ϕ ∼ ψ) → (ϕ ∼ (ϕ&ψ)) ;

as the reader can easily verify. We shall prove that, for each language L, the set
of all schemes of associational tautologies is recursive.

We begin with some preliminary considerations.

3.2.27 Definitions

(1) Let Q be the set of all quadruples in the sense of 3.2.1 (2): write q2 ≷ q1 if
q2 is a-better than q1. A set S ⊆ Q is a cut on Q if q2 ≷ q1, q1 ∈ S implies
q2 ∈ S.

(2) Let n be a fixed natural number (think of the number of predicates in a
language). Let K be the set of all n-cards. By “a partition” we mean a
sequence 〈A, B, C, D〉 of four disjoint subsets of K whose union is K(one
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could say: “a 4-partition on K”). R denotes the set of all partitions.
Recall the notion of a genus (a certain mapping of K into natural numbers,
see 3.1.18). If g is a genus then g determines a natural-valued measure
on P(K) (the field of all subsets of K) defined, for each A ⊆ K, by the
equation µg(A) =

∑
u∈A

g(u) : νg is called the measure induced by g. If

R = 〈A, B, C, D〉 ∈ R then we put

µg(R) = 〈µg(A), µg(B), µg(C), µg(D)〉 .

(3) Let T ⊆ R (T is a set of partitions). T is satisfiable if there is a genus g
and a cut S on Q such that, for each R ∈ R, R ∈ T iff µg(R) ∈ S.

3.2.28 Remark. The definitions above have the following meaning: Let L be a
language with n predicates and a quantifier ∼ (of type 〈1, 1〉).

(1) Cuts on Q correspond uniquely to MOPC’s with the language L in which
∼ is associational; if F is such an MOPC then the set

S = {q; for any M with qM = q, Asf∼(M) = 1}

is a cut; conversely, if S is a cut and we put Asf∼(M) = 1 iff qM ∈ S
then we obtain an associational quantifier. Note that qM1

= qM2
implies

Asf∼(M1) = Asf∼(M2).
Consequently, if S corresponds to Asf∼ then Asf∼ is recursive iff S is re-
cursive.

(2) With any open designated formulas ϕ, ψ we associate a partition r(ϕ, ψ) =
〈A,B, C, D〉 such that

A consists of all n-cards satisfying ϕ&ψ,
B consists of all n-cards satisfying ϕ&¬ψ,
C consists of all n-cards satisfying ¬ϕ&ψ,
D consists of all n-cards satisfying ¬ϕ&¬ψ.

Evidently, each partition can be obtained in this way: we have (ϕ ⇔ ϕ′

and ψ ⇔ ψ′) iff r(ϕ, ψ) = r(ϕ′, ψ′) (⇔ stands for logical equivalence).
Genera correspond to models of type n; gM = gN iff M and N are isomorhic.
If gM = g and A ⊆ K then µg(A) is the cardinality of the set of all o ∈ M
such that the M -card of o is in A.

(3) Note that the set R of all partitions is finite since K is finite. Observe
that T is satisfiable iff there is a genus g and a recursive cut S on Q
such that, for each R ∈ R, R ∈ T iff µg(R) ∈ S. Indeed, let S0 be an
arbitrary cut satisfying the last condition and put g ∈ S iff there is a
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R ∈ T implies q ≷ µg(R). Evidently, S is a cut, S is recursive and R ∈ T
implies µg(R) ∈ S; furthermore, S ⊆ S0. Hence if R 6∈ T then µg(R) 6∈ S
and, a fortiori, µg(R) 6∈ S0.

Consequently, T ⊆ R is satisfiable iff there is a MOPC F with n predicates
and one associational quantifier ∼ of type 〈1, 1〉 and a model M of type 〈1n〉
such that, for each pair ϕ, ψ of designated open formulae, ‖ϕ ∼ ψ‖M = 1 iff
r(ϕ, ψ) ∈ T .

3.2.29 Theorem. Let L be a language with n predicates and one quantifier
of type 〈1, 1〉. The set of all sentences of L that are schemes of associational
tautologies is recursive.

Proof. Let τsat be the (finite) set of all satisfiable sets of partitions (of K). Let
Φ be a sentence. Bring ¬Φ into prenex normal form (a disjunction of elementary
conjunctions of pure prenex formulae) using 3.1.30. Note that the procedure is
uniform and yields a sentence Ψ such that ¬Φ is equivalent to Ψ in each MOPC
with the language L.

Call Ψ satisfiable iff there is a MOPC F with the language L in which ∼ is an
associational quantifier and such that there is an M such that ‖Ψ‖M = 1 (in F).
Evidently, Φ is a scheme of associational tautologies iff Ψ is not satisfiable.

Hence, we ask whether Ψ is satisfiable. Ψ is a disjunction, hence Ψ is satisfiable
iff one disjunct of Ψ is satisfiable. Hence, suppose that Ψ1 is an elementary
conjunction of pure prenex formulas. By 3.2.28, Ψ1 is satisfiable iff there is a
T ⊆ R which is satisfiable (in the sense of 3.2.27 (3)) and coherent with Ψ1, i.e.,
for each pair ϕ, ψ of open formulae, if ϕ ∼ ψ is a conjunct of Ψ1 then r(ϕ, ψ) ∈ T
and if ¬(ϕ ∼ ψ) is a conjunct of Ψ1 then r(ϕ, ψ) 6∈ T . To verify whether Ψ1

is satisfiable, go through the finite set τsat and ask whether it contains a set of
partitions coherent with Ψ1.

3.2.30 Remark. Compare this theorem with 3.1.34; our result is unsatisfactory
since the recursiveness argument is based on the finiteness of the set τsat. But
we shall show in Problem 5 that the assumption of finitely many predicates is
inessential in the present case.

On the other hand, the question of the complexity of the decision problem for
schemes of associational tautologies is open.

3.2.31 Key words: quadruples, a-better, i-better, associational and implica-
tional quantifiers, elementary associations, the despecifying-dereducing rule, sat-
urable quantifiers, schemes of associational tautologies.
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3.3 Calculi with incomplete information

In the present section, we are going to investigate some observational function
calculi that are not predicate calculi since they have more than two-element
sets of abstract values. There are at least two reasons for generalizing truth
values to abstract values: First, since we imagine observational structures to be
results of observations, we must recognize that one can observe not only properties
of objects but more general attributes as well, not two-valued but – in most
cases – natural number-valued or rational-valued. Second, we shall consider the
possibility that our information on observed objects may be incomplete, i.e.,
there can be an object and an attribute such that the value of the attribute
for the object is unknown or the information is missing. This may have various
causes, e.g., technically, the object was destroyed. It is reasonable to introduce
a special value for missing information; then we necessarily have more that two
values. There is a natural notion of calculi with incomplete information: it will
be studied in the present section. We describe the way in which each function
calculus, and in particular each predicate calculus, may be extended to a calculus
with incomplete information.

3.3.1 Definition and Discussion. Let F1 be a function calculus. A function
calculus F2 extends F1 (is an extension of F1) if V1 ⊆ V2, Fm1 ⊆ Fm2, M1 ⊆M2

(Vi is the set of abstract values of Fi, etc.), and for each ϕ ∈ Fm1 and M ∈ M
we have Val1(ϕ,M) = Val2(ϕ, M). The common value can be denoted by ‖ϕ‖M

without any misunderstanding.
We are interested now in particular extensions by adding exactly one new

abstract value for missing information. Thus, if F is an arbitrary function calculus
and if V is its set of abstract values, call it the singular value. Let V × = V ∪{×},
and consider V ×-structures. A V ×-structure M is regular (or a structure with
complete information) if M is a V ×-structure. A V -structure N = 〈N, g1, . . . , gn〉
is a (regular) completion of a V ×-structure M = 〈M, f1, . . . , fn〉 if M and N
have the same field M = N and the same type and if, for each i and each
o1, . . . ∈ M , fi(o1, . . .) 6= × implies gi(o1, . . .) = fi(o1, . . .) (i.e., all crosses in M
are converted into some regular values; nothing else is changed). Similarly, a
V -card 〈u1, . . . , un〉 is a regular completion of a V ×-card 〈v1, . . . , vn〉 if, for each i,
vi 6= × implies vi = ui.

3.3.2 Remark. A partial V -structure is a tuple 〈M, h1, . . .〉 where each hi is
mapping whose domain is a subset of M and whose range is included in V .
There is a natural one-to-one correspondence between V ×-structures and partial
V -structures: 〈M, f1, . . . , fn〉 corresponds to 〈M,h1, . . . , hn〉 iff, for each i, fi

extends hi and (fi takes the value × iff hi is undefined).
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3.3.3 Definition. Let F , × and V be as above. The secured ×-extension of F
is the calculus F× defined as follows:

(a) The set of abstract values if V × = V ∪ {×}
(b) The set M× of all models in the sense of F× consists of all V ×-structures

M such that a completion of M is in M (where M is the set of all models
in the sense of F).

(c) F and F× have the same formulae.

(d) Associated functions of junctors and quantifiers in F× are secured exten-
sions of the corresponding associated functions in F , i.e., if ι is an n-ary
junctor and if u ∈ (V ×)n then

ι(u) =

{
i ∈ V iff for each completion v of u, Asfι(v) = i ,
× otherwise ;

if q is a quantifier of the type t and if Asfq(M) is defined then

Asfq(M) =

{
i ∈ V iff for each completion N of M, Asfq(N) = i ,
× otherwise ;

3.3.4 Lemma. Let F× be the secured extension of F , let ϕ be a formula, let M
be a model, and let e be an M -sequence for ϕ. Then ‖ϕ‖M [e] = i ∈ V implies
that for each completion N of M we have ‖ϕ‖N [e] = i.

Proof. The assertion is obvious for atomic formulas and for nullary junctors.
We proceed by induction on the complexity of formulae. Let, e.g., ι be a binary
junctor, take a formula ι(ϕ1, ϕ2), and let the assertion hold for ϕ1 and ϕ2. Let
i ∈ V and let ‖ι(ϕ1, ϕ2)‖M [e] = i = Asfι(‖ϕ1‖M [e], ‖ϕ2‖M [e]; put ui = ‖ϕi‖M [e].
In particular, if N is completion of M and if vi = ‖ϕi‖N [e], then 〈v1, v2〉 is
a completion of 〈u1, u2〉 by the induction hypothesis: hence ‖ι(ϕ, ϕ)‖N [e] = i;
similarly for a quantifier.

3.3.5 Remark. The above implication cannot be reversed: It is possible that
‖ϕ‖N [e] = i ∈ V for each completion N of M and that ‖ϕ‖M [e] still = ×, for the
following reason: If 〈u1, u2〉 is as above, then the set

{〈‖ϕ1‖N [e], ‖ϕ2‖N [e]〉; N a completion of M}
can be a proper subset of the set of all completions of 〈u1, u2〉. For example,
if ϕi are equal formulae, say, ϕ1 = ϕ2 = ϕ, then each pair 〈‖ϕ1‖N [e], ‖ϕ2‖N [e]〉
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consists of two equal elements: but if 〈‖ϕ‖M [e] = × then evidently 〈u1.u2〉 has
completions 〈v1, v2〉 with v1 6= v2. (Cf. below.)

3.3.6 Definition. A formula ϕ is secured if the following holds for each M and
each M -sequence e for ϕ:

‖ϕ‖M [e] =

{
i ∈ V iff ‖ϕ‖N [e] = i for each completion N of M, ,
× otherwise .

3.3.7 Lemma. If ϕ1, . . . , ϕk are secured and for i 6= j the formulas ϕi, ϕj have
no function symbol in common, then ι(ϕ1, . . . , ϕk) is secures and (qx)(ϕ1, . . . , ϕk)
is secured (ι is k-ary juntor; q is a quantifier of type 〈1, . . . , 1〉.
Proof: Exercise. Show that in the present case the two sets in 3.3.5 coincide.

3.3.8 Remark and Definition. In most cases we shall be interested in calculi
of the following kind: One starts with a calculus F and forms the secured ×-
extension F×. Then one extends F× to a calculus F̂ having the same values
and models as F× but having more formulae (e.g., more quantifiers). Any such
calculus F̂ is called a ×-extension of F .

Definition 3.3.6 also makes sense for F̂ , but observe that Lemma 3.3.7 need
not hold if F̂ is a proper extension of F×.

3.3.9 Definition

(1) Let F̂ be a ×-extension of F and let q be a quantifier of F̂ . q is regular-
valued if, for each V ×-structure M such that Asfq(M) is defined, we have
Asfq(M) ∈ V .

(2) An important example of a regular-valued quantifier is the quantifier of
strong equivalence ⇔ of type 〈1, 1〉 defined as follows: Assume 0, 1,∈ V .
Then Asf⇔ (〈M, f, g〉) = 1 if f = g and = 0 otherwise. (Thus, if e.g. ϕ,
ψ are designated open then ‖ϕ ⇔ ψ‖M = 1 iff ‖ϕ‖M = ψ‖M and = 0
otherwise.)

(3) One defines regular-valued formulas in the obvious way.

3.3.10 Discussion. We think of a V ×-structure M as incomplete information
on a particular completion N o of M : N o is the true complete information on
our objects but N o is not at our disposal; N o is the “heavenly” model and M
is the “earthly” model. If ϕ is a secured sentence, then ‖ϕ‖M = i ∈ V means
that we know that ‖ϕ‖No

= i, ‖ϕ‖M = × means that we do not know the value
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of ϕ in N o. On the other hand, ϕ1 ⇔ ϕ2 is an example of a non-secured regular-
valued sentence and ‖ϕ1 ⇔ ϕ2‖M = 1 means that we know the same about ϕ1 as
about ϕ2; we cannot conclude anything about the N o-value of ϕ1 ⇔ ϕ2.

Note in passing that Körner [1966] obtains – mutatis mutandis – ×-extensions
of classical predicate calculi from another notion, namely that of “inexact prop-
erties”. The philosophical distinction between the two notions lies outside the
scope of the present book.

3.3.11 Discussion and definitions. Now, we shall consider ×-extensions
of predicate calculi (called ×-predicate calculi); hence, V = {0, 1} and V × =
{0, 1, ,×} here. It is reasonable to introduce a natural ordering of V × putting
0 < × < 1. Associated functions of ¬, &, ∨ extend by the securing principle as
follows:

¬ & 1 × 0 1 × 0
1 0 1 1 × 0 1 1 1 1
× × × × × 0 × 1 × ×
0 1 0 0 0 0 0 1 × 0

The nullary junctors 0, 1 behave like sentences with constant values: ‖0‖M =
0 and ‖1‖M = 1for each V ×-model M . We shall make a brief inspection of
Chapter 2, Sect. 2. Note that ⇔ means logical equivalence, i.e., ϕ ⇔ ψ means
that for each M and each e: (FV (ϕ) ∪ FV (ψ)) → M , ‖ϕ‖M [e] = ‖ψ‖M [e] (or,
more pedantically, ‖ϕ‖M [e ¹ FV (ϕ)] = ‖ψ‖M [e ¹ FV (ψ)]).

3.3.12 Lemma. Let F̂ be an ×-predicate calculus and let ϕ, ψ, χ be for-
mulae. Then the logical equivalences (1)-(14) from 2.2.10 (i.e., commutativity,
idempotence, associativity, behaviour of 0 and 1 as members of disjunctions and
conjunctions, double negation, distributivity, de Morgan laws) hold true for F̂ .

Proof. Proofs of (1)-(10) are immediate: we verify (11), i.e., ϕ&(ψ ∨ χ) ⇔
(ϕ&ψ) ∨ (ϕ&χ). It suffices to verify that the left-hand side has the value 1
iff the right-hand side has; and the same holds true for 0. Put ‖ϕ‖M [e] = u,
‖ψ‖M [e] = v, ‖χ‖M [e] = w.

Now, ‖ϕ&(ψ ∨ χ)‖M [e] is 1 iff u = 1 and (v ∨ w) = 1, i.e. iff u = 1 and
(v = 1 or w = 1). On the other hand, ‖(ϕ&ψ) ∨ (ϕ&χ)‖M [e] = 1 iff (u&v) = 1
or (u&w) = 1, hence iff u = v = 1 or u = w = 1, which is equivalent to u = 1
and (v = 1 or w = 1); similarly for 0. The cases (12)-(14) are treated similarly.

3.3.13 Remarks

(1) The equivalences (15), (16) of 2.2.11, namely (ϕ&¬ϕ) ⇔ 0, (ϕ ∨ ¬ϕ) ⇔ 1,
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are not true for ×-predicate calculi (cf. 3.3.5). Indeed, if ‖ϕ‖M [e] = ×, then
‖ϕ&¬ϕ‖M [e] = ‖ϕ ∨ ¬ϕ‖M [e] = ×, but ‖0‖M = 0 and ‖1‖M = 1.

(2) Generalized conjunctions and disjunctions
∧

B,
∨

B are introduced as
in 2.2.11 by 3.3.12, the equivalences (17)-(22) of 2.2.11 (generalized dis-
tributive and de Morgan laws) hold true for ×-predicate calculi.

(3) Open formulae, in particular: literals, elementary conjunctions and disjunc-
tions, formulae in conjunctive (disjunctive) normal form, are defined exactly
as in 2.2.12. The “normal form” lemma from 2.2.12 does not hold for ×-
predicate calculi since we do not have the logical equivalences (15), (16);
we shall obtain a reasonable normal form lemma in the next section.

3.3.14 Theorem. Let P be a predicate calculus whose only quantifiers are the
classical quantifiers ∀, ∃ and let P× be the secured ×-extension of P . There is
a recursive funtion r associating with each formula ϕ a formula r(ϕ) with the
following properties:

(i) ϕ and r(ϕ) have the same predicates, free and bound variables,

(ii) ϕ and r(ϕ) are logically equivalent,

(iii) r(ϕ) is either 0 or 1 or does not contain any nullary junctor.

Proof. We construct r(ϕ) by induction on the complexity of ϕ. For atomic
formulae and for 0, 1, without nullary junctors, then r(¬ϕ) is 0, 1, ¬r(ϕ), respec-
tively, r((∀x)ϕ) is 1, 0, (∀x)r(ϕ), respectively, and similarly for ∃. For ϕ&ψ we
have the following possibilities:

r(ϕ) \ r(ψ) 1 0 w.n.j.
1 1 0 r(ψ)
0 0 0 0

w.n.j. r(ϕ) 0 r(ϕ)&r(ψ)

similarly for ϕ ∨ ψ. It is evident that the procedure is effective.

3.3.15 Corollary. No formula without nullary junctors is a {1}-tautology.

Proof. In each model M consisting only of crosses (i.e., 〈M, f1, . . .〉 where each fi

constantly takes the value ×) the value of each formula without nullary junctors
is × (for each M -sequence for ϕ-proof by induction).

3.3.16 Discussion. Secured ×-extension of classical predicate calculi with both
finite and infinite models were investigated by Cleave [1975]. He defines that ϕ
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logically implies ψ iff, for each M and e, ‖ϕ‖M [e] ≤ ‖ψ‖M [e] (for the natural
ordering of {1,×, 0}. In our terminology, this means that ϕ |={1} ψ and ¬ψ |={1}
¬ϕ). Cleave shows that the relation LI = {〈ϕ, ψ〉; ϕ logically implies ψ} is
recursively enumerable by axiomatizing this relation (he has a rule I which is
both {1}-sound and {1,×}-sound and shows that probability from assumptions
coincides with logical implication. It is easy to see that LI is recursive).

3.3.17 Remark. Naturally, we are interested in observational ×-predicate cal-
culi. Observe that the secured ×-extension of any observational predicate calcu-
lus is observational (since each three-valued model has only finitely many regular
completions; if R(M, . . .) is a recursive relation, then the relation (∀N completion
of M) R(N, . . .) is recursive).

Trachtenbrot’s threorem 2.2.16 generalizes for observational ×-predicate cal-
culi with classical quantifiers as follows:

3.3.18 Theorem. There is an observational predicate calculus whose only quan-
tifiers are ∀, ∃ such that Cleave’s logical implication LI defined in the secured
×-extension P× of P is not recursively enumerable.

Proof. Let P be a calculus satisfying Trachtenbrot’s theorem, let P1, . . . , Pn be
its predicates, Pi of arity ki. Let Φ be the sentence

n∧
i=1

(∀xi)(Pi(xi) ∨ ¬Pi(xi)) ,

where xi is the sequence of the first ki variables. Then, for each sentence ϕ, ϕ is
a tautology of P iff Φ logically implies ϕ in P×.

3.3.19 Remark. Remember the definition 3.2.2 of associational quantifiers in ob-
servational predicate calculi. The definition extends to observational ×-predicate
calculi by the principle of secureness. Thus a quantifier ∼ of type 〈1, 1〉 is asso-
ciational if the following holds:

(1) If M1, M2 are two-valued models of type 〈1, 1〉, then

(i) Asf∼(M i) ∈ {0, 1} (i = 1, 2) and

(ii) Asf∼(M1) = 1 and (aM1
≤ aM2

, bM1
≥ bM2

, cM1
≥ cM2

, dM1
≤ dM2

)
implies Asf∼(M2) = 1.

(2) If M is an {0,×1}-model of type 〈1, 1〉, then
Asf∼(M) = 1 if Asf∼(N) = 1 for each completion N of M ,
Asf∼(M) = 0 if Asf∼(N) = 0 for each completion N of M ,
Asf∼(M) = × otherwise.
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3.3.20 Definition. We extend Definition 3.2.2 (2) (a model M2 is a-better
than M1) to three-valued models as follows: Let M1, M2 be three-valued (i.e.,
{0,×, 1}-valued models). M2 is said to be a-better that M1 if for each comple-
tion N2 of M2 there is a completion N1 of M1 such that N2 is a-better than N1.

3.3.21 Lemma

(1) The “a-better” relation is a quasiordering of the set of all three-valued
models.

(2) If ∼ be associational quantifier, then, for arbitrary three-valued models M1,
M2 such that M2 is a-better that M1, Asf∼(M1) = 1 implies Asf∼(M2) = 1.

(3) If M2 is not a-better than M1, then one can define an associational quan-
tifier ∼ such that Asf∼(M1) = 1 but Asf∼(M2) = 1.

Proof

(1) is elementary.

(2) Let ∼ be associational and let M2 be a-better than M1. If Asf∼(M1) =
1, then Asf∼(M2) also must be 1 since, otherwise, there would exist a
completion N2 of M2 with Asf∼(N2) 6= 1; there is a completion N1 of M1

such that N2 is a-better than N1 but Asf∼(N1) is 1 – a contradiction.

(3) Let N2 be a completion of M2 such that, for no completion N1 of M1, N2 is
a-better than N1. Put, for each two-valued model N , Asf∼(N) = 1 iff N is
a-better than a completion N1 of M1. extend ∼ to all three-valued models
by the principle of secureness: then Asf∼(M1) = 1 but Asf∼(N2) = 0, hence
Asf∼(M2) 6= 1. (Note that Asf∼ is recursive function.)

3.3.22 Remark

(1) In analogy to 3.3.19, we extend the definition of an implicational quantifier
to ×-predicate calculi. Thus, a quantifier ∼ of type 〈1, 1〉 is implicational
if it satisfies (1) (i), (1) (ii) and (2), where (1) (i) and (2) are as in 3.3.19
and (ii) is as follows:

(ii) (Asf∼(M1) = 1 and aM1
≤ aM2

, bM1
≥ bM2

implies Asf∼(M2) = 1.

(2) One extends the “i-better” relation 3.2.10 to three-valued models in analogy
to 3.3.20, then one easily proves the obvious analogue of 3.3.21.

(3) We introduced the notation M(o : u) in 3.2.5. Our next aim is to analyse
the relations “v a-improves u” and “v i-improves u” for u, v ∈ {0,×, 1}2.
The definition is identical with 3.2.7, 3.2.13 (with the new meaning of a-
better and i-better):
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3.2.23 Definition. Let u, v ∈ {0,×, 1}2. v a-improves u (notation: u ≤a v) if
for each (three-valued) model M of type 〈1, 1〉 and each o ∈ M we have: If the
card of o is v, then M is a-better than M(o : u); similarly for “i-better”.

The following theorem is a generalization of 3.2.9 and 3.2.14.

3.3.24 Theorem. The relations of a-improvement and i-improvement on {0,×, 1}2

are completely described by the following graphs (where, of course, each vertex
corresponds to a set of elements mutually equivalent w.r.t. the quasiodering in
question).

11

10,1x,x0

00

01,x1,0

xx

a-improvement

11

00,0x,10,x0

xx,1x,10,x0

i-improvement

Proof. One can easily see that for pairs not containing × the result follows
directly from 3.2.9 and 3.2.14. Hence, for a-improvement it suffices to show
〈×,×〉 <a 〈1, 0〉, 〈×,×〉 <a 〈0, 1〉, 〈1, 0〉 ≡a 〈1,×〉 ≡a 〈×, 0〉 and 〈0, 1〉 ≡a

〈×, 1〉 ≡a 〈0,×〉.
Let us show that 〈×,×〉 <a 〈1, 0〉. First, 〈×,×〉 ≤a 〈1, 0〉 is obvious since

if the card of o in M is 〈1, 0〉, then each completion of M is a completion of
M(o : 〈×,×〉) and M(o : 〈0, 1〉) is not a-better than M . Since M is two-valued
we see that M(o : 〈×,×〉) is not a-better that M = M(o : 〈×,×〉)(o : 〈1, 0〉).

Next, we show that 〈1, 0〉 ≡a 〈1,×〉. First, 〈1,×〉 ≤a 〈1, 0〉 is obvious (as
above). Conversely, if the card of o in M is 〈1,×〉 and if M ′ = M(o : 〈1, 0〉), then
we have the following possibilities for a completion N of M : Either the card of o
in N is 〈1, 0〉 and then N itself is a completion of M ′, or the card is 〈1, 1〉 and
then N(o : 〈1, 0〉) is a completion of M ′ and N is a-better than N(o : 〈1, 0〉).

All other cases concerning ≤a are treated similarly.
As regards ≤i we have to prove 〈×,×〉 ≡a 〈1,×〉 ≡a 〈1, 0〉 ≡a 〈×, 0〉 and

〈0, 0〉 ≡a 〈0,×〉 ≡a 〈0, 1〉 ≡a 〈×, 1〉. Let us verify the first claim. Since ≤a

implies ≤i we have 〈1, 0〉 ≡i 〈1,×〉 ≡i 〈×, 0〉 and 〈×,×〉 ≤i 〈1,×〉 we verify
〈1,×〉 ≤i 〈×,×〉. Let the card of o in M be 〈×,×〉 and let M ′ = M(o : 〈1,×〉)
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let N is a completion of M ′: if it is 〈0,∨〉, then put N ′ = N(o : 〈1, 0〉). Then
aN = aN ′ and bN ′ = bN + 1 so that N is i-better than N .

For the second claim it suffices to show that 〈0, 0〉 ≤i 〈0,×〉. Let the M -card
of o be 〈0,×〉 and let M ′ be M(o : 〈0, 0〉); let N be a completion of M . If the
N -card of o is 〈0, 0〉, then N is a completion of M ′; if the card is 〈0, 1〉, then put
N ′(o : 〈0, 0〉). Then N ′ is a completion of M ′ and N , N ′ are i-equivalent.

3.3.25 Remark. We visualize ≤a and ≤i in another way, representing {0,×, 1}2

as a 3×3 matrix, where a dotted line means equivalence and a heavy line together
with a dotted line means that the transition from the side of the dotted line to
the side of the heavy line signify a strict improvement (drivers understand).

1 x 0

1

x

0

a-improvement

1 x 0

1

x

0

i-improvement

3.3.26 Remark. Associational quantifiers in calculi with incomplete information
will play an important role in Part II; we shall use the last considerations in
Chapter 6, Section 2.

3.3.27 Key words: extension of a function calculus, regular values and the sin-
gular value, completion, of a structure, secured formulae, regular valued formulae,
the quantifier of strong equivalence, associational and implicational quantifiers in
×-predicate calculi, a-improvement, i-improvement.

3.4 Calculi with qualitative values

3.4.1 Discussion and Definition. As already mentioned in the introduction to
the previous section, we must pay attention to the fact that observed attributes
need not be two-valued. We now make a mild generalization by assuming that we
have finite sets V1, . . . Vn of abstract values (each Vi having at least two elements)
and we consider all (observational) structures of the form M = 〈M, f1, . . . , fn〉
where each fi is a Vi-valued function. Setting V = 〈V1, . . . , Vn〉 we can call M a
V-valued structure. Of course, we can replace each Vi having hi elements by the
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segment {0, 1, . . . , (hi − 1)} of natural numbers, so that our structures become
natural number-valued. This “normalization” does not depend on the character
of the assumed observational attributes (qualitative, comparative, quantitative)
but only on the finiteness assumption above. If we assume that our structures
correspond to the behaviour of some qualitative attributes, i.e., if we assume no
preferred structure on the sets Vi, then this fact will be reflected not by the
structures themselves but by the language we shall use to speak about them.

3.4.2 Definition. Let M = 〈M, f1, . . . , fn〉 be a natural number valued structure
and let Vi = {0, 1, . . . , hi − 1} (i = 1, . . . , n). By saying that M is 〈h1, . . . , hn〉-
valued we mean the same as saying that M is 〈V1, . . . , Vn〉-valued, i.e., for each i,
the range of fi is included in Vi.

3.4.3 Remark. Let M = 〈M, f1, . . . , fn〉 be a 〈h1, . . . , hn〉-valued structure of
type t = 〈k1, . . . , kn〉 (i.e., fi is ki-ary). We can associate with M an {0, 1}-valued
structure

π(M) = 〈M, p0
1, . . . , p

h1−1
1 , . . . , p0

n, . . . , p
hn−1
n 〉

of type

π(t) = 〈k1, . . . , k1︸ ︷︷ ︸
h1 times

, . . . , kn, . . . , kn︸ ︷︷ ︸
hn times

〉

defined as follows:

pj
i (o1, . . . , oni

) = 1 iff fi(o1, . . . , oni
) = j ;

pj
i (o1, . . . , oni

) = 0 otherwise

π(M) fully represents M (i.e. π is one-to-one) and has the following evident
property:

(*) for each i = 1, . . . , n, and each o ∈ Mki , exactly one of the numbers

po
i (o, . . . , p

ki−1

i (o) is 1 (the remaining ones being 0).

Conversely, each {0, 1}-valued structure of type π(t) satisfying (*) is π(M)
for some 〈h1, . . . , hn〉-valued M .

Thus 〈h1, . . . , hn〉-valued structures with a given 〈h1, . . . , hn〉 are uniquely rep-
resentable by some specific two-valued structures. Nevertheless, it is reasonable
to develop some autonomous logic for the former structures since working with
them as like machine inputs one saves the computer’s memory. (To represent an
h-valued function defined on m objects one needs at most m([log h] + 1) bits; to
represent h two-valued functions one needs h · m bits.) Moreover, sentences of
the language we shall use to speak about those structure, even if translatable into
sentences speaking about the two-valued representations, are more transparent
and useful than their translations.
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We shall now describe observational calculi open formulae and prove some
lemmas on them, then we give the full definition. The numbers 0, 1 have two
roles: They are treated as some qualitative values as well as truth values.

Definition

(1) With each finite set X of natural numbers we associate a unary junctor (X)
(called a coefficient) putting Asf(X)(u) = 1 iff u ∈ X and Asf(X)(u) = 0 iff
u 6∈ X (hence, Asf(X) is the characteristic function of X).

(2) With each function α : {0, 1, }j → {0, 1, } we associate its canonical exten-
sion to Nj putting α(u1, . . . , uj) = α(u1, . . . , uj) where 0 = 0 and u = 1 for
u ≥ 1. (Hence, we “identify” non-zero values.)

(3) We introduce junctors &, ∨, →, ¬ whose associated functions are canonical
extensions of their associated functions over {0, 1, }. Thus, e.g., Asf&(u, v) =
1 iff u ≥ 1 and v ≥ 1.

(4) Let t = 〈k1, . . . , kn〉 be a type and let h = 〈h1, . . . , hn〉, hi ≥ 2. For the
time being call any observational function calculus of type t whose junctors

are &, ∨, →, ¬ and the coefficients (X) for X ⊆
{

0, 1, . . . , max
i

(hi − 1)
}

and whose models are exactly all observational h-valued models an h-valued
openly qualitative OFC. (Nothing is assumed on quantifiers.) In the present
context, Vi means {0, 1, . . . , hi − 1}.

(5) Let F be an h-valued openly qualitative OFC. Each formula of the form
(X)Fi(x) where 1 ≤ i ≤ n, ∅ 6= X $ Vi and x is a ki-tuple of variables is
called a literal. (We write (X)Fi instead of (X)Fi(x) if there is no danger of
confusion.) An elementary disjunction (ED) is a non-empty disjunction of
literals in which each atom Fi(x) occurs at most once; similarly, we define
elementary conjunction (EC). For example, let h = 〈3, 3〉 and t = 〈2, 1〉;
then

(0, 2)F1(x, y) ∨ (1)F1(z, x) ∨ (1, 2)F2(x) is an ED.

(6) A formula ϕ is two-valued (or {0, 1}-valued) if, for each model M and each e,
‖ϕ‖M [e] ∈ {0, 1}.

3.4.5 Lemma. Let F be an 〈h1, . . . , hn〉-valued openly qualitative OMFC, let
Fi be a functor, and let X, Y ⊆ Vi. Then

(1) ¬(X)Fi ⇔ (Vi −X)Fi,
(2) (X)Fi ⇔

∨
k∈X

({k})Fi, (3) (X)Fi ⇔
∧

k 6∈X

¬({k})Fi,

(4) (X)Fi ∨ (Y )Fi ⇔ (X ∪ Y )Fi, (5) (X)Fi&(Y )Fi ⇔ (X ∩ Y )Fi,
(6) (∅)Fi ⇔ 0, (7) (Vi)Fi ⇔ 1.

elementary proofs are left to the reader.
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3.4.6 Lemma. Let F be an openly qualitative OFC and let ϕ, ψ, χ be formulae.
Then the logical equivalences (1)-(16) from 3.3.2 (in particular, distributivity and
de Morgan laws) hold true for F . This is evident.

3.4.7 Definition. Let F be an h-valued openly qualitative OFC. A pseudoliteral
is a formula of the form (X)Fi(x) where X ⊆ Vi and x is a ki-tuple of variables.

A formula is (pseudo)regular if it results from (pseudo)literals by iterating
applications of & and ∨.

A pseudoliteral (X)Fi(x) is full if X = Vi, it is empty if X = 0.
A pseudoelementary conjunction (psEC) is a non-empty conjunction of non-

full pseudoliterals (empty pseudoliterals allowed); a pseudoelementary disjunction
(psED) is a non-empty disjunction of non-empty pseudoliterals (full pseudoliterals
allowed).

Let ϕ0, ϕ1, . . . be a enumeration of all atoms. If κ1 =
∧
I

(Xi)ϕi and κ2 =
∧
J

(Yj)ϕj are psEC’s (i.e., the ϕi’s are atoms) then put con(κ1, κ2) =
∧

I∪J

(Zi)ϕi,

where Zi = Xi ∩ Yi for i ∈ I ∩ J , Zi = Xi for i ∈ I − J and Zi = Yi for i ∈ J − I.
If δ1 =

∨
I

(Xi)ϕi and δ2 =
∨
J

(Yi)ϕi are psED’s then put dis(δ1, δ2) =
∨

I∪J

(Zi)ϕi,

where Zi = Xi ∪ Yi for i ∈ I ∩ J , Zi = Xi for i ∈ I − J and Zi = Yi for i ∈ J − I.
If (X)Fi(x) is a literal then put neg((X)Fi(x)) = (Vi − X)Fi(x); if κ =∧

I

(Xi)ϕi and δ =
∨
J

(Yi)ϕj then put

neg(κ) =
∨
I

neg((Xi)ϕi) and neg(δ) =
∧
J

neg((Yi)ϕj) .

3.4.8 Lemma

(1) If ϕ is (pseudo)regular, then ¬ϕ is logically equivalent to a (pseudo)regular
formula.

(2) If κ1, κ2 are psEC’s then con(κ1, κ2) is a psEC logically equivalent to κ1&κ2;
similarly for psED’s and dis.

(3) If κ is psEC, then neg(κ) is a psED logically equivalent to ¬κ; similarly for
a psED.

3.4.9 Corollary. Each open designated formula is logically equivalent to a
formula of one of the following forms: 0, 1, atomic, pseudoregular.

Proof. By induction on the complexity of formulae, using 3.4.5, 3.4.6, 3.4.8.
Note, that, e.g., if ϕ is pseudoregular, then (X)ϕ ⇔ ϕ if 1 ∈ X and (X)ϕ ⇔ ¬ϕ
otherwise; using 3.4.8, ¬ϕ is logically equivalent to a pseudoregular formula. Note
that 3.4.5 (6), (7) and 3.4.6 (15), (16) are not used.
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3.4.10 Theorem. (Normal form.) Each open formula is logically equivalent to
a formula of one of the following types: 0, 1, atomic, non-empty disjunction of
elementary conjunctions. (Consequently, each non-atomic open formula is two-
valued.)

Proof. If ϕ i pseudoregular, then one can express ϕ as a non-empty (possibly one-
element) disjunction of conjunctions of pseudoliterals; in each such conjunction
one can reduce the occurrences of each atom to one, by using some of 3.4.5 (6), (7)
and 3.4.6 (7)-(10); each conjunction of pseudodiliterals changes either to 0 or to 1
or to an EC. A disjunction of pseudoelementary conjunctions changes either to 1
or to 0 or to a non-empty disjunction of EC’s.

3.4.11 Remark

(1) One can easily prove the “dual form” of the Normal form theorem inter-
changing “conjunction” and “disjunction”.

(2) What should we assume about quantifiers in a calculus to call it “a quali-
tative OFC”? As far as open formulae are concerned, we are interested in
(pseudo)regular formulae. They are two-valued; hence, if q is a qunatifier
we are interested in the values AsfqM for two-valued models only. But Asfq
is to be defined for natural number valued models; thus we use the device of
“canonical extension ” as in 3.4.3. This leads us to the following definition:

3.4.12 Definition. Let F be an openly qualitative OMFC and let q be a quan-
tifier of F of type 〈1k〉. We call q essentially two-valued if for each (natural
number-valued) model M of type 〈1k〉 we have Asfq(M) = Asfq(M̂), where M̂
results from M by replacing all non-zero values by 1 (i.e., if M = 〈M, f1, . . .〉,
then M̂ = 〈M, f 1, . . .〉, where f i is as in 3.4.4.

3.4.13 Definition. A openly qualitative OMFC is qualitative if all its quantifiers
are essentially two-valued.

In what remains of the present section we shall consider qualitative OMFC’s
with incomplete information.
3.4.14 Remark. Consider an OFC F which is a ×-extension of an 〈h1, . . . , hn〉-
valued qualitative OFC F0.

(1) Thus, models are structures M = 〈M, f1, . . .〉 (finite) such that fi maps
Mki into {0, 1, . . . , hi − 1,×}.

(2) If F is the secured ×-extension of F0, then:

(i) The junctors of F are secured ×-extensions of the junctors of F0, i.e.,
Asf(X)(u) = 1 if u ∈ X, Asf(X)(u) = 0 if u ∈ N −X, Asf(X)(×) = ×.
The associated function of & is given by the following table:
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& ≥ 1 × 0
≥ 1 1 × 0
× × × 0
0 0 0 0

(ii) The quantifiers of F are secured×-extensions of the quantifiers of F0, i.e.

Asfq(M) =





1 iff Asfq(N) = 1 for each two-valued modification
0 iff Asfq(N) = 0 for each two-valued modification
× otherwise .

Here, N = 〈M, g1, . . .〉 is a two-valued modification of M = 〈M, f1, . . .〉
if, for each o ∈ M ,

fi(o) ≥ 1 implies gi(o) = 1 ,

fi(o) = 0 implies gi(o) = 0 ,

fi(o) = × implies gi(o) ∈ {0, 1} .

(3) In general, we shall work with calculi richer than the secured extension,
namely containing new quantifiers. (Helpful quantifiers studied in Chap-
ter 6, Section 3 are typical examples of non-secured quantifiers.) However,
we restrict ourselves to quantifiers satisfying the following natural general-
ization of the notion “essentially two-valued”.

3.4.15 Definition

(1) Let F be a cross-extension of a qualitative OFC F0. A quantifier q of F is
essentially three-valued if, for each M ,

Asfq(M) = Asfq(M̂) ∈ {1,×, 0} ,

where M̂ results from M by replacing each regular value ≥ 1 by 1 (leaving 0
and × untouched), (ii) if M does not contain any × then Asfq(M) ∈ {0, 1}.

(2) A ×-extension F of a qualitative OFC is a ×-qualitative OFC if the junctors
of F are &, ∨, →, ¬ and the coefficients, and if each quantifier of F is
essentially three-valued.
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3.4.16 Remark. If q is an essentially three-valued quantifier, then its associated
function is uniquely determined by its behaviour on three-valued (i.e., {1,×, 0}-
valued) models of the appropriate type.

3.4.17 Remark. Literals, EC’s, ED’s, psEC’s, psED’s and regular open for-
mulae are defined as in qualitative calculi. One easily checks that logical equiva-
lence 3.4.5 (1)-(5) are true for each×-qualitative calculus provided we assume X 6=
∅ in (2) and X 6= Vi in (3); the last restriction is necessary since 3.4.5 (6), (7) are
not true: ‖(∅)Fi‖[×] = × but ‖0‖ = 0; similarly, ‖(Vi)Fi‖[×] = × but ‖1‖ = 1.
As far as 3.4.6 is concerned, we easily verify 2.2.10 (1)-(14) but 2.2.10 (15), (16)
are not true for ×-qualitative calculi (cf. 3.3.12). These equivalences, true for
qualitative but not for ×-qualitative calculi, were not used in the proof of 3.4.8,
3.4.9; hence, we have the following:

3.4.18 Theorem. (Normal form.) In an ×-qualitative OFC, each open formula
is logically equivalent to a formula of one of the following forms: 0, 1, atomic,
a non-empty disjunction of pseudoelementary conjunctions. Consequently, each
non-atomic open formula is three-valued ({1,×, 0}-valued).

Proof. As in the first part of the proof of 3.4.10, we arrive at a non-empty
disjunction of conjunctions of pseudoliterals, each conjunction having the form∧
I

(Xi)ϕi. We successively eliminate full literals as follows: If, e.g., Xi0 = Vi0 , then

divide Vi0 into two disjoint non-empty subsets X1
i0
, X2

i0
and define X1

i = X2
i = Xi

for i 6= i0. Then

∧
I

(Xi)Fi ⇔
(∧

I

(X1
i )Fi

)
∨

(∧
I

(X2
i )Fi

)
.

3.4.19 Remark

(1) “Pseudoelementary” cannot be strengthened to “elementary” – consider
(∅)Fi. On the other hand, one could continue the process of dividing coeffi-
cients to obtain a disjunction of pseudoelementary conjunctions with each
coefficient of cardinality at most 1.

(2) Recall 3.4.3: a 〈2, . . . , 2〉-valued ×-qualitative OFC is in fact an ×-predicate
observational calculus. So we have here the promised normal form for open
formulae in ×-predicate calculi.

3.4.20 Remark. We conclude this section with some remarks and definitions
concerning monadic ×-qualitative calculi. Let × be the designated variable. In
part II we shall pay attention to designated (ps)ED’s, these are formulae of the
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form
∧
I

(Xi)Fi(x) and
∧
J

(Yj)Fj(x) respectively. Note that operations con, dis,

neg preserve designated formulae. We define some syntactic relations between
designated pseudoelementary conjunctions and disjunctions to be used later.

3.4.21 Definition. Let κ
∧
I

(Xi)Fi and λ =
∧
J

(Yi)Fi be two designated psEC’s.

(a) κ is included in λ (κ ⊆ λ) if I ⊆ J and Xi = Yi for each i ∈ I.

(b) κ is poorer than λ (κ v λ) if I = J and Xi ⊆ Yi for each i ∈ I.

(c) κ is hidden in λ (κ ¢ λ) if I ⊆ J and Xi ⊆ Yi for each i ∈ I.

(d) κ hoops in λ (κ ← λ) if I ⊆ J and Xi ⊇ Yi for each i ∈ I. The definition is
the same for psED’s.

functors

c
o
e
ff

ic
ie

n
ts

(a) κ ⊆ λ (b) κ v λ (c) κ ¢ λ (d) κ ← λ

3.4.22 Lemma. Let κ, λ be designated psEC’s.

(1) κ ¢ λ iff there is a κ′ such that κ ⊆ κ′ and κ′ v λ. κ ← λ iff there is a κ′

such that κ′ v κ and κ′ ⊆ λ.

(2) If κ ⊆ λ, then λ logically implies κ, i.e., for each M and each o ∈ M ,
‖λ‖M [o] = 1. If κ v λ, then κ logically implies λ. If κ ← λ, then λ logically
implies κ.

(3) Let γ, δ be designated psED’s. If γ ⊆ δ, then γ logically implies δ; if γ v δ,
then γ logically implies δ; hence, if γ ¢ δ, then γ logically implies δ.

(4) For κ, λ psEC’s, con(κ, λ) is the ←-supremum of κ and λ; for γ, δ psED’s,
dis(γ, δ) is the ¢-supremum of γ, δ. This is obvious from the definitions.

3.4.23 Remark. (1) The relation “is hidden in” can be thought of as a “syn-
tactically simpler than”-relation; this is in accordance with the relation of logical
implication for psED’s but not for psED’s. This is why we study the “hoop”-
relation for psEC’s.
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3.4.24 Key words: 〈h1, . . . , hn〉-valued structures, coefficients, (openly) quali-
tative OFC’s, (pseudo)elementary conjunctions and disjunctions, essentially two-
valued (three-valued) quantifiers, qualitative and ×-qualitative OFC’s, relations
between psEC’s (psED’s): included in, poorer than, hidden in, hoops.

3.5 More on the logic of observational predicate

calculi

This is an additional section in which we collect some results of a logical and com-
putational character concerning the observational predicate calculi but dependent
on mathematical facts not presented in this book. We shall present definitions
necessary for the understanding of theorems, but we refer to the literature for
proofs of needed facts. Most proofs will only be briefly outlined; the results can
be considered as possible starting points for further investigations.

3.5.1 Remember the observational predicate calculi – function calculi with truth
values 0, 1, with finite models and with recursive semantics. We shall com-
pare OPC’s with predicate calculi usually studied in Mathematical Logics, i.e.,
function calculi with truth values 0,1, with both finite and infinite models and
with no restrictions on the associated functions of quantifiers. The latter cal-
culi will be called usual predicate calculi-UPC. “Classical” is reserved to mean
“with two quantifiers ∀, ∃ with their obvious semantics”; we speak of COP’s
(classical observational predicate calculi) and CPC’s (classical predicate calculi –
more pedantically, but awkwardly, one could say classical usual predicate calculi:
CUPC’s and ask whether the notions are meaningful for OPC’s and whether the
facts remain valid if UPC’s with some remarkable properties. The reason for
our concentration on observational predicate calculi is that their theory is more
developed than the theory of other observational function calculi; similar investi-
gations of other observational function calculi remain a task for the near future.
We will make use of some facts on diophantine equations, weak monadic second
order successor or arithmetics, and semisets.

3.5.2 We already know that COPC’s differ from CPC’s with respect to axiomati-
zability; whereas each non-monadic CPC is axiomatizable but undecidable (this
follows from Gödel’s classical result), no non-monadic COPC is axiomatizable.
We stated tha last fact in 2.1.17 as a (non-immediate!) consequence of Tracht-
enbrot’s theorem 2.1.16. We shall prove Trachtenbrot’s theorem later in this
section.

A further well known property of CPC’s is compactness:

For each set X of sentences which has no model there is a finite subset A ⊆ X
which has no model.
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Now, almost no OPC is compact: For example, given an OPC containing
the equality predicate and ∃, the set X = {(∃kx)(y = x), k a natural number}
has no finite model but each finite subset of X has a finite model. (On the
other hand, it follows from the Representation theorem 3.1.31 that each MOPC
of finite dimension without equality is trivially compact.) We shall consider
various notions of classical definability of classes of models and apply them to
observational calculi.

3.5.3 Definition. K is a variety of models if there is a type t such that K consists
of some models of type t and K is closed under isomorphism, i.e., if M ∈ K and
N is isomorphic to M , then N ∈ K. t is the type of K.

3.5.4 Remark

(1) “Model” can mean either both finite and infinite {0, 1}-structures or only
{0, 1}-structures that the finite; in each particular case the meaning will be
clear from the context.

(2) Varieties of models are in one-to-one correspondence with associated func-
tions of quantifiers; in the observational case, a variety defines an observa-
tional quantifier iff it is a recursive class of models.

3.5.5 Definition

(1) Let K be a variety of type t. K is elementary if there is a classical sentence ϕ
of type t such that K consists exactly of all models of ϕ.

(2) Let t = 〈t1, . . . , tn〉 and t′ = 〈t1, . . . , tn, tn+1, . . . , tn+m〉be types; t′ is called
an expansion of t. We call t′ a 1-expansion of t if tn+1 = . . . = tn+m = 1.
A structure M ′ of type t′ is an expansion of M = 〈M, f1, . . . , fn〉 if m′ has
the form 〈M, f1, . . . , fn, fn+1, . . . , fn+m〉 (it results from M by adding new
{0, 1}-functions). M is a 1-expansion of M if it results from M by adding
unary functions to M .

(3) A variety K of type t is projective (1-projective) if there is an expansion (1-
expansion) t′ of t and a classical formula ψ of type t′ such that K consists
of all structures M of type t that can be expanded (1-expanded) to a model
of ψ, i.e., if

K = {M ; (∃M ′ expansion (1− expansion) of M)(‖ψ‖M = 1)} .

3.5.6 Remark. The above definitions make sense both for CPC’s and for
COPC’s. Note the following known facts for CPC’s:
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(a) A variety K of type t is elementary iff both K and −K are projective (−K
is the complement of K – it consists of all models of type t that are not
in K). This is a form of the so-called interpolation theorem.

(b) There are projective non-elementary varieties (e.g., the variety of all so-
called non-standard models of Peano arithmetic is 1-projective but not ele-
mentary).

(c) Hence, there are projective (1-projective) varieties K such that −K is not
projective.

3.5.7 We are going to investigate elementary and projective classes of observa-
tional models. First we show the close relationship of projective classes with
languages recognizable in polynomial time. (The reader not interested in their
relation may skip to 3.5.12.)

We assume the following notions to be known (cf. Karp 1972): deterministic
algorithm, indeterministic algorithm, operation in polynomial time, the class P
of sets (languages) recognizable by a deterministic algorithm operating in poly-
nomial time, the class NP of sets recognizable by a non-deterministic algorithm
operating in polynomial time, the class π of functions defined by algorithms oper-
ating in polynomial time, polynomial reducibility, universal NP -problems. The
famous P − NP problem is the problem whether P = NP , i.e., whether each
set recognizable by a non-deterministic algorithm operating in polynomial time
is recognizable by a deterministic algorithm operating in polynomial time.

3.5.8 It is obvious that observational {0, 1}-structures can be coded by words in a
finite alphabet. For example, following Pudlák [1975 a, b], we associate with each
{0, 1}-structure M = 〈M, r1, . . . , rn〉 of type t = 〈k1, . . . , kn〉 its code cod(M).
This is a word in the alphabet 22+n of length mmax(t) (where m is the cardinality
of M and max(t) means max

i
(ki)) defined as follows: Let M = {u1, . . . , um}

where u1 < . . . < um in the natural ordering of natural numbers. The code is
an {0, 1}-matrix with 2 + n rows and mmax(t) columns. The first row designates
mmax(t), the second row designated m and the (i+ 2)-th row contains values of ri

for arguments ordered lexicographically, e.g., if k1 = 2 and if aij = r1(ui, uj) then
cod(M) looks like:

m mmax t

0 . . . . . . . . . 1
1 . . . . . . 0

a11, b12, . . . a21, a22, . . .

. . . . . .
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If K is a variety then cod(K) = {cod(M); M ∈ K}.
We have the following theorem:

3.5.9 Theorem. (Fagin 1973). A variety K is projective iff cod(K) is NP i.e.
cod(K) is a language accepted by a nondeterministic Turing machine operating
in polynomial time.

(1) (Hint.) Let K be projectively defined by a sentence ϕ(R,S). First prove
that if K is elementary, i.e. there are no S-predicates, then cod(K) is
deterministically polynomial. Then it is easy to see how to construct a
nondeterministic machine for the general case: given the code codM of a
structure M = 〈M, r1, . . . , rn〉, the machine first proceeds nondeterministi-
cally, guessing an expansion 〈M, r1, . . . , rn, s1, . . . , sn〉 and then constinues
deterministically, verifying ϕ(r, s). Hence cod(K) is in NP .

(2) Conversely. Let cod(K) be recognized by a non-deterministic Turing ma-
chine T operating in time mk. Assume that T has q states, γ tape symbols
(and one tape). Now, M ∈ K iff there is an accepting computation of T on
input cod(M) of the length ≤ ck where c is the length of cod(M); hence the
length is polynomial in card(M), the type t being fixed. The computation
is a certain sequence of configurations and can be represented as a matrix
with ck+1 rows and 2ck + 1 columns, whose elements are tape symbols,
states and a marker showing the position of the head. Mutatis mutandis,
the computation can be represented by {0, 1}-matrix with mk̂ rows and
columns, where m = card(M) and k̂ is larger than k but independent of m,
i.e. as a 2k̂-ary relation on M . It is a tedious but straightforward exercise
to show that there is a sentence ϕ(S) where S is a 2k̂-ary relation such
that 〈M, s〉 satisfies ϕ(S) iff s represents an accepting computation of T on
input cod(M) as described above. Hence ϕ(S) projectively defines K.

2.5.10 Corollary. If there is a projective variety K such that −K is not pro-
jective then NP languages are not closed under complementation and hence
P 6= NP .

3.5.11 Remark. Pudlák [1975a] also considers codes of languages by structures.
Moreover, he defines the definitional complexity of a variety projectively defined
by a sentence ϕ as the number of quantifiers in ϕ and shows close linear de-
pendences between the definitional complexity of a projective class K and the
computational complexity of the language cod(K) (i.e. the degree of the polyno-
mial giving the time bound). Finally, he shows that for each non-monadic type t
the hierarchy
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Prt
k =

{ K;K projectively defined by a formula whose definitional
complexity is k

}

is strictly increasing. We shall not go into more detail since these very important
investigations are beyond the scope of the present book.

We now consider 1-projective classes. We show that 1-projective classes are
not closed under complementation; unfortunately, this does not solve the P −
NP problem.

3.5.12 Theorem. (Fagin 1975a, Cf. Hájek 1975a) There is a 1-projective variety
of type 〈2〉 whose complement is not 1-projective.

3.5.13 Remark. Each structure 〈M, r〉 of type 〈2〉 can be considered as a graph
in the sense of graph theory: We call the elements of M vertices and pairs a, b such
that r(a, b) = 1 edges of the graph. We assume the usual terminology concerning
graphs.

We shall outline a proof of the fact that the class K1 of all (finite directed)
disconnected graphs satisfies our theorem.

3.5.14 Extend the usual universe of sets by admitting the existence of proper
semisets, i.e. nonsets that are subclasses of sets. (The notion of a semisets is due
to Vopěnka and Hájek; for a short survey of important facts about semisets see
Hájek 1973 and/or Hájek 1972). In particular, assume that the semiset An of
absolute natural numbers is a proper subsemiset of the set of all natural numbers.
(Cf. [Čuda]; n is absolute if there is no semiset one-one mapping of n onto n+1.)
0 ∈ An and (∀n)(n ∈ An → (n + 1) ∈ An), hence if An 6= N then An is a proper
semiset. Denote the theory of semisets with the above assumption by TSS. One
has the following metamathematical result:

(Metatheorem) Let ϕ(n) be a formula of set theory with one free variable
ranging over natural numbers. If (∀n ∈ An)ϕ(n) is provable in TSS then (∀n)ϕ(n)
is provable in ste theory.

3.5.15 In particular, assume that formulae are coded by natural numbers in
the usual manner. Call a variety K absolutely 1-projective if there is a ϕ ∈ An
1-projectively defining K (i.e. K is 1-projectively defined by a short formula).
By 3.5.14, it suffices to prove in TSS that the variety is not absolutely 1-projective.
Say that a semiset-mapping σ respects a set x if σ maps x onto a set (in general
the image could be a proper semiset). Note that validity os short (i.e. absolute)
sentences is preserved even by semiset isomorphisms. Hence, the following suffices
for a variety K not to be absolutely 1-projective:

There is a structure M ∈ K such that, for each short tuple x1, . . . , xk of subsets
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of M , there is a σ mapping M isomorphically onto a set structure σ(M) 6∈ K and
respecting each x1, . . . , xk. (M can be called critical for K.)

3.5.16 We show that any elementary cycle of a long (non-absolute) length is
critical for connected graphs. Let G = 〈G,R〉 be such a cycle; let x be a subset
of G; assume k = 1 for simplicity. For each a ∈ G let a+ be the immediate
successor of a; let aAn = {a+, a++, . . . (An times)}. There are a, b such that
aAn ∩ bAn = ∅ and for each n ∈ An, a + . . .+︸ ︷︷ ︸

n times

∈ x iff b + . . .+︸ ︷︷ ︸
n times

∈ x. Let G′ = G and

let R′ result from R by removing the edges 〈a, a+〉, 〈b, b+〉 and replacing them
by 〈a, b+〉, 〈b, a+〉. Then G′ = 〈G′, R′〉 decomposes into two elementary circuits
and the mapping σ interchanging aAn and bAn and identical on the rest of G is a
semiset isomorphism of G, G′mapping x onto itself.

++

a

+

a a

G:

b
+

b

++

b

G':

+

b

++

b

b

++

a

+

a a

3.5.17 Remark. One can show that also the class −K1 is projective (even if
not 1-projective). This also shows that, in the observational sense, there is a
variety K such that both K and −K are projective but K is not elementary.
(Cf. 3.5.6) See also Problem (10).

The aim of the next ten paragraphs is to sketch a relatively rapid proof of
Trachtenbrot’s theorem:

3.5.18 Theorem. (Trachtenbrot 1950). There is a COPC which is not axioma-
tizable.

The proof we offer differs from the original proof and usus the notion of
diophantine sets. We define necessary notions in a version useful for our purpose
(Cf. Davis 1958).
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3.5.19 Definition

(1) An n-ary polynomial is arbitrary mapping P (x1, . . . , xn) of Nn into N having
the following form:

∑

0 ≤ i1 ≤ k1

.

..
0 ≤ in ≤ kn

ai1 . . . ainxi1
1 . . . xin

n (ai1 . . . ain ∈ N)

(2) A set A ⊆ N is diophantine if there are polynomials P (y, x1, . . . , xn) and
Q(y, x1, . . . , xn) such that

A = {y; (∃x1, . . . , xn)P (y, x1, . . . , xn) = Q(y, x1, . . . , xn)} .

(A is said to be diophantine set corresponding to P , Q.)

3.5.20 Lemma. The set Poln of all n polynomials is the least set of mapping of
Nn into N containing, for each i = 1, . . . , n, the function I i

n(x1, . . . , xn) = xi, for
each a = N the function Ka

n(x1, . . . , xn = a and closed under sums and products
of functions. This is obvious.

The following lemma presents the famous result due to Matiasevič and implies
directly the unsolvability of Hilbert’s 10th problem:

3.5.21 Lemma. A set A ⊆ N is recursively enumerable iff it is diophantine.

3.5.22 Corollary. There is a diophantine non-recursive set of integers.

3.5.23 Discussion. Now, we are going to describe a theory Ar whose finite
models are exactly finite segments of natural numbers with the usual structure.
The language will be as follows:

= - equality predicate,
< - less-than predicate,
Suc(−,−) (Suc(y, x) is read “y is the successor of x”),
Add(−,−,−) (Add(z, x, y) is read “z is the summ of x, y”),
Mult(−,−,−) (Mult(z, x, y) is read “z is the product of x, y”).

It is easy to write axioms stating that Suc, Add, Mult describe partial functions,
e.g., (Suc(y, x)&Suc(z, x)) → y = z etc.: define Least(x) ⇔ ¬(∃y)(y < x)
and indroduce formulae numn(x) (n ∈ N) by the following induction: num0(x)
is Least(x); numn+1(x) is (∃y)numn(y)&Suc(x, y). Write finitely many axioms
expressing the inductive behaviour of arithmetical operations, e.g.
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Suc(y, x) ↔ x < y&¬(∃z)(x < z&z < y) ,

Least(y) → Add(x, x, y);

Add(z, x, y)&Suc(y, y)&Suc(z, z) → Add(z, x, y) etc.

The conjunction of the universal closures of these axioms is denoted by Ar. One
proves the following lemma by induction using 3.5.20.

3.5.24 Lemma. For each polynomial P (m1, . . . ,mn) there is a formula π(y, x1, . . . , xn)
such that the following are equivalent:

(i) m = P (m1, . . . , mn);

(ii) the formula

Ar → (∀x)(∀y)(numm1(x1)& . . . nummn(xn)&numm(y)) → π(y, x1, . . . , xn)

is a tautology.

3.5.25 Definition and lemma. Let A be a non-recursive diophantine set,
A = {n; (∃m)P (m,n) = Q(m,n)}; let π(z, x, y), ρ(z, x, y) be the corresponding
formulae satisfying 3.5.24. Then

(i) n ∈ A iff Ar&(∃x, y, z)(numn(y)&π(z, x, y)&ρ(z, x, y)) has a model, i.e.

(ii) n 6∈ A iff Ar → (∀y)(numn(y) → ¬(∃z, x)(π(z, x, y)&ρ(z, x, y))) is a tau-
tology.

3.5.26 Corollary. The set of tautologies of the CPC with the present language is
not recursively enumerable. (If it were recursively enumerable, then N−A would
also be recursively enumerable which is not the case.) Hence, 3.5.18 follows.

To close the present section we shall consider a strengthening of classical
MOPC’s (with equality) by adding instead of equality a binary predicate < (or-
dering predicate).

3.5.27 Definition. The classical monadic observational predicate calculus with
ordering (CMOPC(<)) of type 〈1k〉 is the predicate calculus with k unary predi-
cates P1, . . . , Pk, one binary predicate, the usual connectives, quantifiers ∀, ∃ and
models M = 〈M, r, f1, . . . , fk〉 such that
(i) M is finite
(ii) the relation <r (a <r b iff r(a, b) = 1) is a linear ordering of M .

(This means: M is a model of CMOPC(<) in question if it satisfies (i), (ii).
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3.5.28 Remark. CMOPC’s with ordering generalize CMOPC’s with equality
since = can be defined by:

x = y iff ¬(x < y)&(y < x) .

The definition is motivated by the idea of the model (data) as a sequence of
objects with properties (a linearly ordered set rather that a set). Our aim is to
show that each CMOPC(<) is decidable. We reduce the decision problem for a
CMOPC(<) to the decision problem for the weak monadic second order successor
arithmetic W2SA. This theory can be described as follows:

One has variables of two sets, x, y, . . . (number variables) and X, Y, . . . (set
variables). One has two binary predicates Suc and ∈; Suc may be followed by
two number variables and ∈ may be followed by one number variable and one set
variable (one writes x ∈ X instead of ∈ (x,X)). Formulas are built up using the
usual connectives and the quantifiers ∀, ∃; the quantifiers may be applied both
to number variables and to set variables.

The canonical model is as follows: Number variables vary over natural num-
bers, set variables vary over finite sets of natural numbers, Suc(y, x) means that
y is the successor of x and x ∈ X means that x is an element of X. Let True be
the set of all sentences true in the canonical model. Büchi showed that True is a
recursive set (cf. Siefkes).

One defines equality putting x = y ⇔ (∀X)(x ∈ X ↔ y ∈ X), segments
putting Seg(X) ⇔ (∀x, y)((y ∈ X&Suc(y, x)) → x ∈ X), and ordering putting
x < y ⇔ (∃X)(Seg(X)&x ∈ X&y 6∈ X).

3.5.29 Construction. Let Pk be the CMOPC(<) of type 〈1k〉. With each
sentence ϕ of Pk we associate effectively a formula ϕ∗(z, X1, . . . , Xk) of W2SA
such that ϕ is a tautology of Pk iff the formula

(∀z)(∀X1) . . . (∀Xk)ϕ
∗(z, X1, . . . , Xk)

is in True. We define ϕ∗ inductively for all formulae assuming that the variables
of Pk coincide with the number variables of W2SA distinct from z. The idea
is that if we fix a natural number x = n and finite sets A1, . . . , An of natural
numbers, then the structure 〈M, r, f1, . . . , fn〉 such that [(i) M = {0, . . . , n},
(ii) for a, b ≤ n, r(a, b) = 1 iff a < b, (iii) for a ≤ n, fi(a) = 1 iff a ∈ Ai] is a
model of Pk and each model of Pk is isomorphic to a model of this kind.

(x < y)∗ is x < y ;

(Pi(x))∗ is x ∈ Xi ;

(ϕ&ψ)∗ is ϕ∗&ψ∗ ;

(¬ϕ)∗ is ¬ϕ∗ ;
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((∀x)ϕ)∗ is (∀x)(x < z → ϕ∗) ;

((∃x)ϕ)∗ is (∃x)(x < z&ϕ∗) ;

3.5.30 Lemma. If ϕ is a sentence of Pk, then ϕ is tautology of Pk iff the sentence

(∀z)(∀X1) . . . (∀Xk)ϕ
∗(z, X1, . . . , Xk)

is true in the canonical model of W2SA.

3.5.31 Corollary. Pk is decidable.

3.5.31 Remark. For results concerning the computational complexity of par-
ticular decidable theories see [Fisher and Rabin], [Meyer], [Rackoff].

3.5.33 Key words: varietes of models, elementary projective and 1-projective
varietes, NP classes of languages, CMOPC’s with ordering.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 3

(1) Let Asfq1 (〈M, f1, f2〉) = 1 iff there are at least three objects in M ; let
Asfq2 (〈M, f1, f2〉) = 1 iff there are at least three distinct cards (i.e., there are
o1, o2, o3 ∈ M such that XM(o1), XM(o2), XM(o3), are mutually distinct).
Let P be a COMPC with at least two predicates, without equality, and let
Pi be the extension of P by adding qi. Show that q1 is not definable in P1,
but q2 is definable in P2.

(2) Prove the following consequence of the Stability theorem 3.1.22: Under the
assumption of 3.1.22, M |= Φ iff for each M0 ⊆ M with at most p · 2n

elements there is an M1 between M0, M , M1 with at most p ·2n+1 elements
and such that M1 |= Φ.

(3) Show that if the condition of Tharp’s theorem is satisfied and the m con-
structed from the condition is given then one can effectively construct a
sentence defining the quantifier q. Hint: Let dM0

be a sentence such that,
for each M , M |= dM0

iff M0 can be isomorphically embedded into M (i.e.,
each card has frequency in M at least as large as in M0). Consider the
sentence

∧
dM i

0
→

∨
dM ij

0

where M i
0 varies over all models with at most m elements and M ij

0 varies
over all submodels of M with at most 2m elements. (Use the considerations
of (2).)
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(4) Let P1, P2, . . . be a countably infinite sequence of unary predicates, let R
be a quantifier of type 〈1〉 and ∃!1 a quantifier of type 〈1〉. Denote by
Pn the MOPC with P1, . . . , Pn and with R, ∃!1 where the quantifiers are
interpreted as in the proof of 3.1.34. Let Tautn be the set of all tautologies
of Pn. Show that

⋃
n

Tautn is not recursive (and not recursively enumerable).

Hence in 3.1.34 finitely many predicates and infinitely many quantifiers may
be replaced by infinitely many predicates and finitely many quantifiers.

Proceed analogously to the proof of 3.1.34.

(5) Let P1, P2, . . . be as above and let ∼ be a quantifier of type 〈1, 1〉. Let Ln

be the predicate language with P1, . . . , Pn and ∼. We shall show that

Sch = {ϕ; ϕ is a schema of associational tautologies in some Ln}
is recursive.

Remember 3.2.27-3.2.30. In the sequel, Kn denotes the set of all n-cards,
Rn denotes the set of all 4-partitions of Kn, Tn is the power set of Rn, etc.

(a) Let T ∈ Tn. T is satisfiable iff there is a non-trivial natural number
valued measure µ on the power set of Kn such that

(∗) R ∈ T and R′ 6∈ T implies µ(R) 6≶ µ(R′) for each R, R′ ∈ Rn ,

(b) Corollary: The set of all satisfiable sets of partitions is recursively
enumerable.

(c) The same as (a) with “natural number valued” replaced by “real valued
strictly positive”.

(d) A linear quasiordering ¹ of P(Kn) is realizable if there is a real valued
strictly positive measure µ on P(Kn) such that X ¹ Y iff µ(X) ≤
µ(Y ). A T ∈ Tn is satisfiable iff there is a realizable quasiordering ¹
of Kn such that

(∗∗)
for each R = 〈A,B,C,D〉 ∈ T and R′ = 〈A′, B′, C ′, D′〉 ∈ Rn − T

we have (A ≺ A′ or B Â B′ or C Â C ′ or D ≺ D′).

(e) Let ¹ be a linear quasiordering of P(Kn) and let A = 〈A1, . . . , Ak〉,
B = 〈B1, . . . , Bk〉 be two k-tuples of subsets of Kn. Let ΣA = ΣB
mean that every element of Kn belongs to the same number of A′

is as
B′

is. Call A, B an unwanted pair (of sequences) if ΣA = ΣB, A1 ≺ B1

and Ai ¹ Bi for i = 2, . . . , k. Evidently, each pair A, B is a finite
object and we can effectively decide whether it is unwanted or not.
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Lemma (Scott 1964). A linear quasiordering of P(Kn) is realizable by
a real valued strictly positive measure iff there is no unwanted pair.

(f) T ∈ Tn is not satisfiable iff for each linear quasiordering of Kn, there
is an unwanted sequence; hence the set of all unsatisfiable sets of par-
titions is recursively enumerable and the assertion follows.

(6) Theorem. Let ∼ be a saturable associational quantifier, let Π1, Π2 be
two disjoint sets of unary predicates, let ϕ, ϕ′, ψ, ψ′, be designated open
formulae such that ϕ, ϕ′ contain only predicates from Π1 and ψ, ψ′ only
from Π2. Suppose that each of the formulas is factual, i.e., it is satisfied
by a card and its negation is also satisfied by a card. If ϕ ∼ ψ logically
implies ϕ′ ∼ ψ′ then either ϕ ⇔ ϕ′ and ψ ⇔ ψ′) or (ϕ ⇔ ¬ϕ′ and ψ ⇔ ¬ψ′)
(⇔ stands for logical equivalence).

Hint: (Lemma 1.) If ‖ϕ‖[u] = ‖ψ‖[u] then ‖ϕ′‖[u] = ‖ψ′‖[u].
(Lemma 2.) If ϕ ⇔ ϕ′ then ‖ψ ⇔ ψ′.
(Lemma 3.) If ϕ ⇔ ¬ϕ′ then ‖ψ ⇔ ¬ψ′.
(Lemma 4.) If there is a card u with ‖ϕ&ϕ′‖[u] = 1 then ϕ logically
implies ϕ′. If there is a card u with ‖¬ϕ&¬ϕ′‖u = 1 then ϕ′ logically
implies ϕ.
(Represent cards as pairs 〈u1, u2〉 where u1 evaluates predicates from Π1

and u2 those from Π2 and use the fact that ‖ϕ‖ [〈u1, u2〉] depends only
on u1 etc.)

(7) Let F be a monadic ×-predicate calculus with finitely many predicates and
quantifiers (without equality). Then F is decidable.

Hint (Bendová 1975): Extend F by adding a nullary junctor × with the
constant value ×. Imitate the proof of 3.1.30 to show that (in the extended
calculus) each sentence is logically equivalent to a Boolean combination of
pure prenex formulae. Conclude that there is a finite set S of sentences
such that each sentence is logically equivalent to a sentence form S.

(8) There is an observational monadic×-predicate calculus with infinitely many
quantifiers and without equality which is {1}-undecidable.

(9) What is the best possible complexity of a decision procedure for schemes
of associational tautologies? This is an open problem.

(10) Show that the variety of all planar graphs is not 1-projective (Hájek 1975a).

Hint: Remember that a graph containing a subgraph of the form:
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(*)

is not planar. For each n, let Zn be the graph

1

0

where the vertices 0, 1 are connected by three paths of length n: the left,
middle and right one. Let Kn be the direct sum of n disjoint copies of
Zn ·Kn is planar.

Claim: If n is large (non-absolute) then Kn is critical for planar graphs.

Proof. Let × be a subset of the field of Kn. Just one subset instead of
several subsets for simplicity. If Z is a copy of Zn in Kn and if r and ` are
its right and left path then associate with each vertex a on r (on `) which
is far from 1 its x-type t(a) – the characteristic function of x on aAn. There
are three distinct copies Z1

n, Z2
n, Z3

n of Zn in Kn and elements ai ∈ `(Zi
n),

bi ∈ r(Zi
n) such that t(a1) = t(a2) = t(a3) and t(b1) = t(b2) = t(b3).

Remove edges ai → a+
i and bi → b+

i ; instead, add edges a1 → a+
3 , b1 → b+

2 ,
a2 → a+

1 , b2 → b+
3 , a3 → a+

2 , b3 → b+
1 . Then the modified graph K ′

n

has form (*). One constructs a semiset isomorphism mapping Kn onto K ′
n

which is the identity outside Z1
n ∪ Z2

n ∪ Z3
n and maps x onto itself exactly

as in 3.5.16.
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Chapter 4

Logical Foundations of
Computational Statistics

“Statistical data analysis and hypothesis testing does not involve logical deductive
reasoning, as the words “inference” and “mathematical statistics” may suggest,
but stochastic inductive reasoning. Especially when done with the computer, all
problems inherent in inductive reasoning arise” (Van Reeken 1971).

Having this in mind, we shall use the term “computational statistics” for a
theory of mechanized statistical inductive inference. To have clear and exact
foundations of such a theory, one has to answer the following questions:

(1) What is the relation of probabilistic notions of Mathematical Statistics to
the notions concerning computability?

(2) can one formulate an exact logical framework for statistical procedures, in
particular, for mechanized statistical procedures?

In section 2 and 3 of the present chapter such logical foundations of computa-
tional statistics are elaborated. Some generalizations are presented in Chapter 5,
Section 1. In section 4 and 5 the results of our investigation are applied to pred-
icate (two-valued) calculi. Definitions of some important particular statistical
quantifiers (quantifiers based on statistical procedures) in observational predi-
cate calculi are obtained. We also exhibit some useful logical properties of such
quantifiers.

Statistical questions connected with the logic of suggestion will be considered
in Chapter 8.

4.1 Preliminaries

4.1.1 We are interested in the exact logical and mathematical description of
the properties of inference rules which bridge the gap between theoretical and
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observational sentences, speaking about theoretical and observational models re-
spectively. Theoretical models that we have in mind now are random struc-
tures (cf. 2.4.5). Observational models can be viewed as “samples” from theoret-
ical models. Hence each observational procedure, i.e. procedure operating with
observational data has two sorts of properties:

(1) probabilistic

(2) logical and computational.

In Mathematical Statistics statistical procedures are treated purely analyti-
cally. But, in computational practice, one has “to learn what is computationally
feasible as distinct from analytically possible” (Freiberger and Grenader).

The task is to study the interaction between the analytical and computational
approach. Little, in fact, seems to have been done in this direction (cf. Freiberger
and Grenader). A practically oriented attempt has been made by the above cited
authors; in their book they open a promising area of research.

We want to present a theoretical framework relating probabilistic and com-
putational properties of those procedures. In the present section, we summarize
notions of probability theory to the extent necessary for further investigations.

4.1.2 We assume that the reader is familiar with some basic ideas of measure
and probability theory, but it seems to be useful to go over some basic definition.
The defined notions and basic facts about them will be freely used in the rest of
the book.

We use the classical approach to probability theory found in the very readable
introduction on the graduate level by Burril [1972]. Any other introduction to
the Kolmogorov probability theory can also serve as a source of information.

4.1.3 The first basic notion is the notion of a field of sets, i.e. a class of subsets
of a set, containing the empty set and closed under complement and finite union.
A σ-field is required also to be closed under countable union. The second notion
is the notion of a measure; a mapping µ of a field R into R∗ = R ∪ {+∞} is
called a measure if it is non-negative and additive (i.e. if S1, S2 ∈ R, S1 ∩S2 = ∅
then µ(S1 ∪ S2) = µ(S1) + µ(S2)).

Suppose that R is the set of all subsets of a finite set K. Then a measure
on R is uniquely determined by its values on the one-element subsets of K.
In fact, each mapping g: K → R determines a unique measure µg such that
µg({u}) = g(u). (For an A ⊆ K we then have µg(A) =

∑
u∈A

g(u) by additivity.)

Such a measure is a generalized counting measure where different elements can
have different weights.

4.1.4 A measure µ on a σ-field R is σ-additive if for each countable class R0 ⊆ R
of pairwise disjoint sets we have
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µ

( ⋃
S∈R0

S

)
=

∑
S∈R0

µ(S) .

The Borel field B is the minimal σ-field of sets of real numbers containing the
class of all open subsets of R. It can be equivalently characterized as the minimal
σ-field of sets of real numbers containing all the half-open intervals.

Consider now an abstract set Σ and a σ-field R ⊆ P(Σ). A real valued
function f with domain Σ is called measurable if, for each B ∈ B, f−1(B) ∈ R.
(Naturally, f−1(B) = {σ ∈ Σ; f(σ) ∈ B}.)

4.1.5 We are now going to formalize the notion of probability. This can be
done in many different more or less intuitive ways (see Fine 1973). We use the
Kolomogorov axiomatic system, which makes use of measure theory and which
is a rather useful frame for a mathematical theory of the statistical inference we
are interested in.

Remember that probability is considered on pair 〈Σ,R〉 where Σ is a non-
empty set and R is a σ-field, R ⊆ P(Σ) (cf. 2.1.7).

Now, a σ-additive measure P on 〈Σ,R〉 is called a probability measure if
P (Σ) = 1. Elements of R are called random events; if E ∈ R then the num-
ber P (E) is called the probability of E. The triple 〈Σ,R, P 〉 is usually called a
probability space.

4.1.6 Consider a probability space 〈Σ,R, P 〉; any measurable function from Σ
to R is called a random variate (more frequently the term “random variable” is
used; we use the term “variate” which was introduced by M.G. Kendall [1951]).

Now, if we have a random variate V and probability measure P on 〈Σ,R〉 we
obtain a probability measure on 〈R,B〉: For each A ∈ B, PV(A) = P (V−1(A)).
This measure is called the measure induced by a random variate; similarly the
σ-field RV = {E ∈ R;V(E) ∈ B} is called the σ-field induced by V .

(The notion of a random variate can be naturally generalized to a notion of an
n-dimensional random variate, where n is a natural number. Consider functions
from Σ to Rn.)

The expection and variance of a random variate are defined as integrals EV =∫ VdP and VAR V = E(V − EV)2 respectively.

4.1.7 Probabilistic properties of a random variate are fully described by its dis-
tribution function. The distribution function of a random variate is defined as
follows: for each x ∈ R, D(x) = P (V−1(−∞, x)). Each distribution function has
the following properties: it is non-negative, non-decreasing, continuous from the
left, lim

x→−∞
D(x) = 0 and lim

x→+∞
D(x) = 1. Each distribution function uniquely

defines a probability measure on B. If we consider a variate V then this measure
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is exactly PV . This is the reason why the distribution function fully describes
probabilistic properties of a random variate.

4.1.8 Consider a random variate V which maps Σ into a finite set {x1, . . . , xn},
hence P (V−1({x1, . . . , xn})) = 1 (such a variate can be called discrete); suppose
pi = P (V−1({xi})) > 0. The distribution function DV is a step function and can
be described as follows:

DV(x) =
∑
xi<x

pi .

4.1.9 The investigation of sequences of independent experiments leads to the
following notion of stochastical independence:

A finite sequence V1, . . . ,Vn of random variates is called stochastically inde-
pendent if, for each E1 ∈ RV1 , . . . , En ∈ RVn ,

P (E1 ∩ . . . ∩ En) = P (E1) · P (En)

(see 4.1.6 for the definition of RVi
; an equivalent condition reads: For each

B1, . . . , Bn Borel,

P (V1 ∈ B1& . . . &Vn ∈ Bn) =
n∏

i=1

P (Vi ∈ Bi)) .

An infinite sequence V1,V2, . . . is called stochastically independent if each finite
subsequence of V1,V2, . . . is stochastically independent.

We can define the joint distribution function of a sequence V1, . . . ,Vn (i.e., of
an n-dimensional random variate) by the equation:

DV1,...Vn(x1, . . . , xn) = P (V−1
1 ((−∞, x1)) . . .V−1

n ((−∞, xn)) .

It is easy to prove that the sequence V1, . . . ,Vn is stochastically independent iff

DV1,...Vn = DV1DV2 . . . DVn .

4.1.10 Key words: measure, probability measure, random variate, distribution
function, joint distribution function, stochastical independence.

4.2 The concept of statistics

We now try to construct a framework for statistical inference as a particular case
of inductive reasoning (cf. 1.3.1). We shall be more specific on theoretical sen-
tences; our theoretical sentences will have semantics related to random structures
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(cf. 2.1.7). Inductive inference rules that will be studied will be called statistical
inference rules since the argument for their reasonability will be based on their
statistical properties. The theory we are going to develop is a metatheory of
statistical reasoning.

4.2.1 Definition. Let Σ = 〈Σ,R, P 〉 be a probability space and let V be a
set of real numbers. Let U = 〈U,Q1, . . . Qn〉 be a Σ-random V -structure of type
〈1, . . . , 1︸ ︷︷ ︸

n−times

〉 (cf. 2.4.5). U is regular if the following conditions hold:

(0) U is recursive, possibly infinite, set of natural numbers.

(1) Each Q(o, ·), as a function from Σ to V , is a random variate.

(2) For any sequence o1, . . . , om of elements from U the sequence of n-dimensiona,
random variates

{〈Q1(o1·), . . . , Qn(oi, ·)〉} i = 1, . . . , m

is stochastically independent. For each o ∈ U , the variate Qi(o, ·) is denoted
by Vio.

4.2.2 Discussion. The notion of a regular random structure is our formalization
of the informal notion “the theoretical universe of discourse”. The condition 0
is technical; it is useful for considerations concerning computability. The second
condition, (1) enables us to define probabilities concerning different outcomes of
the experiments; the fact that the Qi(o, ·) are random variates makes it possible
to use induced probability measures (cf. 4.1.6). The last condition is adequate
for many real situations in which the properties of one object are independent of
the other (e.g., in series of independent experiments). Note that there are situa-
tions in which this condition is not satisfied. We restrict ourselves to structures
satisfying 2 for the sake of simplicity. Note that our formalism is related to the
formalism sketched by Suppes [1962].

4.2.3 Definition. The distribution function on the n-dimensional random vari-
ate V0 = 〈V1o, . . . ,Vno〉 will be denoted by DV1o,...,Vno or DVo

. (It is usually called
the joint distribution function of random variates V1o, . . . ,Vno; by definition, it is
a function from Rn to [0, 1].

4.2.4 Definition. A regular Σ-random V -structure U is d-homogeneous (distri-
bution homogeneous) if the joint distribution function DV1o,...,Vno is independent
of o (i.e., for any o1, o2, DVo1

= DVo2
). Then we denote DV1o,...,Vno as DU .
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4.2.5 Remark

(1) If a regular Σ-random V -structure is d-homogeneous we can say that all
objects in U are equivalent with respect to the probabilistic properties of
random quantities. Hence, probabilistic conclusions based on finite subsets
of U will be independent of the particular choice of a finite subset. But it
then may be dependent on its cardinality.

(2) Consider a sequence o1, . . . , om of objects. Under the condition of d-homoge-
neity and regularity, sequences of the form 〈Vo1 , . . . ,Vom〉 are usually called
sequence of independent identically distributed (i.i.d.) random variates.

4.2.6 Remark. A sequence of objects o = 〈o1, . . . , om〉 generates an n × m-
dimensional random variate

V = 〈V1o1 , . . . ,Vno1 ,V1o2 , . . . ,Vnom〉
Under the assumption of d-homogeneity, the joint distribution function of this
random variate is determined by the n-dimensional joint distribution function of
the random variate V0 = 〈V1o, . . . ,Vno〉, where o is an arbitrary object from U .
(I.e.,

DV(x11, . . . , xn1, x12, . . . , xnm) =
m∏

i=1

DV0
(x1i, . . . , xni) .

Thus, we see that the joint distribution function is independent of o (and thus of
M = {o1, . . . , om}). In the remainder of Chapter 4 we shall restrict ourselves to
d-homogeneous structures (for the sake of convenience only).

4.2.7 Discussion and Definition. Let U be a regular random structure of
type t = 〈1, . . . , 1〉. Let M be a finite subset of U (a sample) and let σ be a
random state. Remember the definition 2.1.6 of the structure Mσ determined
by M and σ. Structures of the form Mσ are finite V -structures, (V -structures
with finite domain).

Let M ∈MV iff M is a V -structure of type t and the domain of M is a set of
natural numbers (2.1.4). We shall pay much attention to mappings f : MV → V .
In general it has no meaning to ask whether such an f is recursive since MV

can be uncountable and therefore its elements cannot be coded by words. The
situation is clear if V = Q (rationals); it is obvious how to encode MQ and what
we mean by saying that a function f : MQ → Q is recursive. More generally,
if V is a recursive set of rationals then we call f : MV → V recursive if it is a
restriction of a recursive mapping f̂ : MQ → Q.

In general (V is an arbitrary set of reals) we shall work with rational elements
of MV (i.e. elements of MV ∩Q) as approximations of structures from MV. This
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is justified by the fact that if an M is the result of some measurement then the
numbers we are dealing with are rational.

We have two requirements: (a) each structure from MV should be approx-
imable by structures from MV ∩Q; (b) V ∩Q should be a recursive set of rationals.
(then having a function f : MV we can ask whether its restriction to MV ∩Q is
recursive in the above sense.) This leads to the notion of a regular set of values.

4.2.8 Definition

(1) (Auxiliary.) Let V ⊆ R and x ∈ R. We call x a boundary point of V if each
open interval containing x intersects both V and R− V .

(2) A set V is a regular set of values if (a) all boundary points of V are rational
and (b) the set V ∩Q is a recursive set of rationals.

4.2.9 Remark. Assumption (a) means that if x is irrational then either a whole
open interval containing x is in V (hence, all sufficiently close rational approxi-
mations of x are in V ) or such an interval is in R− V .

Examples of regular sets: N, R, intervals of an arbitrary kind with rational
end-points, finite unions of such intervals, etc. Examples of non-regular sets: Q,
intervals with irrational end-points, Cantor’s discontinuum.

4.2.10 Theorem

(1) Regular sets form a field of sets.

(2) If V is regular set then V ∩ Q is dense in V , i.e., if x ∈ V then each open
interval containing x contains some rational elements of V .

(3) If V1, V2 are regular then V1 6= V2 implies V1 ∩Q 6= V2 ∩Q.

(4) Each regular set is Borel.

Proof:

(1) Denote the system of all regular subsets of R by A. Then R ∈ A. If
X ∈ A then its complement Xc has only rational boundary points and
Q ∩Xc = Q− (Q ∩X) is recursive. This is similar for the union.

(2) Note that each irrational point of a regular set X is an interior point of X.

(3) Easy from (2).
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(4) Each regular set X can be decomposed as follows:

X = (X −Q) ∪ (X ∩Q) ;

X −Q is open and hence Borel, X ∩Q is clearly Borel.

4.2.11 Example and Discussion. In accordance with Section 4 of Chapter 2
we consider theoretical sentences, i.e. sentences of a theoretical function calculus.
For simplicity, we restrict ourselves to two-valued theoretical sentences, i.e. the-
oretical sentences Φ such that, for each random structure U (of the appropriate
type) either ‖Φ‖U = 1 or ‖Φ‖U = 0. As usual, we write U |= Φ for ‖Φ‖U = 1.

We can now give an example of statistical inference. Roughly, the inference
has the following form: We have two theoretical sentences Φ and Ψ; we have
accepted Φ (and called Φ the frame assumptions) and we ask whether we should
accept Ψ. To decide this question we first fix a set V0 ⊆ V of designated values
and a function f associating with each structure Mσ (M ∈ Pfin(U), σ ∈ Σ) a
value f(Mσ) ∈ V . Then we make observations (get a particular structure Mσ)
and compute f(Mσ); if f(Mσ) ∈ V0 we accept Ψ (and if f(Mσ) 6∈ V0 we do not
claim anything as concerns Ψ).

This procedure is justified in statistics by choosing f and V0 such that the
following holds: For each Σ-random V -structure U , satisfying Φ, if U 6|= Ψ then
the probability P ({σ; f(Mσ) ∈ V0}) is small (say, less that 0.05 or whatever value
we wish). Hence assuming U |= Φ and verifying f(Mσ) ∈ V0 for our observed
Mσ, if Ψ were not true in U then our observation Mσ would be very improbable
(since f(Mσ) ∈ V0 would be improbable). Hence, we accept Ψ.

Three very important questions arise:

(a) Is the probability P ({σ; f(Mσ) ∈ V0}) well-defined (at least under the
condition U |= Φ and U |= Ψ)?

(b) How is our reasoning affected by the fact that our observation is approxi-
mate, i.e., that we restrict ourselves to rational structures?

(c) can we really compute f(Mσ), i.e., is f computable in some sense?

Note also the following paradox. Let f1, f2 be two functions fromMV
M into V .

Let f1 ¹ MV ∩Q
M = 1, f2 ¹ MV ∩Q

M = 0 and f1 ¹ MV−Q
M = f2 ¹ MV−Q

M . Moreover,
let V0 = {1}. Under some conditions (continuity of distributions on MV

M) both
these functions can have the same probabilistic properties, i.e. they both can
fulfill the above rationality criterion (and some optimality conditions; see below).
But using f1 we accept Ψ in every case and using f2 we never accept Ψ.

How can we prevent this situation?
These questions lead us to some further assumptions concerning f and V0

formulated below. First, we need some auxiliary definitions and notations.
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4.2.12 Definition (1) Consider a finite set M of natural numbers and let MV
M

be the set of all V -structures type 〈1n〉 with field M . In particular, note that
each Mσ (σ ∈ Σ) is in MV

M . Convert MV
M into a metric space, putting, for

M1 = 〈M, f1, . . . , fn〉 and M2 = 〈M, g1, . . . , gn〉,

ρ(M1,M2) = max {|fi(o)− gi(o)|; o ∈ M, i = 1, . . . , n}
It is routine to show that ρ is a metric.

4.2.13 Definition. A mapping f : MV → V is a continuous computable statistic
(cc-statistic; or, if no confusion can arise, only statistic) if the following conditions
hold:

(a) f is invariant under isomorphism, i.e., if M1, M2 are isomorphic then
f(M1) = f(M2).

(b) For each M , the function f ¹ MV
M is continuous.

(c) The function f ¹ MV ∩Q is a recursive mapping of MV ∩Q into V ∩Q.

4.2.14 Theorem. Let U be a regular d-homogeneous random structure. If f is
a cc-statistic then:

(1) For each sample M , the function fM defined by the equality fM(σ) = f(Mσ)
is a random variate.

(2) If M and N are two samples of the same cardinality then DfM
= DfN

.

Proof. Use the fact that continuous functions are measurable (see Problem 5) (2)
is a consequence of 4.2.6 (see Problem 6).

4.2.15 Discussion

(1) Assumption (a) in Definition 4.2.13 is very natural: It guarantees that the
value depends only on the structure but not on the particular samples.
Assumption (b) in 4.2.13 corresponds to our questions 4.2.11 (a) and (b):
First, it guarantees that small changes of values in a model M cause only
a small shift of f(M). Secondly, it follows from 4.2.14 that if M ⊆ U ,
where U is a Σ-random V -structure (obviously regular), then for each V0

Borel (in particular, for each V0 regular; cf. 4.2.10) {σ ∈ Σ; f(Mσ) ∈ V0}
has a probability, i.e. P ({σ ∈ Σ; f(Mσ) ∈ V0}) is defined. Finally, as-
sumption (c) of 4.2.13 answer our question 4.2.11 (c): whenever we have a
rational-valued structure M (which is a finite structure) we can calculate
f(M) since f (restricted to such structures) is recursive. For notions of
computable of real variables see [Pour-El 1975].
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(2) Finally, it is easy to see that if1, f2 are cc-statistic then the paradoxical
situation described at the end of 4.2.11 cannot occur. Definition 4.2.13 can
be generalized for k-dimensional statistics, i.e. mapping on MV into V k.

(3) The notion of cc-statistic covers, in fact, almost all statistics used in classical
statistics or they can be transformed to the multidimensional cc-statistics.
For example, consider the usual Student test statistic T or the correlation
coefficient r. The pairs 〈T 2, sign T 〉 and 〈r2, sign r〉 are cc-statistic.

Note that to cover rank statistic, considered in the next chapter, we shall
have to generalize the notion of a cc-statistic to the notion of an almost
continuous computable statistics.

4.2.16 Remark. We are now going to investigate the question what is the
relation of the notion of a cc-statistic to observational languages. More precisely,
we ask whether the notion of cc-statistic can be used for the construction of
particular observational function calculi. First we answer this question under
the assumption V ⊆ Q (V a regular set of values, e.g., V = N or V = {0, 1}).
This radically simplifies the situation since then the question of approximation
(4.2.11 (b)) is superflous. Note that in Section 4 amd 5 of the present chapter
we shall deal with various sets V ⊆ Q

4.2.17 Theorem. Let V ⊆ Q be a regular set of values and let f : MV → V be
a cc-statistic. Then there is an OFC with the abstract values V and with MV

as the set of models in which f is nameable, i.e. there is a sentence ϕ such that
f(M) = ‖ϕ‖M for each M ∈MV .

Proof. The simplest thing we can do is to take the calculus F with no junctors
and one quantifier q whose associated function is f . The desired sentence is
(qx)(F1x, . . . , Fnx). F is observational since f is recursive.

4.2.18 Remark. If V  Q we can construct the calculus F as described in the
proof of 4.2.17 but we cannot claim that F is observational since it can have “too
many” models. But the restriction of F to V ∩ Q (in the obvious sense) is an
observational calculus. Hence we give the following definition:

4.2.19 Definition. Let V be a regular set of values and let F be a function
calculus with n unary function symbols whose set of values is V and whose set
of models is MV . F is pseudo-observational if the following holds:

(1) For each k-ary junctor ι of F , Asf o maps (V ∩Q)k into V ∩Q;

(2) For each quantifier q of type t, if Asfq(M) is defined and M is rational-
valued then Asfq(M) ∈ Q .
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(3) Let F0 be the restriction of F to V ∩Q – i.e. values are restricted to V ∩Q,
models are restricted to elements of MV ∩Q and associated functions are
appropriately restricted. Then F0 is observational.

4.2.20 Theorem. Let V be a regular set of abstract values and let f : MV → V
be a cc-statistic. Then there is a pseudo-observational calculus F in which f is
nameable (in the sense of 4.2.17).

The proof is obvious from the preceding.

4.2.21 Theorem. Let V be a regular set of values and let F0 be an OFC
whose set of values is V ∩ Q and whose set of models is MV ∩Q. Let ϕ be a
sentence of F0. If there is a cc-statistic f : MV → V such that ‖ϕ‖M = f(M)
for each M ∈ MV ∩Q then f is determined uniquely by ϕ, i.e. for each statistic
g : MV → V satisfying ‖ϕ‖M = g(M) for each M ∈MV we have f = g.

Proof. Use the continuity condition and the fact the regularity of V implies
V ∩Q to be dense in V , so that MV ∩Q

M is dense in MV
M w.r.t. the metric ρ.

4.2.22 Discussion

(1) We shall deal with richer calculi in which statistics are nameable; in par-
ticular, the methods described in Part II make use of various junctors.

(2) Remember 4.1.1 where we claimed that each observational procedure has
two sorts of properties – (1) probabilistic and (2) logical and computational.
How is this claim related to our investigation of statistical inference? As-
sume that we have a theoretical calculus F̂ with the set SentT of sentences
and random V -structures as models and a pseudo-observational calculus F
with the set Sent0 of sentences and MV as the set of models; let F0 be the
restriction of F to V ∩Q (F0 is an OFC with the same sentences as F).
The above consideration lead to statistical inference rules I consisting of
pairs Φ,ϕ

Ψ
where Φ, Ψ ∈ SentT and ϕ ∈ Sent0. We have an observational

procedure consisting of the evaluation of ‖ϕ‖M for various observational M .

Probabilistic properties of this procedure concern the relation of F̂ and F .
In particular, one has the rationality criterion as expressed in 4.2.11: I is
V0-rational only if for each theoretical U such that U |= Φ&¬Ψ and for each
sample M the probability P (‖ϕ‖Mσ

∈ V0) is small. Logico-computational
properties concern the calculus F0 (and its relation to F).

(3) In fact, rules of the form described in (2) are used in the following way: One
has accepted Φ and observed a sample M in a random state σ. Mσ need
not be rational; but observing M we cannot distinguish Mσ from a ratio-
nal approximation M ′

σ. We compute f(M ′
σ) (which is possible since f is

recursive on MV ∩Q); if f(M ′
σ) ∈ V0 then we accept Ψ (cf. 4.2.11).
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(4) To summarize, we ask what has been achieved by our considerations. We
claim the following:

(a) We have a logical analysis of statistical inference. “Logical” means
that statistical inference takes the form of inference rules containing
theoretical and observational sentences. The semantic of both kinds
of sentences have been clarified and some rationality criteria for the
rules have been formulated.

(b) In particular, we have related cc-statistics with some quantifiers in
observational function calculi. Thus various statistics used in practice
lead to particular OFC’s whose logical properties have been and will
be further investigated (Chapter 3, Section 4.5 and other places).

We close the present section with an example.

4.2.23 Example. Consider universes of the form 〈U,Q〉. (Think of the popula-
tion of all marigold seeds which were influenced by gamma rays and a possible
mutation.)

Let Φ (frame assumption) say the following: U is d-homogeneous and Vo =
Q(o, .) has an alternative distribution, i.e., it can attain only two values 0 and 1;
1 with probability p and 0 with probability 1 − p, where p ∈ [0.5, 1). U |= Φ
implies that U = 〈U,Q〉 is a {0, 1}-structure. Consider a theoretical sentence Ψ
which means: Vo has the alternative distribution with p > 0.5. ¬Ψ then implies
p = 0.5; i.e., probabilities of zeros and ones are equal. Thus, if Q is a mutation,
then p = 0.5 says that the probability that a marigold will possess the mutation,
Then p = 0.5; the chance of having or not having the mutation is equal. If p > 0.5
then the chance of having the mutation is greater.

We suppose that U is d-homogeneous; then the joint distribution function
of 〈Vo1 , . . . ,Vom〉, for any sequence o, is independent of o. Mσ here has the form
〈M ; Q(., σ)〉, where Q(., σ) is a column of zeros and ones. The function f can be
defined as the number of ones in this column. As we know from Problem (3e)
for a given M with card (M) = m, U |= Φ implies that fm =

∑
o∈M

Vo has the

binomial distribution function, i.e., P (fM = k) =

(
m
k

)
pk(1− p)m−k.

Now let the cardinality m be fixed; say m = 5. We have only five plants at
our disposal. Take V0 = {5} and an observational sentence ϕ = ΣF (quantifier
of the sum, i.e., if M = 〈M, g〉 then ‖ϕ‖M =

∑
o∈M

g(o).) Then the probability

P ({σ; ‖ϕ‖Mσ
∈ V0}) = P (fM = 5) = 0.55 = 0.031. Now if Mσ0

is our observation
and ‖ϕ‖Mσ0

∈ V0 then we infer Ψ.

4.2.24 Key words: regular random V -structures, d-homogenity, regular sets of
values, continuous computable statistics, pseudo-observational function calculi,
statistical inference rules, frame assumptions, rationality criteria.
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4.3 The form of theoretical sentences and

inference rules

4.3.0 To explain the sense of statistical inference rules more thoroughly we have
to be more specific as to the form of theoretical sentences. We shall do this and
then make a review of some common statistical rules. It will clarify the rationality
conditions used in statistics.

4.3.1 Definition and Discussion. For any regular d-homogeneous random
V -structure U let DU be the joint distribution function of

Vo = 〈V1o, . . . ,Vno〉 for an o ∈ U .

A theoretical sentence Φ is called distributional if U |= Φ and DU = DU ′

implies U ′ |= Φ for any U , U ′. Note that Φ is distributional iff there is a system
DT = {Dt; t ∈ T} such that U |= Φ iff DU ∈ DT (i.e., there is a t ∈ T such that
DU = Dt). Iff DT has this property we shall express Φ informally by D ∈ DT .

Statistical inference rules consist, in general, of some pairs of the form

D ∈ DT , A

D ∈ DT ′
,

where A is a finite set of observational sentences and T ′ is a proper subset of T .

4.3.2 Remark and Convention. Let f be a cc-statistic; consider, all Σ-random
V -structures with a fixed domain U . Let M ⊆ U be a sample and let V0 ⊆ V be
a regular set of values. Then the set {σ; f(Mσ) ∈ V0} depends on the random
structure on U . We should write {σ; f(MU

σ ) ∈ V0} where U varies over all
random structures with the domain U . But, evidently, if DU1 = DU2 then the
probabilities P ({σ; f(MU1

σ ) ∈ V0}) and P ({σ; f(MU2
σ ) ∈ V0}) are equal and we

denote the common value by P (fM ∈ V0|D0), where D0 denotes the distribution
function D0 = DU1 = DU2 . If we let D0 vary over a system DT = {Dt; t ∈ T}
then P (fM ∈ V0|Dt) becomes a function of t.

The same holds for the moments of the random variate fM ; the random variate
itself is determined by the choice of a particular U but its moments depend only
on DU . Hence, if we let DU vary over DT the moments become functions of t
and we write E(fM |Dt) and VAR(fM |Dt) for the expectation and variance of fM

respectively.
We shall write E(ϕ), VAR(ϕ) instead of E f , VAR f , where f is a statistic

named by ϕ.

4.3.3 General survey of statistical inference rules. First we must point
out that even if some of the following inference rules seem to be identical, they
differ in the metatheoretical criteria imposed on them.
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For the sake of convenience, let us make the following assumptions:

(1) The considered type is 〈1〉; our structures have the form 〈U,Q1〉,
(2) Dt is a system of distribution functions with T ⊆ R,

(3) our observational language contains (at least): (a) the binary junctors =
and≤ whose associated functions are the characteristic functions of equality
and the less-than-or-equal-to relation (such that if ϕ, ψ are sentences then
‖ϕ = ψ‖M = 1 iff ‖ϕ‖M = ‖ψ‖M , etc.) and (b) for each t ∈ V ∩ Q its
name – a nullary junctor ṫ such that ‖ṫ‖M = t for each M .

We now briefly describe three types of statistical inference:

(1) Estimation (for a particular example see Problem (7)):

D ∈ DT , (ϕ = ṫ)

D = Dt

Here ϕ names a statistic, V0 is {1}. So we estimate the index of the dis-
tribution function D by the value ‖ϕ‖M (estimate), i.e., we determine one
particular distribution function (ϕ is called the estimator). The criteria
here are, e.g., the following (for each t ∈ T ):

(a) E(ϕ|Dt) = t,

(b) VAR(ϕ|Dt) is as small as possible.

Remember that if f is a statistic such that f(M) = ‖ϕ‖M for M ∈ MV ∩Q

then, by the strong law of large numbers, we see that if we consider a se-
quence of disjoint samples M1,M2, . . ., we have (a.s) lim

n

1
n
fMn = t (cf. Prob-

lem (5) of Chapter 8).
Let us note that this is the reason why estimates obtained by an estima-
tor fulfilling (a) can be pooled, i.e., we can use the number 1

n
‖ϕ‖Mn

as an
estimate.

(2) Identification. Let T = {t1, . . . , tk}. Consider inference rules having the
form:

D ∈ DT , ϕ1

D = Dt1

, . . .
D ∈ DT , ϕk

D = Dtk

The sentences ϕ1, . . . , ϕk name some statistics f1, . . . , fk such that, for each
M ∈MV , fi(M) ∈ V0 for exactly one i. If, for a U , DU = Dti and if for our
observed Mσ we obtain fj(Mσ) ∈ V0 for a j 6= i then we make an erroneous
inference. Thus our criterion is that the probabilities of the errors, i.e.,
P ({σ; fi,M(σ) ∈ V0}|Dtj) (i 6= j) be as small as possible (even if perhaps
unknown).
In particular, in the case k = 2, the probabilities P ({σ; ‖ϕ2‖Mσ

∈ V0}|Dt1)
and P ({σ; ‖ϕ1‖Mσ

∈ V0}|Dt2) are to be as small as possible.
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(3) Simple hypothesis testing. Consider a rule of the form

D ∈ DT , ϕ

D = Dt2

(supposing T = {t1, t2})

The situation is like (2) for k = 2 but have two possible errors are treated
asymmetrically; one error is supposed to be substantial, namely ‖ϕ‖Mσ

∈ V0

under the assumption D = Dt1 . This error is called an error of the first
kind (which error is substantial is the question of the actual meaning of the
theoretical sentences); the error ‖ϕ‖Mσ

6∈ V0 under the assumption D = Dt2

is called an error of the second kind (as opposed to (2), for k = 2, we do not
make any inference if ‖ϕ‖M 6∈ V0 ; thus, this error signifies that no inference
is made under the assumption that the conclusion, i.e. D = Dt2 , is true).
An error of the first kind is substantial, so we require the probability

P ({σ; ‖ϕ‖Mσ
∈ V0}|Dt1)

to be bounded from above by a small positive number α given in advance.
Under the condition P ({σ; ‖ϕ‖Mσ

∈ V0}|Dt1) ≤ α we require
P ({σ; ‖ϕ‖M 6∈ V0}|Dt2)to be as small as possible.

4.3.4 More on hypothesis testing. Consider, for the sake of convenience, only
a single quantity Q; then we have for each o ∈ U a variate V0 = Q(o, .). Now
let T1, T2 be two disjoint subsets of T . The sentence D ∈ DT1 will be called the
null hypothesis, D ∈ DT2 will be called the alternative hypothesis. We consider
inference rules of the following form:

(∗) D ∈ DT , ϕ

D = DT2

If D ∈ DT has been accepted and if ‖ϕ‖Mσ
∈ V0 for our observation Mσ, we infer

D ∈ DT2 , i.e., we accept the alternative hypothesis (we reject the null hypothe-
sis). The observational sentence ϕ has to fulfill some conditions guaranteeing the
reasonability of our inference.

4.3.5 Definition. Let α ∈ (0, 0.5]. An observational sentence naming a cc-
statistic f and used in an inference of the form (*) is called an observational
test for the null hypothesis D ∈ DT1 and alternative hypothesis D ∈ DT2 on the
significance level α if

P ({σ; fM(σ) ∈ V0}|Dt) ≤ α

for each t ∈ T1 (independently of the cardinality of the sample M).
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If ϕ is an observational test and if M is a sample then the function BM(ϕ, t) =
P ({σ; fM ∈ V0}|Dt) is called the power function of ϕ (w.r.t. M). According
to 4.3.2, this is a well-defined function. Note that (under our assumption of d-
homogeneity) BM(ϕ, t) does not depend on the particular choice of M but only
on the cardinality of M . Hence, we can write Bm(ϕ, t) instead of BM(ϕ, t) for
card M = m.

We want Bm(ϕ, t) to be as large as possible for t ∈ T2 under the condition
Bm(ϕ, t) ≤ α for t ∈ T1. (For t ∈ T2, Bm(ϕ, t) is the probability of inferring the
alternative hypothesis D ∈ DT2 under the assumption that D = Dt.)

Now let T1, T2 be given. Suppose that Φα is a class of observational tests
(on the level α) for D ∈ DT1 and D ∈ DT2 . A test ϕ0 is called uniformly most
powerful w.r.t Φα if ϕ0 ∈ Φα and for each ϕ ∈ Φα and each t ∈ T2 we have
Bm(ϕ0, t) ≥ Bm(ϕ, t) independently of m.

4.3.6 Example. (Continuation of 4.2.23). The power function of the test ϕ =
ΣF (assuming m = 5 and V0 = {5}), is B5(ϕ, p) = p5; e.g., for p = 0.7 (i.e., we
consider a single alternative hypothesis p = 0.7) B(ϕ, 0.7) = 0.19. We see that
the probability of not inferring the alternative hypothesis under the condition
that this alternative hypothesis holds is rather large (1 − B(ϕ, 0.7) = 0.81) and
cannot be decreased for the given cardinality of samples (m = 5). Hence, if we
want to have more powerful procedures, we have to use larger samples.

4.3.7 Remark

(1) Note that we do not suppose T1 ∪ T2 = T ; so that there is a theoretical
sentence D ∈ DT3 , where T3 = T − (T1 ∪ T2). We construct our tests
not taking into consideration the errors under the assumption D ∈ DT3 ; if
T3 6= ∅ then we should know that D ∈ DT3 is rather unlikely and/or that
the errors under the assumption D ∈ DT3 have little importance.

(2) In mathematical statistics larger classes of functions are considered as tests;
in general, only measurability is demanded. Our restriction concerning the
notion of a statistic as introduced in 4.2.13 is due to our emphasis on
observationality. Hence, if we use the results of mathematical statistics,
observationality must be additionally verified.

(3) Note that, if a test (in the common statistical sense) is uniformly most
powerful and if it is based on a cc-statistic in our sense and on a regular set
of values V0, we can conclude that this test is the uniformly most powerful
observational test in the sense of 4.3.5.

(4) The construction of uniformly most powerful tests is in many cases impos-
sible. Then the class of considered tests should be restricted. Probably, the
most natural condition for all cases is the following:
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Bm(ϕ, t) ≥ α for each t ∈ T2 and m ∈ N ,

i.e., the probability of the acceptance of the alternative hypothesis under
the assumption D = Dt is larger than α. Such a test is called unbiased.
One can define observational tests directly as unbiased (and so obtain –
as opposed to our more general definition – a condition concerning the
alternative hypothesis in the definition).

4.3.8 Definition and Remark

(1) In many cases the weaker notion of an asymptotical observational test is
useful:
Consider a statistic f . If there is a variateW such that, for any (strictly) in-
creasing sequence M1 ⊂ M2 ⊂ . . . of samples, D ∈ DT1 implies (d) lim

i
fMi

=

W and P (W ∈ V0) ≤ α, then f is an asymptotical observational test.

(2) Under our assumption of d-homogeneity it is sufficient to prove (d) lim
i

fMi
=

W and P (W ∈ V0) ≤ α, under the assumption D ∈ DT1 for one particular
sequence of samples.

(3) For practical purposes, the speed of convergence has to be considered: only
if the approximation is rather good can the asymptotical test be used.
The investigation of these properties is a very interesting area of computer
simulation, but it is beyond the scope of our book.

4.3.9 Keywords: Distributional sentences and statistical theoretical sentences.
Types of statistical inference: estimation, hypothesis testing, observational tests,
error of the first kind, significance level, power function asymptotical observa-
tional tests.

4.4 Observational predicate calculi based on sta-

tistical procedures

4.4.0 We are now interested in random variates taking only the values 0 and 1.
Hence, consider regular Σ-random {0, 1}-structures. We restrict ourselves to
d-homogeneous structures. If U = 〈U,Q1, . . . , Qn〉 is such a structure then each
σ ∈ Σ and each non-empty finite M ⊆ U determines the {0, 1}-structure Mσ. Our
aim is to study some tests used in statistical hypotheses testing concerning {0, 1}-
valued random quantities and build up various monadic observational predicate
calculi in which these tests can be appropriately named.
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Let 〈1n〉 be a fixed type. Each OPC of this type will contain n unary pred-
icates P1, . . . , Pn and, say, the classical connectives &, ∨, →, ¬. Hence the
notion of open formulae is fixed in advance. We shall be particularly interested
in designated open formulae, i.e. open formulae containing no variable except the
designated variable x. Designated open formulae can be abbreviated by omitting
the variable x at all occurrences, e.g. P1x& ¬P2x is abbreviated as P1& ¬P2.

On the other hand, if we want to speak of state dependent {0, 1}-structures
we use state dependent predicate calculi. A state dependent predicate calculus of
type 〈1n〉 has the same predicates P1, . . . , Pn; we define designated open formulae
as open formulae containing no variable except x and the state variable s. Desig-
nated open formulae can be abbreviated by omitting x and s at all occurrences;
e.g. P1(x, s)& ¬P2(x, s) is abbreviated as P1& ¬P2. In this way we identify des-
ignated open formulae of any OPC of type 〈1n〉 and designated open formulae
of any state dependent predicate calculus of the same type. In particular, if ϕ is
such a formula and M is an observational model then ‖ϕ‖M is the mapping of M
into {0, 1} defined in accordance with 2.2.6; if U is a state dependent {0, 1, }-
structure then ‖ϕ‖U is the mapping of U × Σ into {0, 1} defined in accordance
with 2.4.6. For each o ∈ M , ‖ϕ‖M [o] ∈ {0, 1} and for each o ∈ U , ‖ϕ‖U [o] is a
state dependent variate: ‖ϕ‖U [o] : Σ → {0, 1}.

Let us make the convention that as models of our monadic calculus we have
exactly all the {0, 1}-structures (of the given type) whose domain is a finite set
of natural numbers (i.e. the set of all models in M{0,1}). What is not given in
advance are quantifiers (and their associated functions) of our monadic observa-
tional predicate calculi. In fact, the considerations of this section will lead us
to some definitions of particular quantifiers. (Logical properties of the classes of
such quantifiers were considered in Chapter 3, Sections 1, 2.)

4.4.1 Notation

(1) Let U = 〈U,Q1〉 be a d-homogeneous random {0, 1}-structure. Then the
probability of success for U is the probability pU = P ({σ; Q1(o, σ) = 1})
where o is an arbitrary element of U (by d-homogeneity, pU is independent
of the choice of o and determines the alternative distribution of Q1(o,−)).

(2) If U = 〈U,Q1, . . . , Qn〉 is an arbitrary d-homogeneous random {0, 1}-structure
and if ϕ is a designated open formula then Uϕ denotes the structure 〈U, ‖ϕ‖U〉;
evidently, this is a d-homogeneous random {0, 1}-structure and we write pϕ

instead of pUϕ
if there is no danger of misunderstanding.

(3) More generally, if U is as in (2) and if ϕ1, . . . , ϕn are designated open
formulae then we put Uϕ1,...,ϕn

= 〈U, ‖ϕ1‖U , . . . ‖ϕn‖U〉; it is easy to show
that Uϕ1,...,ϕn

is d-homogeneous.

(4) In what remains of the present section “random structure” stands for “d-
homogeneous regular Σ-random {0, 1}-structure”.
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4.4.2 Lemma. Let U = 〈U,Q〉 be a random structure and let M ⊆ U be finite
non-empty. Put m = card(M). Then the variate WM defined by WM(σ) =
card{o ∈ M ; Q(o, σ) = 1} has the binomial distribution

P (W−1
M (k)) =

(
m
k

)
pk

U(1− pk
U)m−k

(independently of M).

Proof. See Problem (3e).

4.4.3 Remark. Without changing our present notion of observational models
({0, 1}-structures with finite domains) it is sometimes useful to extend the set of
abstract values {0, 1} to N (or even Q); then we are able to introduce various
useful quantifiers whose associated functions associate a natural rational number
with each model. In this case, the associated functions of the junctors &, ∨, ¬ are
extended arbitrarily for arguments different from {0, 1}. For example, consider a
quantifier m̂ (of type 〈1〉) with

Asfm̂ (〈M, f〉) =
card{o; f(o) = 1}

card(M)

(relative frequency). The sentences ϕ̂ = m̂(ϕ) then generate estimates for pϕ (in
the sense of 4.3.3 (1)).

Given U , ϕ and M ⊆ U , note that ‖ϕ̂‖M is a variate and E (‖ϕ̂‖M) = pϕ,
VAR(‖ϕ̂‖M) = 1

m
pϕ(1− pϕ) where m = card(M).

We shall now follow the usual method of the treatment of alternative exper-
iments (from the point of view of the construction of our appropriate monadic
observational predicate calculi). Let us begin with a useful lemma.

4.4.4 Diagonal lemma. Let U be a random structure and let M ⊆ U be a sam-
ple; put m = card(M). Let g(Mσ) be a statistic taking values from {0, 1, . . . ,m}
and put

f(Mσ) = P ({τ ; g(M τ ) ≤ g(Mσ)})
(Imagine that it is desirable that g(Mσ) be large; then f(Mσ) measures the
probability that g is equal or worse then the observed value g(Mσ).) Then

P (f(Mσ) ≤ α) ≤ α .

Proof. We have

P ({σ; f(Mσ) ≤ α}) = P ({τ ; g(M τ ) ≤ g(Mσ)} ≤ α}) = P ({σ; g(Mσ) ∈ A}) ,

where A = {k ∈ {0, . . . , m}; P ({τ ; g(M τ ) ≤ k}) ≤}.
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Note that k′ ≤ k ≤ A implies k′ ∈ A, hence either A is empty (and then there
is nothing to prove) or, otherwise, putting k0 = max A we obtain P ({σ; g(Mσ) ∈
A}) = P ({σ; g(Mσ) ≤ k0}). But, by the definition of k0, we have P ({τ ; g(M τ ) ≤
k0}) ≤ α.

Hence, by renaming τ to σ, P ({σ; g(Mσ) ≤ k0}) ≤ α and the lemma follows.

4.4.5 Definition. Consider {0, 1}-structures of type 〈1〉. Define, for a given
structure M = 〈M, f〉,

kM = card{o; f(o) = 1} and mM = card(M) .

(If it does not lead to a misunderstanding we shall write k and m only.)
Let p be a real number, p ∈ (0, 1). We define two functions f

p
and fp on

{0, 1}-structures as follows:

(a) fp(M) =
k∑

i=0

(
m
i

)
pi(1− p)m−i ,

(b) f
p
(M) =

m∑

i=k

(
m
i

)
pi(1− p)m−i .

4.4.6 Remark

(1) f and f are functions of k, m, p; we shall sometimes write f p(m, k) and
f

p
(m, k).

(2) Observe that by 4.4.2, if U is random structure such that PU = p and
M ⊆ U , card(M) = m, then

f p(m, k) = P ({σ; kMσ
≤ k})

and

f
p
(m, k) = P ({σ; kMσ

≥ k}) .

(3) Note the relation of fp and f
p

with binomial distribution function

Dm(p, x) =
m∑

0≤i<x

(
m
i

)
pi(1− p)m−i .
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(4) f p and 1 − f
p

are (a) strictly decreasing in p, (b) continuous in p and

(c) for any k, m lim
p→0

f p(k,m) = lim
p→0

(1 − f
p
(k,m)) = 0 and lim

p→0
f p(k,m) =

lim
p→0

(1− f
p
(k, m)) = 1.

4.4.7 Lemma. Let U = 〈U,Q〉 be a random structure, let M ⊆ U be a sample
and let α be a real number, α ∈ (0, 1). Then (a) for pU ≥ p we have

P ({σ; fp(Mσ) ≤ α}) ≤ α

and (b) for pU ≤ p we have

P ({σ; f
p
(Mσ) ≤ α}) ≤ α .

Proof. (a) note that if pU ≥ p then f p(Mσ) ≤ α implies f pU
(Mσ) ≤ α hence

P ({σ; f p(Mσ) ≤ α}) ≤ P ({σ; fpU
(Mσ) ≤ α}) .

Use lemma 4.4.4. (b) can be proved similarly.

4.4.8 Remark. A dual form of the above lemma holds. Put α′ = 1 − α and
apply Lemma 4.4.4 to this α′. Then we obtain

P ({σ; fp(Mσ) > α}) ≥ α for pU < p

and

P ({σ; f
p
(Mσ) > α}) ≥ α for pU > p .

Moreover, the dual form can be proved with strict inequality.

4.4.9 Definition. For each rational α ∈ (0, 0.5] and p ∈ (0, 1) define the quan-
tifiers !p,α and ?p,α of type 〈1〉 with the associated functions

Asf?p,α (〈M, f〉) = 1 iff f p (〈M, f〉) > α

and

Asf !p,α (〈M, f〉) = 1 iff f
p
(〈M, f〉) ≤ α .

4.4.10 Theorem. Let U be a random structure. Consider a designated open
formula ϕ. Under our assumptions, Uϕ is a random structure with probability of
success pϕ. Let α and p ∈ (0, 1) be given.

Then !p,α(ϕ) is an observational test for the null hypothesis pϕ ≤ p (or, in
more detail, DV ∈ Dpϕ≤p) and the alternative hypothesis pϕ > p. Similarly,
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¬?p,α(ϕ) is an observational test of the null hypothesis pϕ ≥ p and the alternative
hypothesis pϕ < p.

Proof. The observationality of the quantifiers defined above is clear.
Let U be a regular d-homogeneous random {0, 1}-structure and assume the

null hypothesis, pϕ ≤ p. We have to prove P
(‖!p,α(ϕ)‖Mσ

= 1
) ≤ α. But

P
(‖!p,α(ϕ)‖Mσ

= 1
)

= P
(
f

p
(M

Uϕ
σ ) ≤ α

)
≤ α by Lemma 4.4.7.

4.4.11

(1) By 4.4.8 we know that the above mentioned tests are unbiased.

(2) We shall now define some quantifiers of type 〈1, 1〉 which belong to the class
of quantifiers studied in Chapter 3 (associated quantifiers) and will be used
in the methods of Chapter 7. The associationality (and implicationality) of
the defined quantifiers will be studied in Section 5.

4.4.12 Definition. consider {0, 1}-structures of type 〈1, 1〉. For such a structure
〈M, f1, f2〉 we denote

aM = card{o ∈ M ; f1(o) = 1 and f2(o) = 1} ,

bM = card{o ∈ M ; f1(o) = 1 and f2(o) = 0} ,

cM = card{o ∈ M ; f1(o) = 0 and f2(o) = 1} ,

dM = card{o ∈ M ; f1(o) = 0 and f2(o) = 0} ,

kM = card{o ∈ M ; f1(o) = 1} ,

lM = card{o ∈ M ; f1(o) = 0} ,

rM = card{o ∈ M ; f2(o) = 1} ,

sM = card{o ∈ M ; f2(o) = 0} ,

mM = card{o ∈ M} .

If there is no danger of misunderstanding we shall only write a, b, c, d, k, l,
r, s, m.

(1) The quantifier ⇒?
p,α of type 〈1, 1〉 with the associated function

Asf⇒?
p,α

(〈M, f1, f2〉) = 1 iff fp(a, k) > α

is called the suspicious p-implication quantifier (on level α).

(2) The quantifier ⇒!
p,α of type 〈1, 1〉 with the associated function
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Asf⇒!
p,α

(〈M, f1, f2〉) = 1 iff f
p
(a, k) ≤ α

is called the likely p-implication (on level α).

Before examining the statistical meaning of these quantifiers we have to in-
troduce the notion of conditional probability. We shall restrict ourselves to a
particular case sufficient for our purposes.

4.4.13 Definition. Let V1, V2 be two variates such that for their ranges we
have |V1| ⊆ {0, . . . , n1} and |V2| ⊆ {0, . . . , n2}. The joint distribution of V1, V2

is then given the probabilities pij = P (V−1
1 (i) ∩ V−1

2 (j)) for i = 0, . . . , n1 and
j = 0, . . . , n2. The distribution of V1 is given by the probabilities pi. = P (V−1

1 (i))

for i = 0, . . . , n1. (Note that pi. =
n2∑

j=0

pij.) The same holds for V2(p.j). Suppose

that, for each j = 0, . . . , n2, p.j > 0. The conditional distribution of V1 relative
to V2 is then given by the conditional probabilities defined as follows:

P (V−1
1 (i)/V−1

2 (j)) = pij/p.j

4.4.14 Lemma. Denote Ai = V−1
1 (i) and Bj = V−1

2 (j). Then (1)

P (Ai/Bj) = P (Ai ∩Bj)/

n1∑
i=1

P (Ai ∩Bj)

and (2)

P (Ai) =

n2∑
i=1

P (Ai/Bj)P (Bj) .

Proof. Note that
ni∑

i=1

P (Ai ∩Bj) = P (Bj).

4.4.15 Remark. P (V−1
1 (i)/V−1

2 (j)) is then the probability of the event V−1
1 (i)

(i.e., V1 = i) under the assumption that V2 = j. If U is a random structure, V1

is ‖ϕ1‖U [o] and V2 is ‖ϕ2‖U [o], then pU
ϕ2,ϕ1

denotes the conditional probability

P (V−1
2 (1)/V−1

1 (1)) = P (‖ϕ2‖U [o] = 1/‖ϕ1‖U [o] = 1) .

It follows from the d-homogeneity of U that the above probability does not depend
on o.

In the sequel, for each number p we denote by pϕ2/ϕ1 ≥ p the theoretical

sentence true in a random structure U iff pU
ϕ2/ϕ1

≥ p, i.e., U |= pϕ2/ϕ1 ≥ p, iff

pU
ϕ2/ϕ1

≥ p. The same holds for < instead of ≤.
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4.4.16 Theorem. Consider two open designated formulae ϕ1, ϕ2. Then the
sentence ϕ1 ⇒!

p,α ϕ2 is an observational test (on the level α) for the null hypothesis
pϕ2/ϕ1 ≤ p and the alternative hypothesis pϕ2/ϕ1 > p.

Similarly ¬(ϕ1 ⇒?
p,α ϕ2) is a test for the null hypothesis pϕ2/ϕ1 ≥ p and the

alternative hypothesis pϕ2/ϕ1 < p.
For the proof see Problem (8).

4.4.17 Discussion. The meaning of the theoretical sentence pϕ2/ϕ1 > p is (as-

suming that p is close to 1): ϕ2 is “quasi-implied” by ϕ1. Here the value pU
ϕ2/ϕ1

,
measures the quality of this “quasi-implication” in U .

We have some inductive inference rules. Let Φ0 be theoretical sentence sum-
marizing our frame assumptions: U |= Φ0 iff U is a d-homogeneous Σ-random
{0, 1}-structure.

First, consider a rule consisting of some pairs of the form

Φ0, ϕ1 ⇒!
p,α ϕ2

pϕ2/ϕ1 > p

The probability of an erroneous inference (i.e., the probability
P

(‖ϕ1 ⇒!
p,α ϕ2‖Mσ

= 1
)

under the assumption pU
ϕ2/ϕ1

≤ p; (cf. 4.4.16) is small (≤
α). So if we have ‖ϕ1 ⇒!

p,α ϕ2‖Mσ
= 1 for the observed Mσ then the assertion

pϕ2/ϕ1 > p is relatively reliable. On the other hand, assume pU
ϕ2/ϕ1

> p; then we

cannot say anything about the probability P
(‖ϕ1 ⇒!

p,α ϕ2‖Mσ
= 1

)
i.e., about

the probability that we shall actually assert pϕ2/ϕ1 > p.
On the other hand, if we have a rule of the form

Φ0, ϕ1 ⇒?
p,α ϕ2

pϕ2/ϕ1 ≥ p

then the situation is dual, i.e. this is not a case of hypothesis testing in the sense
of 4.3.4: We know that if U |= pϕ2/ϕ1 ≥ p then the probability

P
(‖ϕ1 ⇒?

p,α ϕ2‖M = 1
) ≥ 1− α ;

i.e. the probability that pϕ2/ϕ1 ≥ p will be inferred (and asserted) is large (≥
1 − α). Hence the probability do we reject the null hypothesis p pϕ2/ϕ1 ≥ p if it
is true is small but our conclusion is rather unreliable.

Observe the important property of the above two inference rules: they have
a fixed frame assumption Φ0, and the observational sentences in the antecedent
(ϕ1 ⇒!

p,α ϕ2 in the first rule and ϕ1 ⇒?
p,α ϕ2 in the second rule) determines

uniquely the hypothesis in the succedent (pϕ2/ϕ1 > p and pϕ2/ϕ1 ≥ p respectively)
and vice versa. Cf. 1.1.6 (L3).

We now turn our attention to some other observational quantifiers of a sta-
tistical nature of type 〈1, 1〉.
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4.4.18 Definition and Discussion. Let U be a given random structure. In
practical considerations the following situation very often occurs. There are two
designated open formulas ϕ1, ϕ and we do not know the probabilities

P (‖ϕ1&ϕ2‖U [o] = 1) = p11 , P (‖ϕ1&¬ϕ2‖U [o] = 1) = p10 ,

P (‖¬ϕ1&ϕ2‖U [o] = 1) = p01 , P (‖¬ϕ1&¬ϕ2‖U [o] = 1) = p00

(note that these numbers are independent of o by homogeneity).
The question is whether ϕ1 and ϕ2 are independent or associated; i.e., whether

the satisfaction of ϕ1 affects the satisfaction of ϕ2 and vice versa.
Put p1. = P (‖ϕ1‖U [o] = 1) = p10 + p11, and analogously for p0., p.0, p.1.

Independence is statistically expressed by pij = pi. · p.j (i, j ∈ {0, 1}). We shall
suppose further that pij > 0 for each i, j ∈ {0, 1}. Independence is then equivalent
to

p11p00

p10p01

= 1 .

Edwards has proved in [Edwards] that each reasonable measure of association is
a strictly monotone function of ratio

∆ =
p11p00

p10p01

or, equivalently, of δ = log ∆; ∆ is called the interaction and δ the logarithmic
interaction (sometimes we shall write δ(p11, p1., p.1), since p11, p1., p.1 determine all
the probabilities in question). If δ > 0 we say that the properties are positively
associated, if δ < 0 we say that they are negatively associated.

4.4.19 Remark

(1) Note that independence is equivalent to δ = 0; formally, D12 ∈ DT1 , where

T1 = {〈p11, p1., p.1〉; δ(p11, p1., p.1) = 0} ⊆ {0, 1}3

and D12 is the joint distribution of ‖ϕ1‖U [o], ‖ϕ2‖U [o] independent of o.

(2) The alternative hypothesis of positive association is then D12 ∈ DT2 , where

T2 = {〈p11, p1., p.1〉; δ(p11, p1., p.1) > 0} .

(3) Negative association of ϕ1, ϕ2 is equivalent to positive association of ¬ϕ1, ϕ2;
moreover, δϕ1,ϕ2 = −δ¬ϕ1,ϕ2 .
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4.4.20 Definition. For a given number α ∈ (0, 0.5] consider a quantifier ∼α of
type 〈1, 1〉 with the following associated function:

Asf∼α (〈M, f1, f2〉) = 1

iff, putting a = aM , b = bM , etc., we have

ad > bc and

min(r,k)∑
i=a

σ(i, r, k, m) ≤ α ,

where

σ(a, r, k, m) =
r!s!k!l!

m!a!b!c!d!

(here, of course, b = r − a, c = k − a, s = m− r, l = m− k, d = s− c = 1− b =
m + a− r − k).

We put Fish(a, r, k,m) =
min(r,k)∑

i=a

σ(i, r, k, m).

The quantifier ∼α is called the Fisher quantifier (on the level α).

4.4.21 Theorem. Let α be a rational number, 0 < α ≤ 0.5. The sentence
ϕ1 ∼α ϕ2 is an observational test on the level α of the null hypothesis δ ≤ 0 and
the alternative hypothesis δ > 0.

Proof. Let U and M ⊆ U be given; hence m = card(M) is fixed. Consider
samples from Uϕ1,ϕ2

. For each Mσ put M arg(Mσ) = 〈rMσ
, kMσ

〉 (marginal
sums). Write aσ, bσ, . . . etc., instead of aMσ

, bMσ
, . . ..

(1) First, let us calculate the joint distribution of aσ and bσ under the assump-
tion aσ + cσ = kσ = k and, thus, bσ + dσ = m − k = 1. Under this
assumption, aσ and bσ are two stochastically independent binomial variates
with probability of success

pϕ1/ϕ2 =
p11

p.1

and pϕ1/¬ϕ2 =
p10

p.0

respectively. Moreover,

1− pϕ1/ϕ2 =
p01

p.1

and 1− pϕ1/¬ϕ2 =
p00

p.0

.

Then the conditional joint probabilities of aσ, bσ are the following:
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P (aσ = a&bσ = j/kσ = k) =

=

(
k
a

)(
p11

p.1

)a (
p01

p.1

)k−a (
l
j

)(
p10

p.0

)j (
p00

p.0

)l−j

=

=

(
k
a

)(
l
j

)(
p11

p.1

)a (
p01

p.1

)c (
p10

p.0

)j (
p00

p.0

)l−j

.

(2) Now we calculate the conditional probability

P ({σ; aσ = a}/Marg(σ) = 〈r, k〉) .

Using 4.4.14 we express this probability as

(∗) P (aσ = a&rσ = r/kσ = k)
min(r,k)∑

i=max(0,r+k−m)

P (aσ = i&rσ = r/kσ = k)

Now, (using r = a + b) we obtain:

P (aσ = a&rσ = r/kσ = k) = P (aσ = a&bσ = b) =

=

(
k
a

)(
l
b

) (
p11

p.1

)a (
p01

p.1

)c (
p10

p.0

)b (
p10

p.0

)d

=

= C(r, k)

(
k
a

)(
l
b

)
p11p00

p10p01

where C(r, k) depends only on r, k. Remember that ∆ = p11p00

p01p10
, (*) equals

(∗∗)

(
k
a

)(
l
b

)
∆a

min(r,k)∑
i=max(0,r+k−m)

(
k
i

)(
l

r − i

)
∆i

;

note that for ∆ = 1 (**) reduces to the hypergeometrical distribution

P (aσ = a/M arg(σ) = 〈r, k〉) =

(
k
a

)(
l
b

)

(
m
r

) = σ(a, r, k, m) .
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(Use
min(r,k)∑

i=max(0,r+k−m)

(
k
i

) (
l

r − i

)
=

(
m
r

)
; see Problem (9)).

(3) Assume the null hypothesis ∆ ≤ 1 (i.e., δ ≤ 0); we want to estimate
P (aσ ≥ a/Marg(σ) = 〈r, k〉). By (**), this probability equals

min(r,k)∑
i=a

(
k
j

)(
l

r − j

)
∆j

min(r,k)∑
i=max(0,r+k−m)

(
k
i

)(
l

r − i

)
∆i

Using ∆ ≤ 1, it is a matter of elementary treatment of inequalities to show
that the above expression is less than or equal to

min(r,k)∑
j=a

(
k
j

) (
l

r − j

)

min(r,k)∑
i=max(0,r+k−m)

(
k
i

)(
l

r − j

)

which equals
min r,k∑

i=a

σ(i, r, k, m), hence to Fish(a, r, k,m).

Consequently, we have proved

P (aσ ≥ a/Marg(σ) = 〈r, k〉) ≤ Fish(a, r, k, m) .

(4) Hence, assuming ∆ ≤ 1, we have

P ({σ; Fish(Mσ) ≤ α/Marg(σ) = 〈r, k〉) ≤
≤ P ({σ; P (aτ ≥ a/Marg(σ) = 〈r, k〉) ≤ α}) ≤ α ;

the last inequality follows from the Diagonal Lemma 4.4.4 applied to con-
ditional probabilities. But then

P ({σ; Fish(Mσ) ≤ α}) =
∑

〈r,k〉
P (Fish(Mσ) ≤ α/M arg(σ) = 〈r, k〉)

P (Marg(σ) = 〈r, k〉) ≤
≤ α

∑

〈r,k〉
P (M arg(σ) = 〈r, k〉) = α ,

using Lemma 4.4.14 (2).

(5) For α rational the function Asf∼α is recursive. This completes the proof.
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4.4.22 Remark

(1) Via facti, the Fisher test can be considered to be a test on the level

αcrit =

min(r,k)∑
i=aM

σ(i, rM , kM ,mM)

(for a given M) i.e., had we used ∼αcrit
we should have reject the null

hypothesis too (assuming αcrit ≤ α). Remember Lemma 4.4.4,

αcrit = f(M) = P (τ ; g(M τ ) ≥ g(M)) .

(2) The Fisher test is an unbiased test of the null hypothesis δ ≤ 0 and the
alternative hypothesis δ > 0 (see Problem (10)).

(3) Recall the notions from 4.3.5-4.3.7. As proved in [Lehmann 1959], the
Fisher test is uniformly most powerful in the class of unbiased tests of the
null hypothesis δ ≤ 0 and the alternative hypothesis δ > 0. Thus, the
Fisher test is a uniformly most powerful observational test of the above
hypothesis.

4.4.23 Discussion and Definition. On the other hand, the computation of the
values of the Fisher test for larger m is complicated, the complexity of compu-
tation increasing rapidly. For these practical reasons, another test (the χ2-test)
is widely used. This test is only asymptotical, but the approximation is rather
good for reasonable cardinalities (a, b, c, d ≥ 5, m ≥ 20). As will be seen later (in
Section 5), the two tests have similar logical properties. Before defining the new
quantifier, we have to define the notion of quantiles which will be used in many
ways in the sequel.

Let a continuous one-dimensional distribution function D(x) be given. For
each α ∈ [0, 1], the value D−1(α) is called the α-quantile of D. (If V is a variate
and D = DV then P (V−1([D−1(1− α), +∞])) = α.)

Consider now the quantifier ∼2
α of type 〈1, 1〉 with the associated function

Asf∼2
α
(〈M, f1, f2〉) = 1 iff ad > bc and m(ad − bc)2 ≥ χ2

αrskl, where χ2
α is

the 1 − α quantile of the χ2-distribution function (i.e. the first χ2-distribution
function; see Problem (3)). This quantifier is called the χ2-quantifier on the
level α.

4.4.24 Remark

(1) The quantifier ∼2
α was defined for all real numbers α ∈ (0, 0.5]. On the

other hand, if we want ∼2
α to be an observational quantifier (i.e., if we want
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to use it in an MOPC) then we shall restrict ourselves to those numbers α
for which χ2

α is a rational number. Remember that χ2
α is the solution of the

equation

∫ x

0

e−
y
2√

2yΓ(1/2)
dy = 1− α .

Hence, on the one hand, χ2
α can be irrational even for rational numbers.

On the other hand, χ2
α is continuous as a function of α and, hence, if one

starts with an α then one can deal with rational χ2
α0

for α0 arbitrary close
to α.

(2) Note that if ad > bc then r, s, k, l > 0 and the ratio m (ad−bc)2

rskl
is well defined.

(3) The class of χ2-tests used in statistics is very wide; these tests are useful in
many situations (see Rao).

4.4.25 Lemma. Let {Mm}m be a sequence of samples such that card(Mm) =
m. Suppose M1 ⊆ M2 ⊆ . . .. Consider the variates am, bm, cm, dm given by
the number of objects in Mm with cards 〈1, 1〉, 〈1, 0〉, 〈0, 1〉, 〈0, 0〉, respectively.
Denote

Wm =





(am− rmkm
m )

2

rmkm/m
+

(bm− rmlm
m )

2

rmlm/m
+

(cm− smkm
m )

2

smkm/m
+

(dm− smlm
m )

2

smlm/m
,

if rm, sm, km, lm > 0 ,
0 otherwise ,

where rm = am + bm etc.
Then, under the hypothesis δ = 0, (d)lim

m
Wm = V , where V has the first

χ2-distribution function (for (d)lim see Problem (4)).
The proof is not trivial, see [Rao] 6.a.1-6.d.2.

4.4.26 Theorem. Under the assumptions of 4.4.18, ϕ1 ∼2
α ϕ2 is an asymp-

totical test (on the level α) of the null hypothesis δ = 0 and the alternative
hypothesis δ > 0.

Proof. Note that

Wm = m
(ambm − bmcm)2

rmsmkmlm
(if rm, sm, kmlm > 0) .

Then

P
(‖ϕ1 ∼2

α ϕ2‖ = 1|δ = 0
) ≤ P

(Wm ≥ χ2
α|δ = 0

)
= 1−DWm(χ2

α) .
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Moreover,
lim

m→+∞
DWm(χ2

α) = DVm(χ2
α) = 1− α

applying the definition of the number χ2
α.

4.4.27 Remark

(1) The non-asymptotical distribution of Wm depends on the probabilities p11,
p1., p.1. Remember that the null hypothesis is D ∈ DT1 , where

T1 = {〈p11, p.1, p1.〉; δ(p11, p1., p.1) = 0} ⊆ (0, 1)3 ;

so that the probabilities p11, p1., p.1 are not specified.

(2) The number ad/bc (cross ratio) is, if defined, an estimate of ∆. Thus, if
ad > bc (and hence log ad

bc
> 0, provided that bc > 0) and if, in addition,

(ad− bc)2

rskl
m ≥ χ2

α

then we infer the alternative hypothesis δ > 0. (If (ad − bc)2m ≥ χ2
αrskl

we may have either ad > bc or ad < bc, so that (ad−bc)2

rskl
m ≥ χ2

α with

ad > bc is more improbable, under δ = 0, than (ad−bc)2m
rskl

m ≥ χ2
α by itself;

for probabilities we have than

P
(‖ϕ1 ∼2

α ϕ2‖ = 1|δ = 0
) ≤ P

(Wm ≥ χ2
α|δ = 0

)
;

see Problem (11).)

(3) If we omit frame assumptions summarized into a theoretical sentence Φ0,
the inference rules for sentences expressing association are of the following
form:

(i)
ϕ1 ∼α ϕ2

δϕ1,ϕ2 > 0
,

and

(ii)
ϕ1 ∼2

α ϕ2

δϕ1,ϕ2 > 0
.

Both of these are constructed from the point of view of the probability of
an error of the first kind, i.e., they are of the type 4.3.3 (3). Cf. 4.4.17 (2),
1.1.6 (L3).
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Inference rules based on point estimation can also be used. Define the quanti-
fier of simple association ∼ as a quantifier of type 〈1, 1〉 with Asf∼ (〈M, f1, f2〉) =
1 iff ad > bc and the quantifier of p-implication ⇒p as a quantifier with Asf⇒p

(〈M, f1, f2〉) = 1 iff a ≥ p(a + b). (Cf. 3.2.4.)
Corresponding inference rules are reasonable in our statistical framework only

in the case of very large samples.
Nevertheless, the quantifiers mentioned can be useful in many non-statistical

situations. In particular, they serve as simpler representatives of certain classes
of quantifiers (e.g., associational quantifiers, see Chapter 3) including (as compli-
cated representatives) our quantifiers ⇒?

p, ⇒!
p, ∼α and ∼2

α.

4.4.28 Key words. Likely p-implication, suspicious p-implication, the Fisher
and χ2 quantifiers; their test properties; p-implication and the simple association
quantifier.

4.5 Some properties of statistically motivated

observational predicate calculi

In the previous section we defined some particular statistical quantifiers. Our first
aim now is to prove that they belong to the class of associational or implicational
quantifiers defined in Chapter 3.

Our second aim is to discuss some properties of quantifiers based on tests in
cross-nominal calculi and related topics.

4.5.1 Theorem

(1) The Fisher quantifier is associational.

(2) The χ2-quantifier is associational.

Proof: The associationality of a quantifier can be proved in four steps: Let M0,
M4 be two models, M4 a-better then M0. Consider models M1, M2, M3 such
that if qM0

= 〈a, b, c, d〉 then

qM1
= 〈a + ∆1, b, c, d〉 ,

qM2
= 〈a + ∆1, b−∆2, c, d〉 ,

qM3
= 〈a + ∆1, b−∆2, c−∆3, d〉 and

qM4
= 〈a + ∆1, b−∆2, c−∆3, d + ∆4〉 ,

where ∆1, ∆2, ∆3, ∆4 ≥ 0. It suffices to prove: If Asf∼(M0) = 1 then Asf∼(M1) =
1, if Asf∼(M1) = 1 then Asf∼(M2) = 1, if Asf∼(M2) = 1 then Asf∼(M3) = 1
and if Asf∼(M3) = 1 then Asf∼(M4) = 1. Associated functions of both the
Fisher and χ2-quantifiers are invariant under interchanging b and c and under
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interchanging a and d. Thus we have to prove the first two steps only. It is
easy to see that we have to prove the desired property for the models N1 with
qN1

= 〈a + 1, b, c, d〉 and N2 with qN2
= 〈a, b− 1, c, d〉 only.

(1) The Fisher quantifier: Remember the notation from 4.4.20

σ(i, r, k, m) =
r!s!k!l!

m!i!b!c!d!
and ∆(a, r, k, m) =

min(r,k)∑
i=a

σ(i, r, k, m) .

We have defined Asf∼(M) = 1 iff ∆(aM , rM , kM ,mM) ≤ α and aMdM >
bMcM (for a given α).

(a) First we prove that Asf∼(M0) = 1 implies Asf∼(N1) = 1. This means
proving the inequality ∆(a + 1, r + 1, k + 1,m + 1) ≤ ∆(a, r, k, m)
((a + 1)d > bc being obvious). Observe that

σ(i + 1, r + 1, k + 1,m + 1) =
(r + 1)(k + 1)

(m + 1)(i + 1)
σ(i, r, k,m) .

We note that (r + 1)(k + 1)/(m + 1)(i + 1) ≤ 1 (since (r + 1)(k + 1) =
i2+ic+i+ib+bc+b+i+c+1, (m+1)(i+1) = i2+ic+i+bc+id+b+i+c+1
and id ≥ bc for i ≥ a). Moreover,

∆(a + 1, r + 1, k + 1, m + 1) =

min(r+1,k+1)−1∑
i=a

σ(i + 1, r + 1, k + 1,m + 1)

and the number of members in this sum is equal to that in ∆(a, r, k, m).
Consider that σ(a + 1, r + 1, k + 1, m + 1) ≤ σ(a, r, k,m), σ(a + 2, r +
1, k + 1,m + 1) ≤ σ(a + 1, r, k, m) etc.

(b) We prove now that Asf∼(M0) = 1 implies Asf∼(N2) = 1. It is easy to
see that

σ(i, r − 1, k,m− 1) = σ(i, r, k,m)
mb

rl
and

mb

rl
≤ 1

(apply ad > bc). Compare members of ∆(a, r − 1, k,m − 1) with
members of ∆(a, r, k, m):

σ(a, r − 1, k, m− 1) ≤ σ(a, r, k, m) ,

σ(a + 1, r − 1, k, m− 1) ≤ σ(a + 1, r, k, m) .

etc. If min(r − 1, k) = k then the last inequality is
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σ(k, r − 1, k,m− 1) ≤ σ(k, r, k,m) ,

if min(r − 1, k) = r − 1 then the last inequality is

σ(r − 1, r − 1, k, m− 1) ≤ σ(r − 1, r, k, m) .

The inequality ∆(a, r − 1, k,m− 1) ≤ ∆(a, r, k, m) holds in both cases.

(2) χ2-quantifier:

(a) Asf∼(M0) = 1 implies Asf∼(N1) = 1:
Remember that in the present case

Asf∼(M) = 1 iff
aMdM − bMcM)2

rMsMkM lM
mM ≥ χ2

α and aMdM > bMcM

Thus we have to prove the following inequality (if ad > bc then
(a + 1)d > bc is obvious):

(ad− bc)2

rskl
m ≤ ((a + 1)d− bc)2

(r + 1)(k + 1)ls
(m + 1) .

We prove a slightly stronger result:

(∗) (ad− bc)2

rskl
≤ ((a + 1)d− bc)2

rkls + (r + k + 1)ls
=

((ad− bc) + d)2

rkls + (r + k + 1)ls
.

Let A, B, x, y be some numbers greater than 0. In this case

A

B
≤ A + x

B + y
is equivalent to

A

B
≤ x

y
.

We apply this fact to

(ad− bc)2

rk
≤ (ad− bc)2 + 2d(ad− bc) + d2

rk + (r + k + 1)

which is obtained from (∗), and we see that the inequality in question
is

a2d2 − 2adbc + b2d2

rk
≤ 2ad2 − 2bcd + d2

r + k + 1
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and so

a2d2(r+k+1)+2bcdrk+b2c2(r+k+1) ≤ 2ad2rk+2adbc(r+k+1)+d2rk .

From ad > bc we have b2c2(r + k +1) ≤ adbc(r + k +1) and it remains
to prove that

a2d2r + a2d2k + a2d2 + 2bcdrk ≤ 2ad2rk + d2rk + adbc(r + k + 1) .

We use rk = a2 + ab + ac + bc and r + k + 1 = 2a + b + c + 1 and
we obtain, after the omission of equal members on both sides of the
equality,

abc2d+ab2cd+2b2c2d ≤ a2bd+a2cd2+2ad2bc+abd2+acd2+bcd2+abcd .

Now use the inequalities abc2d ≤ a2d2c, ab2cd ≤ a2d2b and b2c2d ≤
abcd2.

(b) Asf∼(M0) = 1 implies Asf∼(N2) = 1.
Since ad > bc obviously implies ad > (b − 1)c, we have to prove the
following inequality:

(ad− bc)2

rskl
m ≤ (ad− (b− 1)c)2

(r − 1)skl − 1
(m− 1) .

It is equivalent to

(∗∗) m

m− 1

r − 1

r

l − 1

l
≤ (ad− b + c)2

(ad− bc)2
.

The right-hand side of (∗∗) is greater than or equal to 1. Remember

that 1
r
≥ 1

m
and then 1−1/r

1−1/m
≤ 1. We obtain:

m

m− 1

r − 1

r
≤ 1 .

Moreover, l−1
l
≤ 1 and it can immediately be seen that the left-hand

side of (∗∗) is less than or equal to 1.

4.5.2 Theorem. Consider the following two inference rules in observational
calculi with associational quantifiers

SYM =

{
ϕ ∼ ψ

ψ ∼ ϕ
; ϕ, ψ designated open

}
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and

NEG =

{
ϕ ∼ ψ

¬ϕ ∼ ¬ψ
; ϕ, ψ designated open

}
.

Cf. 3.2.17. These are the rules {1}-sound for the Fisher quantifier and χ2-
quantifier.

The proof is left to the reader. (Hint: the associated function have the fol-
lowing form: Asf∼α(M) = 1 iff ad > bc and f1 (〈a, b, c, d〉) ≤ α or Asf∼α(M) = 1
iff ad > bc and f2 (〈a, b, c, d〉) ≥ χ2

α respectively. Prove that, for i = 1, 2

fi (〈a, b, c, d〉) = fi (〈a, c, b, d〉) (SYM)

and
fi (〈a, b, c, d〉) = fi (〈d, c, b, a〉) (NEG) .

4.5.3 Theorem. The Fisher quantifier and the χ2-quantifier are saturable.

Proof. Having in mind the three conditions of Definition 3.2.23, by the previous
theorem we immediately see that the first and second conditions are equivalent.

Keep the notation from the previous proof. Now, note that under ad > bc
f1 (〈a, b, c, d, 〉) is decreasing in a and f2 (〈a, b, c, d, 〉) is increasing in a. Hence the
first condition is satisfied.

For the third condition, note that the associated functions of both the quan-
tifiers depend on the inequality ad > bc. If a model M has genus 〈a, b, c, d, 〉 take
a model M ′ containing M with genus 〈a, ([ad/bc] + 1)b, c, d, 〉.

4.5.4 Theorem

(1) The quantifier of suspicious p-implication is implicational.

(2) The quantifier of probable p-implication is implicational.

Proof. We shall use some facts known from mathematical statistics. These facts
are formulated in two lemmas.

(Lemma 1)

(1) f
p
(k, m) ≤ α iff

g
α
(k, m− k) =

k

k + (m− k + 1)Fα(2(m− k + 1), 2k)
≥ p ,

(2) fp(k, m) > α iff

gα(k, m− k) =
(k + 1)Fα(2(k + 1), 2(m− k))

(m− k) + Fα(2(k + 1), 2(m− k))
> p ,
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where Fα is the (1 − α)-quantile of the Fisher distribution (cf. Problem (3)).
The proof of the lemma is purely analytical; the relation between f p(k, m) and

I(p, k,m) =
∫ 1−p

0
xm−k−1(1−x)kdx is used, namely fp(k, m) = C(k,m)I(p, k, m).

(Lemma 2)

(1) If n1 ≤ n2 then n1Fα(n1, n) ≤ n2Fα(n2, n).

(2) If n1 ≤ n2 then n2Fα(n, n1) ≥ n1Fα(n, n2).

Proof:

(1) Let Vn1 , Vn2−n1 , Vn2 , and Vn be variates with the χ2-distributions; let Vn

be stochastically independent of Vn2−n1 , Vn2 and Vn1 . Let Wi be a variate
with the (ni, n)-th F -distribution. The (by definition)

niWi =
Vni

Vn/n
.

Using the properties of χ2-distributions we can write Vn2 = Vn1 + Vn2−n1

provided that Vn1 and Vn2−n1 are stochastically independent. Thus

n2W2 = (Vn1 + Vn2−n1)/(Vn/n) = n1V1 + Vn2−n1/(Vn/n) .

We have

P (Vn2−n1(Vn/n)−1 > 0) = 1 .

Hence P (n2W2 > n1W1) = 1. Thus, P (n1W1 ≥ x) ≤ P (n2W2 ≥ x),
which is equivalent to Dn1W1(x) ≥ Dn2W2(x); applying the definition of the
(1− α)-quantile we obtain (1).

(2) Consider the variates Vn1 , Vn2−n1 , Vn2 , and Vn as above. Then

Wi =
niVn

nVn−i

has the (n, ni)-th F -distribution. Then n2W1 ≥ n1W2 is equivalent (with
probability 1) to 1

Vn1
≥ 1

Vn2
and, hence, to Vn1 ≤ Vn2 ; P (Vn2 > Vn1) = 1

and so we obtain P (n2Vn1 > n1Vn2) = 1.

Now we can prove the theorem. Recall the definition 4.4.12 of⇒?
p,α and ⇒!

p,α
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(1) ⇒?
p,α: It is clear that, using Lemma 1, it suffices to prove

(a) gα(a, b) ≤ gα(a + 1, b) and (b) gα(a, b) ≤ gα(a, b− 1) ;

(a) is equivalent to

(a + 1)Fα(2(a + 1), 2(n− a)) ≤ (a + 2)Fα(2(a + 2), 2(n− a))

which holds by Lemma 2, point (1);

(b) is equivalent to

(r − a− 1)Fα(2(a + 1), 2(r − a)) ≤ (r − a)Fα(2(a + 1), 2(r − a− 1)) .

Use Lemma 2, point (2).

(2) ⇒!
p,α: By Lemma 1 we have

Asf⇒!
p,α

(M) = 1 iff g
α
(aM , bM) ≥ p .

Hence we have to prove the following:

(a) g
α
(a + 1, b) ≥ gα(a, b) which is equivalent to

(a+1)2(r−a+1)Fα(2(r−a+1), 2a) ≥ a(2(r−a+1))Fα(2(r−a+1), 2(a+1))

(use Lemma 2, (2))

(b) g
α
(a, b− 1) ≥ g

α
(a, b); here we consider an equivalent inequality

(r − a)Fα(2(r − a), 2(a) ≤ (r − a + 1)Fα(2(r − a + 1), 2a)

and Lemma 2, (1).

It remains to discuss some topics related to calculi with incomplete informa-
tion on qualitative values.

4.5.5 Discussion. Now let U = 〈U,Q1, . . . , Qn〉 be a regular d-homogeneous
random structure on a given Σ. For a given sample M , i.e., for a finite set of finite
objects from U , we obtain a set of V -structures MV

M = {Mσ; σ ∈ Σ}. suppose
now that V ⊆ Q. Then the elements of MV

M are observational structures and
we consider a situation as in 3.3.10. From observation we obtain a V x-structure
N = 〈M, f1, . . . , fn〉 as incomplete information about a sample structure Mσ.
Consider now random structures satisfying some frame assumption Φ. We have
two mutually incompatible distributional sentences Ψ0 and Ψ1, and we will decide
whether Ψ1 is to be accepted on the basis of N . Thus we are looking for an
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observational sentence ϕ such that if ‖ϕ‖N ∈ V0 we accept Ψ1 and, for each
given sample M , the probability of accepting Ψ1, under the assumption of Ψ0,
is less that or equal to a number α given in advance. The we have a test based
on incomplete information. Now, the question is: (i) for which sentences is
the above probability well defined, and (ii) how to construct such a test. The
following theorem shows a way of solving these problems.

4.5.6 Theorem. Consider function calculi F and F×. If a sentence ϕ of F
is a test of a hypothesis Ψ0 against an alternative hypothesis Ψ1 under a frame
assumption Φ (on the significance level α) in the sense of models with complete
information and if ϕ is secured in F×, then ϕ is a test of Ψ0 and Ψ1 under Φ (on
the significance level α) based on incomplete information.

Proof. If N is a V -structure then ‖ϕ‖N = i, i ∈ V , iff for each completion M of N
‖ϕ‖M = i. If now N is some incomplete information about M , then ‖ϕ‖N = i
implies ‖ϕ‖Mσ

= i. Hence there is no σ such that ‖ϕ‖Mσ
6∈ V0 and ‖ϕ‖N ∈ V0

for some incomplete information N about M . Thus

{σ; (∃N)(N incompl. inf. about Mσ and ‖ϕ‖N ∈ V0)} ⊆ {σ; ‖ϕ‖Mσ
∈ V0} . (∗)

4.5.7 Remark

(1) Note that Theorem 4.5.4 is independent of the particular deterministic or
indeterministic way of obtaining the incomplete information N about the
sample structure Mσ. If this way is known, the theorem can be improved
(we use now the most “pessimistic” way). See also 5.2.11 and Problem (6)
of Chapter 7.

(2) Note that, in general, the inclusion in (*) from the proof of 4.5.6 is strict.

(3) The generalization for situations in which V  Q is straightforward.

We now turn our attention to tests related to multinomial distributions. These
distributions describe probabilistic properties of theoretical models related to
observational quantitative models as studied in Chapter 3.

4.5.8 Definition and discussion. Consider a random variate V (V : Σ → R).
We say that V has a multinomial distribution (h-valued) if there are numbers pj,

j = 0, . . . , h − 1, such that pj = P ({σ;V(σ) = j}) and
h−1∑
j=0

pj = 1. Analo-

gously, we can say that 〈V1, . . . ,Vn〉 has an n-dimensional multinomial distribu-
tion (〈h1, . . . , hn〉-valued) if each Vi has a multinomial distribution (hi-valued).
Now let Vi = {0, . . . , hi − 1} as above, and consider d-homogeneous regular
〈V1, . . . , Vn〉-structures. Cf. 5.1.1 and 3.4.1.
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Consider a distributional statement Φ(h1, . . . , hn) such that

U = 〈U,Q1, . . . , Qn〉 |= Φ(h1, . . . , hn)

iff, for each o ∈ U , 〈Q1(o,−), . . . , Qn(o,−)〉 has 〈h1, . . . , hn〉-valued n-dimensional
multinomial distribution. It is clear that for each of the above mentioned struc-
tures we have U |= Φ(h1, . . . , hn).

4.5.9 Lemma. If U = 〈U,Q1, . . . , Qn〉 is a d-homogeneous regular random
〈V1, . . . , Vn〉-structure and ϕ1, ϕ2 are two regular formulas of an MOFC with
〈h1, . . . , hn〉-valued models, then Uϕ1,ϕ2

is d-homogeneous and regular.

Proof. Obvious. Remember that regular formulae are {0, 1}-valued.

4.5.10 Discussion. Under our homogeneity conditions, for each object o ∈
U , ‖ϕ1‖U [o] , ‖ϕ2‖U [o] has two dimensional alternative distribution. So we can
apply our results obtained in Section 4 of Chapter 4 to Uϕ1,ϕ2

, and use ther test
qunatifiers introduced there.

4.5.11 Key words: Associationality of Fisher and χ2-quantifiers, implication-
ality of ⇒?

p,α and ⇒!
p,α quantifiers, tests based on incomplete information.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 4

(1) A distribution function is absolutely continuous iff D(x) =
∫ x

−∞ fdλ, where
f is a non-negative measurable function and λ is the Lebesgue measure;
one can write D(x) =

∫ x

−∞ f(y)dy.
The function f is called the density of D.
More generally, a probability measure P is absolutely continuous w.r.t. a
measure µ iff for each E ∈ R P (E) =

∫
E

fdµ, where f is a measurable
function from Σ to R.

(2) Each discrete distribution function is absolutely continuous in the general-
ized sense. (put

f(x)

{
pi if x = xi,
0 otherwise

, µ(A)

{
1 if there is an xi, xi ∈ A
0 otherwise .

These definitions can be generalized for the case that V maps Σ into a
countable set {x1, x2, . . .} and all conditions remain unchanged. Then µ is
not a finite measure.)

(3) We collect some particular cases of distribution functions.
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(a) The function Nµ,σ(x) with density

(2π)−
1
2 σ−1 exp(−(y − µ)2/2σ2)

is called the normal distribution function (if a variate V has this distri-
bution function we say that V has normal distribution) with param-
eters µ ∈ R and σ > 0. Note that EV = µ and VARV = σ2. (Of
course, exp x means the same as ex.)

(Lemma) If a variate V has normal distribution, then the variate
V−EV√
VARV has normal distribution on with parameters 0 and 1 (normalized

normal distribution with distribution function N0,1).

(b) Consider a random variate V such that P (V−1({0, 1})) = 1, i.e., V can
give with probability 1 only the values 0 or 1. Put P (V−1({1})) = p.
Then

DV(x) =





0 for x ≤ 0
1− p for 0 < x ≤ 1
1 for x > 1

;

this distribution is called the alternative distribution (with probabil-
ity p of success). Our considerations of the statistical aspects of ob-
servational predicate calculi are naturally based on such distributions.

(c) Consider a sequence of s independent random variates with the nor-
malized normal distribution. Then the distribution function of the
variate

Wn =
n∑

i=1

V2
i

is called the n-th χ2-distribution function. It is absolutely continuous;
its density is the following:

f(y) =

{
0 for y < 0,

c(n) exp
(−y

2

)
y

n−2
2 for y ≥ 0,

where

c(n) =

[∫ +∞

0

exp
(
−y

2

)
y

n−2
2 dy

]−1

.

(d) Consider two stochastically independent random variates V1, V2 with
n1-th and n2-th χ2-distributions respectively. Then
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W =
n2

n1

V1

V2

has the (n1, n2)-th F -distribution. (The (n1, n2)-th F -distribution
function has the following density:

g(y) =





0 for y < 0,

c(n1, n2)y
n1
2
−1

(
1 + n1

n2
y
)−n1+n2

2
for y ≥ 0,

where

c(n1, n2) =

[∫ +

0

y
n
2
−1

(
1 +

n1

n2

y

)n1+n2
2

dy

]−1

.

(e) Consider an independent sequence V1, . . . ,Vn of random variates with
an alternative distribution with equal probability of success p. The

random variate W =
n∑

i=1

Vi (the number of successes in n independent

alternative trials) has the so-called (n-th) binomial distribution:

P (W−1(k)) =





(
n
k

)
pk(1− p)n−k for k = 0, . . . , n

0 otherwise .

(The distribution function is then

DW =
∑

k<x

(
n
k

)
pk(1− p)n−k .)

(4) We say that a sequence V1,V2, . . . of random variates converges in distri-

bution to the random variate
(
(d)lim

i
Vi = V

)
, if lim

i
DVi

= DV at each

continuity point of DV .

(5) Prove (1) of Theorem 4.2.14 (Hint: Consider a Borel σ-field BM,ρ gener-
ated by the open subsets of MV

M (w.r.t. the metric ρ). f ¹ MV
M is then

measurable in the following sense: If A ∈ B (B is the Borel σ-field of the

subsets of R) then for the inverse image
(
f ¹ MV

M

)−1
(A) ∈ BM,ρ. Inves-

tigate whether there are any B ∈ BM,ρ whose inverse image is an element
of R; use the measurability of the random variates V1o, . . . ,Vno for o ∈ M .)

(6) Prove (2) of Theorem 4.2.14 (Hint: By the definition of DfM
, we have

DfM
(x) = P ({σ; fM(σ) < x}) = P ({σ; Mσ ∈ A}), where A = {M τ ∈

MV
M ; f(M τ ) < x} is an element of BM,ρ, so that we know its induced
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probability P ′(A) = P (inverse image of A); P ′(A) =
∫

A
dDV where DV

is an n× card (M) dimensional distribution function (Remark 4.2.5). Use
d-homogeneity.)

(7) Consider the sentence ϕ̂ = m̂(ϕ) from 4.4.3. Prove E
(‖ϕ‖Mσ

)
= pϕ (- an

estimator with this property is called unbiased).

(8) Prove 4.4.16. (Hint: Let U and a sample M ⊆ U , card (M) = m, be given.
Consider the conditional distribution of am under the condition km = k.
Considerations of 4.4.5-4.4.9 can now be performed for such conditional
distributions due to the fact that the conditional distribution of am under
km = k is the binomial distribution with the probability of success

pU
ϕ1,ϕ2

i.e., P (am = a/km = k) =

(
k
a

)
pa

ϕ1/ϕ2
(1− pϕ1/ϕ2)

k−a

(under the assumption U |= pϕ1/ϕ2). Apply theorem 4.4.10, using ⇒!
p,α,

⇒?
p,α instead of !p,α, ?p,α. Thus,

P
(‖ϕ1 ⇒!

p,α ϕ2‖Mσ = 1/kMσ
= k

) ≤ α

under the assumption pϕ1/ϕ2 ≤ p. Now, apply Lemma 4.4.14 (2):

P
(‖ϕ1 ⇒!

p,α ϕ2‖ = 1
)

=
m∑

k=0

P
(‖ϕ1 ⇒!

p,α ϕ2‖ = 1/kM = k
)
P (kM = k) ≤

≤ α

m∑

k=0

P (km = k) = α .

(9) Prove that

min(r,k)∑

i=max(0,r+k−m)

(
k
i

)(
m− k
r − i

)
=

(
m
r

)
.

(Hint: Note that (
k
i

)(
m− k
r − i

)

(
m
r

)

are hypergeometrical probabilities, so that

min(r,k)∑

i=max(0,r+k−m)

(
k
i

)(
m− k
r − i

)
/

(
m
r

)
= 1 . )
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(10) Prove the unbiasedness of the Fisher tests. (Hint: Let m and α be given. For
given r, k we can find a0 such that Fish(a0, r, k) ≤ α and Fish(a0−1, r, k) >
α. Consider, further α0(r, k) = Fish(a0, r, k). Now let Marg(σ) = 〈r, k〉.
Then ‖ϕ1 ∼α ϕ2‖Mσ

= 1 iff aMσ
= a0 and for δ = 0

P
(‖ϕ1 ∼α ϕ2‖Mσ

= 1/Marg(σ) = 〈r, k〉) =

=

min(r,k)∑
j=a0

(
k
j

)(
l

r − j

)

(
m
r

) = α0(r, k) .

Remember (**) from the proof of 4.4.21 and then, for δ > 0,

Bm (ϕ, δ/Marg(σ) = 〈r, k〉) = P
(‖ϕ1 ∼α ϕ2‖Mσ

= 1/Marg(σ) = 〈r, k〉) =

=

min(r,k)∑
j=a0

(
k
j

)(
l

r − j

)
∆j

min(r,k)∑
j=max(0,r+k−m)

(
k
j

)(
l

r − j

) >

> Fish(a0, r, k) = α0(r, k) .

Consider now α0 = min
〈r,k〉

α0(r, k) and obtain thus the unbiasedness for given

cardinality m (i.e., Bm(ϕ, δ) > α0 for δ > 0 and Bm(ϕ, δ) ≤ α0 for δ ≤ 0).
But α0 depends on m. To prove general unbiasedness (and 4.4.22 (3)) it is
necessary to use randomized tests (see [Lehmann]).

(11) The quantifier ∼3
α of type 〈1, 1〉 with the associated function

Asf∼3
α

(〈M, f1, f2〉) = 1 iff
| log ad/bc|√
1
a

+ 1
b
+ 1

c
+ 1

d

≥ Nα
2

(if one of the frequences is zero, we replace it by 0.5), where Nα/2 is the(
1− α

2

)
-quantile of the normalized normal distribution, is called the inter-

action quantifier (on the level α
2
) (see Anděl 1973).

(a) The interaction quantifier is an asymptotical test of the null hypothesis
δ = 0 and the alternative hypothesis δ > 0.

(b) Prove

Asf∼3
α
(〈M, f1, f2〉) = 1 iff

(log ad/bc)2

1
a

+ 1
b
+ 1

c
+ 1

d

≥ χα2 and ad > bc .
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(Hint: Use the fact that

(log ad/bc)2

1
a

+ 1
b
+ 1

c
+ 1

d

≥ χ2
α iff

| log ad/bc|√
1
a

+ 1
b
+ 1

c
+ 1

d

≥ Nα
2

and by the symmetry of the normal distribution.)

(c) ∼3
α and ∼2

α/2 are asymptotically equivalent under the null hypothesis
δ = 0, i.e. for any increasing sequence M1 ⊂ M2, . . . of samples

lim
m

P
({σ; f 1

Mm
6= f 2

Mm
}|δ = 0

)
= 0 ,

where

f 1
Mm

=
(log amdm/bmcm)2

1
am

+ 1
bm

+ 1
cm

+ 1
dm

and f 2
Mm

=
(amdm − bmcm)2m

rmkmsmlm

(For the proof see [Anděl 1974]: use the fact that for each interaction
matrix

A =

(
a11, a12

a21, a22

)

such that

a11 + a12 = a21 + a22 = a12 + a22 = a11 + a21 = 0

(note that then A is determined by a11) Anděl’s

d2(A)

s2(A)
=

(log ad/bc)2

1
a

+ 1
b
+ 1

c
+ 1

d

.)

(12) Prove that Asf∼2
α

(〈M, f1, f2〉) = 1 iff

ad− bc√
rksl

√
m ≥ Nα

2

(Hint:

(ad− bc)2

rksl
m ≥ χ2

α iff
|ad− bc|√

rksl

√
m ≥ Nα/2 . )

Thus, ϕ1 ∼2
α ϕ2 is a test on the level α

2
.

If for δ 6= 0, Wm = amdm−bmcm√
rmsmkmlm

√
m (if defined, otherwise Wm = 0) has the

asymptotically normal distribution with expectation E such that E > 0 iff
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δ > 0 and E < 0 iff δ < 0, then ϕ1 ∼2
α ϕ2 is the asymptotically unbiased

test of the null hypothesis δ ≤ 0 and the alternative hypothesis δ > 0 on
the level α

2
.

(13) Lemma Let m, r, k be given. Then Fish(a, r, k, m) ≤ α implies ad > bc
(for each α ∈ (0, 0.05)).

Corollary. If we define the quantifier ∼F
α of type 〈1, 1〉 with the associated

function Asf∼F
α

(〈M, f1, f2〉) = 1 iff Fish(aM , rM , kM ,mM) ≤ α then, for
any designated open formulae ϕ1, ϕ2, ϕ1 ∼α ϕ2 and ϕ1 ∼F

α ϕ2 are logically
equivalent. Prove using the above lemma.

Nevertheless, for computation is is better to use ∼α (computing ‖ϕ1 ∼α

ϕ2‖), providing ad > bc and thus spare the computation of Fish(a, r, k, m)
in many cases.

(14) Consider the random structure U = 〈U,Q1, . . . , Qn〉, U |= Φ(h1, . . . , hn).
Denote by Φ(h1, . . . , hn) the distributional sentence such that U ′ |= Φ′(h1, . . . , hn)

(
where U ′ = 〈UP o

1 , . . . , P h1−1
1 , . . . P o

n , . . . , P hn−1
n 〉)

iff U ′ |= Φ(1, . . . , 1) and for each o ∈ U ,

P

({
σ;

h1−1∑
i=0

P i
1(o, σ) = 1, . . . ,

hn−1∑
i=0

P i
n(o, σ) = 1

})
= 1

Then (1) U |= Φ(h1, . . . , hn) iff π(U) |= Φ′(h1, . . . , hn)
and (2) P

({
σ; P j

i (o, σ) = 1
})

= P ({σ; Qi(o, σ) = j})
(j = 0, . . . , hi − 1, i = 1, . . . , n).

(15) Let ϕ be a regular formula of a cross-qualitative OMFC. Then pU
ϕ has a

clear sense. Let U be given. Consider pairs of EC and assume pκ&λ > 0,
pκ&¬λ > 0, p¬κ&λ > 0, p¬κ&¬λ > 0. We can define

∆(κ, λ) =
pκ&λp¬κ&¬λ

pκ&¬λp¬κ&λ

as in 4.4.20. Define a theoretical relation 〈κ, λ〉 ≤a 〈κ′, λ′〉 and prove that
U |= 〈κ, λ〉 ≤a 〈κ′, λ′〉 iff U |= ∆(κ, λ) ≤ ∆(κ′, λ′). Similarly for 〈κ, λ〉 ≤i

〈κ′, λ′〉 and pδ/κ ≤ pδ′/κ′ .

(16) Observe the following:

(i) If X ⊆ Y , then p(X)F ≤ p(Y )F ,

(ii) if κ ⊆ λ, then pκ ≥ pλ,
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(iii) if κ v λ, then pκ ≤ pλ,

(iv) if κ ← λ, then pκ ≥ pλ,

(v) if δ1 / δ2, then pδ1 ≤ pδ2 .

We can define ≤c on [0, 1]2. Then 〈κ, λ〉 ←← 〈κ′, λ′〉 implies 〈pκ, pλ〉 ≥c

〈pκ′ , pλ′〉.
(17) Prove Theorem 4.5.2 and 4.5.3 for the interaction quantifier.
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Chapter 5

Rank Calculi

The present chapter is devoted to the description and investigation of a particular
class of observational calculi based on statistical procedures called rank tests.

Of what significance is this chapter for the logic of discovery? One finds ob-
servational calculi that are intuitively well motivated and are essentially non-two-
valued. They might serve as a basis of future methods of mechanized Hypothesis
Formation, as well shall outline in Section 4 of chapter 7. In contradistinction to
the calculi with associational quantifiers, the development of methods based on
rank calculi is only in an early stage, but it seems to be promising.

As far as statistics is concerned, the present chapter has the following meaning:
Statistical procedures investigated here were originally developed using consider-
ations about the behaviour of various statistics on observational data. Later, the
investigation of probabilistic properties of these statistics was preferred (cf. J. Há-
jek and Z. Šidák). But the application of rank tests in the logic of suggestion
leads us back to the investigation of observational properties. We feel that this
chapter should inspire statisticians to carry out a more detailed investigation of
observational properties of these and other procedures.

The above shows that the present chapter should be read by the reader willing
to develop actively the logic of discovery, be it from the point of view of logic,
statistics or Artificial Intelligence. On the other hand, the chapter can be omitted;
the main body of Part II does not presuppose its knowledge.

Recall associational quantifiers: they are characterized by the stability of the
associated function w.r.t a certain quasiordering of models and, consequently,
w.r.t transformations of data preserving the mentioned ordering. Rank tests can
also be characterized by their behaviour w.r.t a certain ordering of models. They
are called “rank tests” because they are invariant w.r.t. transformations of real-
valued models consisting of the replacement of any rational-valued function by
another rational-valued function which defines the same notion of ranks of ob-
jects, i.e., which ordered the domain in the same manner. Rank tests will be used
as tests for a fixed null hypothesis – the hypothesis of d-homogenity. But this null
hypothesis will be joined to various alternative hypotheses, each alternative hy-
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pothesis determining some additional requirements concerning appropriate tests
(see Section 1). It is easy to see that it suffices to study models with particular
rational-valued, in fact natural-number valued functions, namely enumerations
of the domain. Here, the null hypothesis reduces to the hypothesis of a uniform
distribution of enumerations (see Section 1).

As an example of an alternative hypothesis, we cite the hypothesis of a shift in
location. This hypothesis concerns random universes with one real-valued func-
tion (quantity) and one two-valued function (property). Roughly speaking, it
means that the property divides the universe into two groups such that the first
group is characterized by greater values of the quantity. If we restrict ourselves
to observational models with enumerations, then the rank statistics for testing
this hypothesis define quantifiers having a property of distinctiveness; distinc-
tive quantifiers can be studied from the observational point of view much as
associational quantifier were studied in the preceding chapters. This is done in
Section 3.

More generally, we can study stochastical dependence of two random quan-
tifiers cf. 5.2: we mean positive dependence, i.e., if we consider the alternative
hypotheses Q1 = Q∗

1 + ∆Z, Q2 = Q∗
2 + ∆Z, where Q∗

1, Q∗
2, Z are mutually in-

dependent, we suppose ∆ > 0 see [J. Hájek and Z. Šidák, II.4.11]: we obtain
observational correlational quantifiers. Section 3 and the first part of Section 4
are devoted to calculi with the above mentioned quantifiers and models with prop-
erties and enumerations: in the second part of Section 4 we generalize our calculi
to calculi with rational-valued functions and extend definitions of the quantifiers
considered throughout this chapter, in accordance with statistical rank tests as
they are really used.

5.1 Generalized random structures and the hy-

pothesis H0 of d-homogenity

In the present and following sections a particular class of statistical tests is in-
troduced. These tests are used for testing a very general null hypothesis against
broad alternative hypotheses; from the observational point of view they are thus
stable under some transformations of models. We shall describe these tests from
the above point of view in Section 3; in Section 4 they will be used as a back-
ground for a class of quantifiers in calculi with real-valued models.

First, in the present section we consider Σ-random structures of type 〈1, 1〉
which satisfy some particular assumptions that enable us to introduce the above
mentioned tests in a comprehensible way.

In section 2, these tests are generalized for a more general null hypothesis and
alternative hypotheses. This generalization is necessary for the use of such tests
as a source of quantifiers for observational calculi useful in automated research.
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5.1.1. Discussion and Definition. First, we have to generalize some notions
from Section 2 of Chapter 4. Consider an n-tuple V = 〈V1, . . . , Vn〉, Vi ⊆ R; if M
is a non-empty set and, for each i = 1, . . . , n, fi is a mapping of M into Vi, then
the tuple M = 〈M, f1, . . . , fn〉 is called a V-structure.

In analogy to 4.2.1, we can now define a random V-structure: Let a probability
space Σ = 〈Σ,R, P 〉 be given, then a Σ-random V-structure is any structure
U = 〈U,Q1, . . . , Qn〉 where U is a set and Qi are mapping of U × Σ into Vi. In
the following, we shall consider only regular random V-structures: i.e., random
structures for which

(0) U is a recursive set,

(1) each Qi(o1, .) as a mapping of Σ to Vi is a random variate (denoted by Vi,o

or VU
i,o),

(2) for any sequence o1, . . . , om of elements of U , the sequence of n-dimensional
random variates

{〈Q1(oi, .), . . . , Qn(oi, .)〉}i=1....,m

is stochastically independent, and

(3) Vi are regular sets of values.

Unlike 4.2.3, d-homogenity will not be automatically assumed.
First, we have to generalize slightly the notion of a distributional sentence. It

was good sense to consider for any sequence o = 〈o1, . . . , om〉 of elements of U the
joint distribution function DV,o (V = 〈V1,o . . . ,Vn,o〉). Then, a theoretical sentence
Φ is called distributional if for any regular random V-structures U and U ′ of the
same type we have the following:

If U |= Φ and if there is a one-to-one mapping ι of U onto U ′ such that, for

each sequence o of elements of U , DU
V,o = DU ′

V,ι(o), then U ′ |= Φ.
In the present section, we consider Σ-random V-structures, i.e., different quan-

tities can have different ranges of values. This gives one reason for modifying the
notion of a continuous statistic. Further reasons will be clear from considerations
following Definition 5.1.2.

5.1.2 Definition. Consider MV = {〈M, f1, . . . , fn〉 : fi is Vi-valued and M is a
finite set}. As in 4.2.10, we define MV∩Q and, for any given M , MV

M and MV∩Q
M .

First, we generalize notion of a continuous computable statistic (cf. 4.2.11): A
mapping t : MV → R is a continuous computable statistic if:

(a) it is invariant under isomorphisms,

(b) for each M , t ¹ MV
M is continuous, and

(c) t ¹ MV∩Q is recursive.
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Now let Φ be a distributional statement. Consider regular random V-structures.
A mapping t : MV → R is called an almost continuous computable statistic
w.r.t. Φ if t is Borel measurable and satisfies conditions (a) and (c) and (b’): For
each U such that U |= Φ and for each finite M ⊆ U , t ¹ MV

M is continuous on an
open set Mcont ⊆MV

M such that

PU({σ : Mσ ∈Mcont}) = 1 .

(also see problem (9)).

5.1.3 Example. Consider random 〈{0, 1}, V 〉-structures. Let Φ be true in U =
〈U,Q1, Q2〉 iff

(a) Q1 is independent on σ (i.e., for each o ∈ M , σ1, σ2 ∈ Σ, Q1(o, σ1) =
Q1(o, σ2),

(b) U = 〈U,Q2〉 is d-homogeneous, and

(c) DU2
is continuous.

Define a mapping t as follows:

t(Mσ) = 1 iff, for each o1, o2 ∈ M, Q1(o1) = 1 and Q1(o2) = 0

implies Q2(o1, σ) ≥ Q2(o2, σ). t is an almost continuous computable statistic
w.r.t Φ.

5.1.4 Remark. Note that for each open set A the set A∩Q is dense in A. Thus,
if t is an almost continuous computable statistic, then, for each M ∈ Mcont, the
value t(M) can be approximated by values of t on rational models – elements
of MV∩Q ∩Mcont.

One can see that the statistics considered below fulfill a condition of “good”
approximation at discontinuity points; but a general description of such condi-
tions is beyond the scope of the present book and will be presented elsewhere.

5.1.5 Discussion and Definition (frame assumptions). We shall now con-
sider regular random V-structures of type 〈1, 1〉 i.e., U = 〈U,Q1, Q2〉, such that
V2 = R. In all the considerations of the present section we shall suppose the
following frame assumptions:

(1) for each o ∈ U,Q1 does not depend on σ, and

(2) for each o ∈ U , DV2 , o is continuous.

Conditions (1) and (2) will be called d.c.-conditions (d - Q1 is deterministic,
c - continuity condition concerning Q2).

Note that (2) is distributional.
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5.1.6 Discussion and Definitions (hypotheses). We can now formulate the
hypothesis of d-homogenity which is usually denoted by H0 in statistical text-
books; see [J. Hájek], [J. Hájek and D. Vorĺıčková]:

〈U,Q2〉 is d− homogeneous.

This hypothesis will serve as a general null hypothesis. Note that H0 is a distri-
butional theoretical sentence.

We shall test the null hypothesis H0 against different alternative hypotheses.
Thus, we shall consider pairs consisting of the null hypothesis H0 of d-homogenity
and an alternative hypothesis.

We now present examples of these alternative hypotheses:

(i) The alternative hypothesis of a shift in location (ASL).
Suppose, moreover, that the frame assumption (3) V1 = {0, 1} holds. Then
ASL can be formulated as follows:
There is a function F (x) such that, for each o ∈ U ,

DV2,o =

{
F (x) if Q1(o) = 0 ,
F (x−∆) if Q1(o) = 1 ,

where ∆ 6= 0.

Notice that if we define

U1 = 〈U ¹ {o, Q1(o) = 1}, Q2〉

and
U0 = 〈U ¹ {o,Q1(o) = 0}, Q2〉 ,

then U1 and U0 are d-homogeneous.

If we put ∆ = 0, then we obtain the hypothesis H0. It is clear that Q1

divides our observational sample into two subsample groups. ASL states
that these groups differ in Q2 (problem of two samples).

We shall suppose, in constructing tests, that ∆ > 0. Then ASL means that
the values of Q2 in U1 are expected to be greater than values of Q2 in U0

(see Example 5.1.23). This means that, for each x ∈ R,

P ({σ; Q2(o, σ) ≥ x}|Q1(o) = 1) ≥ P ({σ; Q2(o, σ) ≥ x}|Q1(o) = 0) ,

and for some x the inequality is strict.

(ii) The alternative hypothesis of natural regression in location (ANRL). Sup-
pose, besides (1) and (2), that the frame assumption (4) V1 = N holds.
Then we can formulate ANRL as follows:
There is a function F (x) such that
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DV2,o(x) = F (x− i∆) if Q1(o) = i ,

where ∆ 6= 0.

(iii) Alternative hypothesis of trend in location (ATL). Suppose, besides (1)
and (2), that the frame assumption (5) V1V2 ⊆ R. ATL then means the
following:
for each o1, o2 ∈ U ,
if Q1(o1) < Q1(o2), then DV2,o1 < DV2,o2

(Q1 can be, e.g., time).

For further alternative hypotheses, see Problem (1).

5.1.7 Discussion. We have seen that the hypothesis H0 of d-homogeneity does
not specify the distribution function DU

V2
; only the frame assumptions require

this function to be continuous. The same holds for the alternative described
hypotheses. So we want to have tests for H0 whose basic properties would not
depend on particular assmptions concerning the distribution function DU

V2
. Such

tests are called distribution free tests.

A particular, and the most important, class of such tests are rank tests. To
define rank tests and to investigate their basic properties we must mention some
facts about enumerations. (These facts are rather trivial; our exposition is based
on [J. Hájek and D. Vorĺıčková]; see also [J. Hájek].)

5.1.8 Definition. Let M be a finite non-empty set, let card(M) = m. An
enumeration of M is a one-to-one mapping of M onto {1, . . . , m}. RM denotes
the set of all enumerations of M ; clearly, RM has m! elements. Let P(RM) be
the power set of RM .

Let Σ be a random space and let R be a random variate on Σ with values
in RM . Thus, R is called an enumerating random variate for M . R is said to
induce a uniform distribution on 〈RM ,P(RM)〉 if, for each η ∈ RM ,

P ({σ; R(σ) = η}) =
1

m!

(this means that we have a normalized counting measure on 〈RM ,P(RM)〉. We
abbreviate P ({σ; R(σ) = η}) by P (R = η), similarly in other cases. If o ∈ M ,
then R0 denotes the random variate defined by R0(σ) = (R(σ))(o) (the value
of R(σ) on the object o).

5.1.9 Lemma. Let R be as in 5.1.8 and let R induce a uniform distribution.
Then, for any o1, o2 ∈ M ,
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P (Ro1 = k and Ro2 = h) =





P (Ro1 = k) = 1
m

for o1 = o2, 1 ≤ h = k ≤ m,
0 for o1 6= o2, 1 ≤ h = k ≤ m,

1
m(m−1)

for o1 6= o2, 1 ≤ h 6= k ≤ m.

Proof. Consider the first case. We have a normalized counting measure on RM

so that

P (Ro1 = k) =
1

m!
card{η ∈ RM ; η(o1) = k} =

1

m!
(m− 1)! =

1

m
.

Other cases can be proved in the same way.

5.1.10 Definition. Let c0, c1, . . . , a0, a1, . . . be rational constants and let M be
a finite non-empty set of natural numbers. Then the function lM defined on RM

by setting

lM =
∑
o∈M

coaη(o)

is called a simple linear function on RM .

Remark

(1) Observe that l is a recursive function on {〈M, η〉, M a finite set of natural
numbers, η ∈ RM}.

(2) If R is an enumerating random variate for M (on Σ) and if lM is as in 5.1.10,
then L = lM ◦ R is a random variate (on Σ). o denotes composition, i.e.,
L(σ) = lM(R(σ)). We shall use simple linear functions for testing H0.

5.1.12 Lemma (on moments of simple linear functions). Let R be an enu-
merating random variate (for M), and let R induce the uniform distribution on
〈RM ,P(RM)〉. Consider a variate L = lM ◦R, where lM is a simple linear function
on RM . Then

(1) EL = mca, where c = 1
m

∑
o∈M

c0 and a = 1
m

∑
o∈M

aη(o),

(2) VARL = 1
m−1

∑
o∈M

(c0− c)2
∑

o∈M

(aη(o)− a)2; η is an arbitrary element of RM .

Proof. Note that
∑

o∈M

(aη(o), and hence a, do not depend on η; similarly for
∑

o∈M

(aη(o) − a)2.
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(1) Remember that L =
∑

o∈M

c0aR0 : hence, EL =
∑

o∈M

c0EaR0 ; for each o ∈ M ,

we then have

EaR0 =
m∑

j=1

ajP (R0 = j) =
m∑

j=1

aj
1

m

(counting measure).

The proof of (2) is then an algebraic exercise using 5.1.9.

5.1.13 Lemma. Let s be any function mapping RM into Q. Consider the
variate S = s◦R, where R is an enumerating random variate yielding the uniform
distribution on 〈RM ,P(RM)〉. Then, for each A ⊆ Q

P (S ∈ A) =
1

m!
card{η ∈ RM ; s(η) ∈ A} .

Proof. We have

P ({σ;S(σ) ∈ A}) = P ({σ; R(σ) ∈ s−1(A)}) =
1

m!
card{η ∈ RM ; s(η) ∈ A} .

Use s−1(A) ∈ P(RM).

5.1.14 Definition and Discussion. Let M be a finite set and let f be a
real-valued function on M . For each o ∈ M , define the f -rank of o by

rkf (o) = card{o1 ∈ M ; f(o1) ≤ f(o)} .

We shall also write f ∗(o) instead of rkf (o). Note that f is an enumeration of M
iff f is injective (one-to-one); there are no ties). Denote by IMR the set of
all real-valued models 〈M, f〉 where f is injective and M is finite non-empty
(analogously, IMQ, IMR

M etc.).
The objects of our interest are structures of type 〈1, 1〉. We introduce some

particular frame assumptions:
Φ0 is the d.c.-condition as specified in 5.1.5, i.e.,
Φ0 says that the first quantity is deterministic and the second has a continuous
distribution function;
Φ−

2 says that V = 〈V1,R〉, where V1 ⊆ Q, and for each o ∈ U , that DU,o is
continuous function of the second variable and, for each o ∈ U and each v ∈ V1,

P ({σ; Q1(o, σ) = v}) > 0

(the p.c.-condition – positive probability of values of the first quantity and con-
tinuous distribution of the second).
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Φ2 says that V = 〈R,R〉 and that DU,o is a two-dimensional continuous function
for each o ∈ U (the t.c.-condition). In the following, Φ denotes any of the
assumptions Φ0, Φ−

2 , Φ2.
Two structures M1 = 〈M1, f1, g1〉, M2 = 〈M2, f2, g2〉 are called rank equiv-

alent (w.r.t the second function) iff the structures 〈M1, f1, g
∗
1〉, 〈M2, f2, g

∗
2〉 are

isomorphic. For each M = 〈M, f, g〉, we put Rk(M) = 〈M, f, g∗〉. Let t be a
statistic (defined on models of type 〈1, 1〉 and almost continuous w.r.t. some
frame assumption Φ). t is a rank statistic if

Rk(M1) = Rk(M2) implies t(M1) = t(M2) . (∗)

5.1.15 Lemma. The conjunction of the following conditions (i), (ii) is suffi-
cient for a Borel measurable function t satisfying (*) to be an almost continuous
computable statistic w.r.t. Φ.

(i) For each 〈M, f1〉, t is continuous on the set of all models 〈M, f1, f2〉 where
f2 is injective.

(ii) t restricted to rational-valued models is recursive.

Proof. Use Lemma 5.1.19.

5.1.16 Remark. Evidently, an almost continuous statistic t is a rank statistic
iff there is a function s such that, for each M , t(M) = s(Rk(M)); s is defined
on all models 〈M, fη〉 where f is V1-valued and the range of η is included in
{1, . . . , card(M)}. For fixed M and f , we obtain a function sM,f defined on all
mappings of M into {1, 2, . . . , card(M)}.

5.1.17 Discussion. We restrict ourselves to random structures satisfying Φ0.
Suppose, further, that V1 ⊆ Q. Let U = 〈U,Q1, Q2〉 be such a structure. We
shall consider inference rules (for hypothesis testing) based on rank statistics. In
all cases, the null hypothesis will be the hypothesis H0 of d-homogeneity. Let A
be an alternative hypothesis, and let t be a rank statistic. Our inference will be
as follows:

We have an observational structure 〈M, f1, f2〉 regarded as a sample from a
universe U satisfying Φ0. Here, f1 is deterministic; i.e., whenever σ ∈ Σ we
have Mσ = 〈M, f1, f

′
2〉 for some f ′2 (σ influences only the second function). Let

cα(M, f1) be such that if U |= H0 then

PU({σ; t(Mσ) ≥ cα(M, f1)}) ≤ α .

Hence, in accordance with the theory of hypothesis testing , if Mσ = 〈M, f1, f2〉
is the observed structure and if t(Mσ) ≥ cα(M, f1), then we infer A (the form of
the set V0 (critical set, cα-critical value), i.e., V0 = [cα(M, f1), +∞) is given by the
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alternative hypothesis). For example, in ASL, we assume ∆ > 0 (cf. 5.1.6) and
we construct the appropriate test statistic (cf. 5.1.23) for which greater values
are expected under the alternative hypothesis than under H0.

The inference rule then consists of pairs of the form

Φ0, ϕ[t, cα]

A
,

where ϕ[t, cα] is an observational sentence true in a model M = 〈M, f1, f2〉 iff
t(M) ≥ cα(M, f1).

Note that t(M) = s(Rk(M)) for a function s; this gives importance to the
study of the distribution function of the random variate RkM(Rkm(σ) = Rk(Mσ))
for a universe U satisfying Φ0 and H0.

5.1.18 Definition. t is a simple linear rank statistic if there is a function a:
N→ Q (rational sequence) such that

t (〈M, f1, f2〉) =
∑
o∈M

f1(o)a(f2(o)) .

If V1 is {0, 1}, this can be expressed as

∑

f2(o)=1

a(f2(o)) .

Note that is an almost continuous statistic under Φ0.

5.1.19 Lemma. Let U be a universe of type 〈1〉 such that DU,o is continuous
for each o ∈ U . Then under the assumption of d-homogeneity (under H0)

P ({σ; Mσ ∈ IMR
M}) = 1

for each sample M ⊆ U .

Proof. Our aim is to prove that, for each sample M ⊆ U such that card M = m,

P ({σ; there is an i, j,∈ {1, . . . ,m}, i 6= j, such that

Q(oi, σ) = Q(oj, σ)}) = 0 .

Denote by E the event in question and put Vi = Q(oi, .), Vj = Q(oj, .). Then

P (E) ≤
∑

1≤i<j≤m

P (Vi = Vj) =

(
m
2

)
P (V1 = V2)

(in the last equality we use H0). Moreover, DV1 = DV2 = F and F is continuous.
Now let x0 = −∞, xn+1 = +∞ and x1, . . . , xn be a sequence of real numbers
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such that F (xi+1)−F (xi) < ε, where ε > 0 is an arbitrary positive number (it is
possible to find such a sequence for each ε > 0 because F is continuous). Note
that

{σ;V1 = V2} ⊆
n⋃

i=0

{σ; xi ≤ V1,V2 < xi+1}

so that

P (V1 = V2) ≤
n∑

i=0

P (xi ≤ V1,V2 < xi+1) .

V1, V2 are stochastically independent (regularity of U), hence

P (xi ≤ V1,V2 < xi+1) = P (xi ≤ V1 < xi+1)P (xi ≤ V2 < xi+1) = [F (xi+1)−F (xi)]
2 .

Then

P (V1 = V2) ≤
n∑

i=1

[F (xi+1)− F (xi)]
2 ≤ ε

n∑
i=1

[F (xi+1)− F (xi)] = εF (+∞) = ε .

5.1.20 Discussion

(1) From the pont of view of probability theory, the ties play no role. On the
other hand, we observe some Q-structures in which ties can occur. Ties
occur owing to the following reasons:

(i) Error of rational approximation; has we considered more precise mea-
surements, these ties could have been avoided. Such ties are similar
to the case of missing information in 4.5.

(ii) The sample was observed in a random state σ for which Mσ ∈MR
M −

IMR
M ; we know that such σ have null probability; but this does not

imply that there is no such σ.

(Both cases will be treated in the same way.) Thus, if we are speaking about
observational properties of rank statistics (tests) we are forced to consider
ties. (Cf. 5.2.11 and 5.4.14.)

(2) Note that Lemma 5.1.19 holds for each alternative hypothesis under which
the distribution function is continuous.
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5.1.21 Theorem. Let U be a universe of type 〈1〉 such that DU,o is continuous
for each o ∈ U . Suppose that U |= H0. For each finite M ⊆ U , put Mσ = 〈M, fσ〉
and pur R(σ) = (fσ)∗ (i.e., R(σ) = rkfσ). Then (1) R ∈ RM with probability 1,
and (2) R induces on 〈RM ,P(RM)〉 the uniform distribution.

Proof

(1) Use Lemma 5.1.19.

(2) Consider P (R = η1) for arbitrary η1 ∈ RM (more precisely P (R(Mσ) =
η1)). Let η2 be an arbitrary enumeration of M , i.e., η2 ∈ RM . Then there
is a one-to-one mapping h of M such that η1 = η2oh. Denote by η−1

1 (j) the
object o ∈ M such that η1(o) = j (for j ∈ {1, . . . , m}), similarly for η−1

2 .
note that

η−1
1 (j) = h−1(η−1

2 (j)) .

Remember the notation V0 = Q(o, .). Then

P (R = η1) = P (Vη−1
1 (1) < Vη−1

1 (2) < . . .) = P (Vh−1η−1
2 (1) < Vh−1η−1

2 (2) < . . .) .

(∗)
But from the d-homogeneity (i.e., invariance under one-to-one mapping
of M) we know that the right-hand side of (*) equals

P (Vη−1
2 (1) < Vη−1

2 (2) < . . .) = P (R = η2) .

Hence, for each η2 ∈ RM , we have P (R = η1) = P (R = η2). From the
condition

∑
η∈RM

P (R = η) = 1, we obtain m!P (R = η1) = 1.

5.1.22 Discussion

(1) Let s be a function as in 5.1.16 (1). Let c be a rational number. Then, for
each U satisfying our frame assumptions and H0

P ({σ; s(Rk(Mσ)) ≥ c}) =
1

mM !
card{η ∈ RM ; s(〈M, f1, η〉) ≥ c}

(where f1Q1 ¹ M). If α is the desired rational significance level, we choose

cα(M, f1) = min

{
c ∈ range (sM,f1);

1

mM !
card {η ∈ RM ; sM,f1(η) ≥ c} ≤ α

}
.

(#)
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Note that the range of sM,f1 is finite and, hence, the number cα(M, f1)
can always be effectively constructed, cα(.) is a recursive function (see the
form of (#). But, for large mM , the constructions of c can be too complex
as a combinatorial problem. This is the reason for using the asymptotical
properties of rank statistics.

(2) We have seen that all rank statistics have the test property under H0

(and Φ0); they can be used as tests of H0. Thus, the choice of an appropri-
ate test depends on the alternative hypothesis only. In such considerations,
particular types of distribution functions play a role. A systematic theory
can be found in [Hájek and Šidák]. We give a few examples below. On the
other hand, such tests can be characterized from the observational point of
view: such an approach is taken in Sections 3 and 4.

5.1.23 Example. For testing H0 against ASL rank statistics of the following
form are used:

s(〈M, f1, η〉) =
∑
o∈M

f1(o)a(η(o))

where a is a non-decreasing rational mapping of N into Q (a non-decreasing
rational sequence). Remember that we assume V1 = {0, 1} here; hence, we may
write – equivalently –

s(〈M, f1, η〉) =
∑

f1(o)=1

a(η(o)) .

Remember also that we restrict ourselves in ASL to cases with ∆ > 0, i.e.,

DV2,o(x) =

{
F (x) if Q1(o) = 0 ,
F (x−∆) if Q1(o) = 1, where ∆ > 0 :

D-y

)( xF

y

)( xF

We see that P (V2,o1 ≥ x|Q1(o1) = 1) ≥ P (V2,o2 ≥ x|Q1(o2) = 0) and that there
is an x for which the inequality is strict. Thus, for o1 such that Q1(o1) = 1, the
probability of the values of V2,o1 being greater than x is larger than that for o2 such
that Q1(o2) = 1. Hence, the statistic should attain larger values than under H0, so
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that it is reasonable to use the decision rule of the form s(〈M, f1, η〉) ≥ cα(M, f1).
Now let

∑
o∈M

f1(o) = r, card(M) = m. Then, under H0,

E(sM,f1) = ra, VAR(Sm,f1) =
r(m− r)

m(m− 1)

m∑
i=1

(ai − a)2

This can be proved using Theorem 5.1.21 and Lemma 5.1.12.
We will now introduce particular rank statistics for testing M0 against ASL:

(1) The Wilcoxon statistic:

w(〈M, f1, η〉) = Σf1(o)=1η(o) .

Here

E(wM,f1) =
1

2
r(m + 1), VAR(wM,f1) =

1

12
mr(m− r) .

Let {Mk} be an increasing sequence of samples, denote

rk =
∑
o∈M

f1(o) = 1, mk = card (Mk) .

Then, under H0,

lim
k→+∞

Dw′Mk,f1
= DN (0,1) if lim

k→+∞
(min{rk, mk − rk}) = +∞

where w′
Mk,f1

=
wMk,f1 − EwMk,f1√

VARwMk,f1

.

DN (0,1) is the normalized normal distribution function. Thus, in inference
we use either the exact rule w(〈M, f1, η〉) ≥ cα(m, r) (for cα(m, r) see 5.1.22)
or the asymptotical rule

w(〈M, f1, η〉) ≥
(
Nα +

1

2
r(m + 1)

) √
1

12
rm(m− r) ,

where Nα is the (1 − α)-quantile of the normalized normal distribution.
Such a rule has the asymptotical test property (see 4.3.8).

An analogous way of using the normal approximation is approriate in other
cases, i.e.,

s(〈M, f1, η〉) ≥ (Nα + EsM,f )
√

VARsM,f .
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(2) The median statistic:

m(〈M, f, η〉) = Σf(o)=1a(η(o)) ,

where

a(η(o)) =





1 if η(o) > 1
2
(m + 1) ,

1
2

if η(o) = 1
2
(m + 1) ,

0 if η(o) < 1
2
(m + 1) .

Then, under H0,

E(mM,f =
1

2
r and VAR(mM,f ) =

{
r(m−r)
4(m−1)

for m even ,
r(m−r)

4m
for m odd .

An analogous asymptotical property holds as in (1).

5.1.24 Example. The most common statistic for testing H0 against ANRL is
the following:

s(〈M, f, η〉) =
∑
o∈M

coη(o) ,

where co = f(o). For ATL, we use

s1(M) =
∑
o∈M

coη(o) ,

where co is the rank of o w.r.t f .
Generally, for testing ANRL every statistic of the form

∑
o∈M

coη(o) in which

co1 > co2 iff f(o1) > f(o2) can be used. For the statistics s1, we have, under H0,

E(s1,M,f ) =
1

4
m(m + 1)2 ,

VAR(s1,M,f ) =
m2(m + 1)2(m− 1)

144
.

The normal approximation can be used.

5.1.25 Key words: random V-structures, almost continuous statistic; general
null hypothesis H0 of d-homogeneity, the frame assumptions Φ0, Φ−

2 , Φ2 (c.d.-
condition), alternative hypotheses ASL, ANRL, ATL; rank statistic, distribution
of enumerating random variate under H0.
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5.2 Rank tests of d-homogeneity and indepen-

dence

The assumption that one of the random quantities is in fact deterministic (as-
sumption (1) in 5.1.5) is too restrictive and inadequate for the use of rank tests in
methods of automated discovery. In this section, we remove the quoted assump-
tion and correspondingly generalize the described tests. It is not surprising that
we have to strenghten our null hypothesis H0 in an appropriate way and we have
to modify our alternative hypotheses similarly. The second aim of this section is
to present some trests concerning the dependence of two random quantities – the
coefficients of rank correlation.

Definition. Let U = 〈U,Q1, Q2〉 be a regular Σ-random V-structure of type
〈1, 1〉. Let, moreover, V1 ⊆ Q and suppose, for each o ∈ U and v ∈ V1, P ({σ :
Q1(o, σ) = v}) > 0.

(1) Then, for any o ∈ U , the conditional distribution function of V2,o = Q2(o, .)
w.r.t. V1,o is defined as follows:

D(V2/V1),o(x/v) =
P ({σ;V1,o(σ) = v&V2,o(σ) < x})

P ({σ;V1,o(σ) = v}) .

Note that the conditional distribution function is a mapping of V1×R into
[0, 1].

(2) We say that U is conditionally d-homogeneous (w.r.t Q1) if for each o1, o2 ∈
U and v ∈ V1

D(V2/V1),o1(x/v) = D(V2/V1),o2(x/v)

5.2.2 Lemma. Let the assumptions of 5.2.1 hold.

(1) If U is d-homogeneous, then U is conditionally d-homogeneous.

(2) The following conditions are equivalent:

(a) For each o ∈ U and each v1, v2 ∈ V1, DV2,o(x/V1) = D(V2/V1)(x/V2).

(b) For each o ∈ U , the random variates V1,o, V2,o are stochastically inde-
pendent.

(3) Consider, moreover, the condition

(c) The random structure U1 = 〈U,Q1〉 is d-homogeneous.
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Let U be conditionally d-homogeneous (w.r.t Q1) and let U satisfy (a) or (b)
or (c). Then U2 = 〈U,Q2〉 is d-homogeneous.

Proof

(1) is evident.

(2) (b)⇒(a): From the stochastical independence we have

D(V2/V1),o(x/v) =
P ({σ : V1,o(σ) = v&V2,o(σ) < x})

P ({σ : V1,o(σ) = v}) =

=
P ({σ : V1,o(σ) = v})P ({σ : V2,o(σ) < x})

P ({σ : V1,o(σ) = v}) = DV2,o(x) .

Thus, for arbitrary elements v1, v2 ∈ V1, we have

D(V2/V1),o(x/v1) = DV2,o(x) = D(V2/V1),o(x/v2) .

(a)⇒(b): By Lemma 4.4.14 we have

DV2,o(x) = P ({σ : V2,o(σ) < x}) =
∑
v∈V1

D(V2/V1),o(x/v)P ({σ;V1,o(σ) = v})

(∗)
Now, let v0 be an arbitrary element of V1. Using (a), conclude that the
right-hand side of (∗) is equal to

D(V2/V1),o(x/v0) ·
∑
v∈V1

P ({σ : V1,o(σ) = v0}) = D(V2/V1),o(x/v0) .

Thus, we have, for each v ∈ V1, D(V2/V1),o(./v) = DV2,o(.) which is equivalent
to the stochastical independence of V1 and V2.

(3) Let U be conditionally d-homogeneous and U satisfy (b). Consider two
objects o1, o2 ∈ U . Then, by (b), for each v ∈ V1,

D(V2/V1),o1(./v) = DV2,o1(.) and D(V2/V1),o2(./v) = DV2,o2(.) .

From the conditional d-homogeneity of U , we see that the left hand sides
of the previous equalities are equal and hence

DV2,o1(.) = DV2,o2(.)

For (a) we use (2).
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It remains to prove under (c) that the assertion holds. By (c), U1 is d-
homogeneous: hence, P ({σ;V1(σ) < v}) is independent of o. By 4.4.14, we
have

DV2,o(x) =
∑
v∈V1

D(V2/V1),o(x/v)P ({σ;V1,o(σ) = v}) .

The right-hand side of the previous equality is independent of o; hence, the
same holds for the left-hand side.

5.2.3 Corollary. If U is conditionally d-homogeneous (w.r.t Q1) and if U satis-
fies (a) and (c) or (b) and (c), then U is d-homogeneous.

Proof. By (a) or (c) we have d-homogenity of U2, (c) means the d-homogeneity
of U1. Use stochastical independence.

5.2.4 Discussion and Definition. Suppose, moreover, that V2 = R. Now we
state the following frame assumptions:

(1) The assumptions of 5.2.1 (positivity),

(2) for each o ∈ U , D(V2/V1),o(./v) is continity for each v ∈ V1 (continuity, i.e.,
p.c. conditions, Φ−

2 , see 5.1.14).

We are now able to formulate a generalization of the H0 hypothesis for this
case. This generalization will be called the hypothesis of independence and d-
homogeneity of the second quantity and will be denoted by H−

2 . H−
2 consists of

two conditions:

(3) For each o ∈ U , V1,o and V2,o are stochastically independent

(4) U2 = 〈U,Q2〉 is d-homogeneous.

Remember the t.c-conditions Φ2: For each o ∈ U , DU is continuous function
of two variables.

Under such frame assumptions we shall consider a stronger hypothesis H2 of
independence and d-homogeneity: it requires (3) and (5): U is d-homogeneous.

5.2.5 Remark. Note that

(1) the conditional d-homogeneity of U and (a) form 5.2.2 imply H−
2 ,

(2) H−
2 and (c) imply H2 and

(3) In 5.1.14 we require in Φ−
2 the continuity of DU in the second variable.

Under our conditions this is equivalent to (2) from 5.2.4.

5.2.6 Discussion. Now, we shall reformulate the alternative hypotheses de-
scribed in 5.1.6.
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(i) Assuming V1 = {0, 1}, the conditional ASL can be formulated as follows:

There is a function F (x) such that, for each o ∈ U ,

D(V2/V1),o(x/0) = F (x) and D(V2/V1),o(x/1) = F (x−∆) ,

where ∆ 6= 0 – as in 5.1.6 we restrict ourselves to the case ∆ > 0.

(ii) Assuming V1 = N, we obtain conditional ANRL:

There is a function F (x) such that

D(V2/V1),o(x/i) = F (x− i∆) ,

where ∆ 6= 0.

(iii) Assuming V1 ⊆ Q, conditional ATL can be stated as follows:

(a) U is conditionally d-homogeneous (w.r.t Q1), and

(b) if v1 < v2, then D(V2/V1),o(./v1) < D(V2/V1),o(./v2).

5.2.7 Remark. From 5.2.5 we know that if, in the contitional ANRL and con-
ditional ASL, we replace “∆ 6= 0” by “∆ = 0”, we obtain the null hypothesis H2.

5.2.8 Discussion. Appropriate tests are based on rank statistics, i.e., on func-
tions of the form s(〈M, f1, f2〉) mapping MV

M into Q. See 5.1.11 and 5.1.12. We
infer the alternative hypothesis if

s(〈M, f1, f2〉) ≥ cα(〈M, f1〉) .

But, now, for given M , both quantities are random, i.e., we have to consider the
models M1

σ and M2
σ obtained from U1 = 〈U,Q1〉 and U2 = 〈U,Q2〉 respectively,

by fixing σ and M . Hence, we are going to find an upper bound for the proba-
bility P ({σ; s(RkMσ) ≥ cα(M1

σ)}). Under our frame assumptions, if, under H−
2 ,

P ({σ; s(RkMσ) ≥ cα(M1
σ)}/{σ; M1

σ = 〈M, f1〉}) ≤ α for each 〈M, f1〉, then

P ({σ; s(RkMσ) ≥ cα(M1
σ)}) =

∑

f1:M→V1

P ({σ; s(RkMσ) ≥ cα(M1
σ)}/

/{σ; M1
σ = 〈M, f1〉})P ({σ; M1

σ = 〈M, f1〉}) ≤
≤ α

∑

f1:M→V1

P ({σ; M1
σ = 〈M, f1〉}) = α

and we obtain the desired upper bound.
On the other hand H−

2 implies H0 (d-homogeneity of U2) and underH−
2 ,
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P ({σ; s(RkMσ) ≥ cα(M1
σ)})/{σ; M1

σ = 〈M, f1〉}) =

=
P ({σ; s(RkMσ) ≥ cα(〈M, f1〉)&M1

σ = 〈M, f1〉})
P ({σ; M1

σ = 〈M, f1〉})
=

= P ({σ; s(RkMσ) ≥ cα(〈M, f1〉)})

and we can apply the results of 5.1.13-5.1.22, i.e., find values cα(〈M, f1〉) as
in 5.1.22. Hence, under our present assumptions Φ−

2 , each quantifier q, of type
〈1, 1〉 defined by the condition Asfq(〈M, f1, f2〉) = 1 iff s(〈M, f1, f2〉) ≥ cα(〈M, f1〉)
is an observational test of H−

2 .

5.2.9 Discussion and Definition. Consider the frame assumption Φ2, i.e.,
V1 = V2 = R and, for each o, DU,o is continuous (the t.c.-conditions). Under
these frame assumptions we can test the hypothesis H2. We can say that two
models M1 = 〈M1, g1, f1〉 and M2 = 〈M2, g2, f2〉 of type 〈1, 1〉 are weakly rank
equivalent if 〈M1, g

∗
1, f

∗
1 〉 and 〈M2, g

∗
2, f

∗
2 〉 are isomorphic. If M1 = 〈M, g, f〉, write

Rk2(M) for 〈M, g∗, f ∗〉. Then we can define strong rank statistics : they are of
the form t(M) = s(Rk2(M)) where s is a rational-valued function.

Under H2, assertions analogous to Lemma 5.1.19 and Theorem 5.1.21 can be
formulated.

5.2.10 Example. The most common strong rank statistics for such a case are:

(1) Spearmen’s rank correlation coefficient:

ρ(〈M, f1, f2〉) =
12

m2 −m

∑
o∈M

(
f ∗1 (o)− m + 1

2

)(
f ∗2 (o)− m + 1

2

)

where m = card(M).

(2) Kendall’s rank correlation coefficient

τ(〈M, f1, f2〉) =
1

m2 −m

∑

〈o1,o2〉,o1 6=o2∈M

sign(f ∗1 (o1)−f ∗1 (o2))sign(f ∗2 (o1)−f ∗2 (o2)) .

Here

sign(x) =





1 if x > 0
0 if x = 0

−1 if x < 0 .
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Note the following: (i) τ is not a linear function of f ∗1 , f ∗2 and (ii) ρ(M) is,
for testing purposes, equivalent to the simpler

s(〈M, f1, f2〉) =
∑
o∈M

(f ∗1 (o)f ∗2 (o) .

In both cases we measure the similarity of rank vectors f ∗1 , f ∗2 . Higher values
of rank correlation coefficients indicate positive stochastical dependence of
quantities. Thus, we use tests of the form ρ(〈M, f1, f2〉) = c1

α(mM) and
τ(〈M, f1, f2〉) = c2

α(mM), respectively.

5.2.11 Remark. As mentioned in 5.1.20, tied observations can occur. In such
a case, rank statistics are not well defined.

We have to use some supplementary modification of their definition. We
now describe briefly two methods. Let us observe, for a σ ∈ Σ, a structure
Mσ = 〈M, f1, f2〉. Suppose that for a set Mt = {o1, . . . , ot} we have f2(o1) =
. . . = f2(ot). For the sake of simplicity we assume f2 be one-to-one on M −Mt.
Then f ∗2 (o1) = . . . = f ∗2 (ot) = card{o ∈ M ; f2(o) ≤ f2(o1)}. One has to map Mt

(one-to-one) onto the numbers

card{o ∈ M ; f2(o) < f2(o1)}+ 1, . . . , card{o ∈ M ; f2(o) ≤ f2(o1)}+ t = f ∗2 (o1) ;

in such a manner one obtains an enumeration f ∗2 . There are t! such mappings.
Denote the set of these mapping by It(f2); f ∗ι2 is obtained by ι ∈ It(f2). There
are two possible methods of choosing a mapping ι ∈ It(f2).

(1) Randomization: Enumerate It(f2) and make an additional random experi-
ment with the possible outcomes {1, . . . , t!} each of them with probability
1
t!
. If the experiment yields the outcome j, use the mapping ιj ∈ It. So we

obtain in each case an enumeration f ∗2
′. Under H0 (or H−

2 , H2), the uniform
distribution on 〈RM ,P(RM)〉 is preserved. If there are more groups of tied
observations, the process is similar; see [Hájek and Šidák].

(2) Least favourable value. We can treat ties as missing information. We
consider a statistic s(Rk(Mσ)) or s(Rk2(Mσ)); for objects from Mt we have
“no” information. By ι ∈ It(f2), we construct a completion 〈M, f1, f

∗ι
2 〉.

We use ι0 ∈ It(f2) such that

s(〈M, f1, f
∗ι0
2 〉) = min

ι∈It(f2)
s(〈M, f1, f

∗ι
2 〉) .

The test is then s(〈M, f1, f
∗ι0
2 〉) ≥ cα(〈M, f1, 〉). The significance level never

exceeds the level of the untied procedure, i.e., of the test defined on IM.
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See Theorem 4.5.6. For more groups of tied observations the process is similar.
We shall go into more detail in Section 4.

5.2.12 Key words: Conditional d-homogeneity; the null hypotheses H−
2 and H2,

conditional alternative hypotheses, ties; Spearmen’s and Kendall’s rank correla-
tion coefficients.

5.3 Function calculi with enumeration models

As we have observed in the preceding section, an important class of tests is
related to functions on enumerations. In the present section, we are going to
study observational function calculi in which these functions can be dealt with.
We generalize slightly the notion of a function calculus by allowing two sorts of
functions.

5.3.1 Definition. Let a, b be two abstract symbols. A two-sorted monadic type
is a tuple of a′s and b′s. Let t = 〈t1, . . . , tn〉 be a type. A (two-sorted monadic)
enumeration structure of type t is a tuple 〈M, f1, . . . , fn〉 where M is a non-empty
finite set and, for each i, if ti = a then fi is a mapping of M into {0, 1}, and if
ti = b then fi is an enumeration of M .

The two sorted MOFC with enumeration models of type t are defined as fol-
lows:

(1) The set of abstract values is N.

(2) The set M of models consists of all enumeration structures of the type t
which are finite objects.

(3) The language consists of (i) variables, (ii) unary functors F1, . . . , Fn (Fi is of
sort ti); (iii) junctors will be 0, 1 (nullary), ¬ (unary) and &, ∨ (binary) with
the usual two-valued associated functions, (iv) quantifiers; each quantifier
has a type tq − a k-tuple of a’s and b’s. If tq = t = 〈t1, . . . , tk〉 is the type
of q, then Asfq maps the set of all models of type tq into {0, 1}. Asfq(M)
is supposed to be recursive in q and M .

Formulae are defined as follows: If Fi is a function symbol of sort s ∈ {a, b}
and if x is a variable, then Fi(x) is a formula of sort s. 0, 1 are formulae of
sort a. If ϕ is a formula of sort a, then ¬ϕ is as well. If ϕ, ψ are formulae of
sort a, then ϕ&ψ, ϕ ∨ ψ are formulae of sort a as well. If q is a quantifier of
type t = 〈t1, . . . , tk〉, if ϕ1, . . . , ϕk are formulae, ϕi of sort ti (i = 1, . . . , k) and
if × is a variable, then (qx)(ϕ1, . . . , ϕk) is a formula of sort a. Free and bound
variables are defined in the usual way. Also, the definition of ‖ϕ‖M [e] (e being a
M – sequence for ϕ) is unchanged; note that if ϕ is of sort a, then
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‖ϕ‖M [e] ∈ {0, 1} ,

and if ϕ is of sort b, then

‖ϕ‖M [e] ∈ {1, 2, . . . , card(M)} .

Note, further, that are no non-atomic formulae of sort b. In particular, each
closed formula is a sort a and, hence, two-valued.

5.3.2 Remark. Let F be an MOFC with enumeration models as described
above. Then:

(1) For each open formula ϕ of sort a distinct from 0 there is a semantically
equivalent formula in conjunctive normal form containing only function and
variables which occur in ϕ.

(2) For each closed formula ψ, each finite set A = {ϕ1, . . . , ϕn} of closed for-
mulae, A |= ψ iff |= ∧A → ψ.

(3) F is axiomatizable (decidable) iff it is strongly axiomatizable (decidable).
(Cf. 1.1.12).

5.3.3 Remark. Let t be a two sorted monadic type, let t̂ be the sequence
resulting from t by the replacement of a by 1 and b by 2. A multiple ordered
structure of type t̂ is an {0, 1}-valued structure M = 〈M, g1, . . . , gn〉 of type t̂
such that, for each i such that t̂i = 2, gi is a characteristic function of a linear
ordering of M , i.e., the relation ≺i defined by (o1 ≺i o2 iff gi(o1, o2) = 1) is a linear
ordering of M . There is a natural one-to-one correspondence of enumeration
structures of the two-sorted type t and multiply ordered structures of type t̂: If
M = 〈M, f1, . . . , fn〉 is an enumeration structure of the t = 〈t1, . . . , tn〉, then the
corresponding structure 〈M, g1, . . . , gn〉 is defined as follows:

If ti = a, then gi = fi

if ti = b, then gi(o2, o2) = 1 iff fi(o1) < f(o2) and gi(o1, o2) = 0

otherwise.
One could formulate some facts concerning the relation between the two-

sorted MOFC with enumeration models of type t and the corresponding predicate
calculus of type t with multiply ordered models, but we shall not do this. Now,
we are going to study some particular kinds of quantifiers.

5.3.4 Definition. Let M1 = 〈M1, f1, f2〉, M2 = 〈M2, g1, g2〉 be two models of
type 〈a, b〉 such that card(M1) = card(M2). We say that M1 is d-better that M2
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(M1 ºd M2) if there is an isomorphism ι of 〈M1, f1〉 and 〈M2, g1〉 such that, for
each o ∈ M1, if f1(o) = 1 then f2(o) ≥ g2(ιo) and if f1(o) = 0 then f2(o) ≤ g2(ιo).

A quantifier q of type 〈a, b〉 is called distinctive if, for each M1 and M2,
M2 ¹d M1 and Asfq(M2) = 1 implies Asfq(M1) = 1.

5.3.5 Definition and Remark. In the sequel, we shall often consider models of
type 〈a, b〉 (i.e., with one unary relation and one enumeration). If M = 〈M, f1, f2〉
is such a model, then we put mM = card(M) and rM = card{o ∈ M ; f1(o) = 1}.

5.3.6 Lemma. Let a : N→ Q be a non-decreasing recursive sequence of rational
numbers; let q be a quantifier of type 〈a, b〉 such that Asfq(〈M, f1, f2〉) = 1 iff

∑
o∈M

f1(o)a(f2(o)) =
∑

f(o)=1

a(f2(o)) ≥ cα(mM , rM) .

Then q is distinctive (here, c : N× N→ Q is a recursive function).

Proof. Let M1 ¹d M2 and Asfq(M1) = 1; let M1 = 〈M1, f1, f2〉, M2 =
〈M2, g1, g2〉 and let ι be the isomorphism from the definition of ¹d. Then

∑

f1(o)=1,o∈M1

a(f2(o)) =
∑

g1(ιo)=1,o∈M1

a(f2(o)) ≤

≤
∑

g1(ιo)=1,o∈M1

a(g2(ιo)) =
∑

g1(o)=1,o∈M2

a(g2(o)) .

5.3.7 Remark. The above mentioned case of distinctive quantifiers corresponds
to simple linear tests of ASL (such as the Wilcoxon or median tests). For another
case, see Problem (2).

5.3.8 Definition. A quantifier q of type 〈a, b〉 is called executive if there is an
mmin ∈ N such that

(i) for each m > mmin, there are models M1 and M2 such that mM1 = mM2

and Asfq(M1) = 1 and Asfq(M2) = 0, and

(ii) for each M , mM ≤ mmin implies Asfq(M) = 0.

5.3.9 Definition

(1) (Auxiliary). If M0 = 〈M, f1〉 is a model of type 〈a〉, let exp(M0) denote
the set of all models 〈M, f1, f2〉 of type 〈a, b〉 (〈a, b〉-expansions of M0).

Let G be a class of quantifiers of type 〈a, b〉; define an equivalence on
exp(M0) by putting M1 ∼G M2 iff Asfq(M1) = Asfq(M2) for each q ∈ G.
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C(M0) denotes the minimum of the cardinalities of the equivalence classes
in exp(M0).

(2) Moreover let α ∈ (0, 0.5]. A quantifier q ∈ G is said to be of level α (w.r.t. G)
if, for each M0, the following inequalities hold:

α ≥ 1

m!
card{M ∈ exp(M0); Asfq(M) = 1} > α− c(M0)

m!
, (∗)

where m = mM0
.

(3) By saying that a distinctive quantifier is of level α, we mean that it is of
level α w.r.t. all distinctive quantifiers.

5.3.10 Lemma. For distinctive quantifiers

C(M0) = C(rM0
,mM0

) = rM0
!(mM0

− rM0
)! .

Proof. Let M0 = 〈M, f1〉 be a model of type 〈a〉, with mM0
= m and rM0

= r.
For each M ∈ exp(M0), there are exactly r!(m − r)! many models in exp M0

d-equivalent to M , since each automorphism of M0 (isomorphism of M0, M0)
induces a d-equivalent structure; there are r!(m− r)! many such automorphisms.
Hence, C(M0) = r!(m− r)!. Cf. [Hájek and Šidák], Theorem IV.1.1.

5.3.11 Corollary. Each distinctive quantifier q with

Asfq(〈M, f1, f2〉) = 1

iff
s(〈M, f1, f2〉) ≥ cα(〈M, f1〉) ,

where s is a function on M{0,1}×N and cα is defined in 5.1.22, is of level α.

5.3.12 Example. In particular, all tests based on simple linear functions with a
non-decreasing sequence a (see 5.3.6) and with cα(M, f1) defined as in 5.1.22 are
of level α (i.e. Wilcoxon, median etc.).

5.3.13 Discussion. In Section 5.1, we have discussed rank tests of H0: in fact
they are based on structures of type 〈ε, b〉, where ε is an arbitrary sort (corre-
sponding to {0, 1} or more general). In particular, rank tests of H0 and ASL
correspond to our distinctive quantifiers. In 5.1.19 and 5.1.21, we have proved,
in fact, that each observational test of H0 against an arbitrary alternative hy-
pothesis A (stable under rank equivalence of models) is related to a quantifier of
type 〈ε, b〉 satisfying the left-hand side of the inequality (*) (5.3.9). For each rank
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test not satisfying the right-hand side of (*), there is then a test of H0 against A
uniformly more powerful (see 4.3.5). The class is given by the alternative hy-
pothesis A. For ASL, we obtain the class of all distinctive quantifiers.

5.3.14 Denotation and Lemma. Let α ∈ (0, 0.5] be given; define mα =
max

{
m ∈ N; 1

m!
> α

}
. Let q be a quantifier of level α (w.r.t. a class G). Then,

for each model M , mM ≤ mα implies Asfq(M) = 0.

Proof. Let there be a model M , M = 〈M, f1, f2〉 and mM ≤ mα, such that
Asfq(M) = 1. Then

m+ = card{N ∈ exp(〈M, f1〉) ; Asfq(N) = 1} ≥ 1

and from mM ≤ mα we have 1
mM !

> α. Hence, m+

mM
> α, which is a contradiction

with the left-hand inequality in (*).

5.3.15 Corollary. Let q be an executive quantifier of level α (w.r.t a class G).
Then mmin(q) ≥ mα.

5.3.16 Definition and Lemma. Let a class G be given (for M0 and other
notations see 5.3.9). Denote

C(m) = min{C(M0); mM0
= m} ,

and

mG
α = sup

{
m ∈ N ;

C(m)

m!
> α

}
.

Let q be a quantifier of level α (w.r.t. G) such that (i) C(m)
m!

is non-increasing

and (ii) lim
m→+∞

C(m)
m!

< α. Then q is executive and mmin(q) = mG
α.

Proof. Condition (i) implies that mG
α ∈ N. Suppose now that there is an m > mG

α

such that, for each M , mM = m, Asfq(M) = 0. There is an M0, mM0
= m, such

that

C(M0)

mM0
!
≤ α i.e. α− C(M0)

mM0
!
≥ 0 .

On the other hand, {M ∈ exp M0; AsfqM = 1} = 0 and we obtain a contradic-
tion with the right-hand inequality in (*). Now let m ≤ mG

α and Asfq(M) = 1 for
an M , mM = m. There is an M0 such that M ∈ exp(M0) and M is an element
of an equivalence class with cardinality greater than or equal to C(M0) ≥ C(m).
But, by (i),
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C(m)

m!
≥ C(mG

α)

mG
α!

> α

and we have a contradiction with the left hand side of (*).

5.3.17 Corollary. If α ∈ (0, 0.5], then each distinctive quantifier q of level α is
executive.

Proof. Use Lemma 5.3.10. For distinctive quantifiers we have

G(m) =

{ (
1
2
m

)
!2 for m even ,(

m+1
2

)
!
(

m−1
2

)
! for m odd ;

hence, lim
m→+∞

C(m)
m!

= 0. Then md
α is the last m for which C(m)

m!
> α.

5.3.18 Example. For α = 0.05 we obtain md
α = 5

(
C(5)
5!

= 0.1, C(6)
6!

= 0.033
)
,

for α = 0.025 we have md
α = 7.

5.3.19 Definition. An executive distinctive quantifier q is called d-executive if
for each m > mmin(q) there are rmin(m, q) and rmax(m, q) ∈ N (rmin + 1 < rmax)
such that the following holds:

(i) If M = 〈M, f1, f2〉 is such that mM = m and (rM ≤ rmin(m, q) or rM ≥
rmax(m, q)), then Asfq(M) = 0,

(ii) for each r ∈ (rmin(m, q), rmax(m, q) there are models M1, M2 such that
Asfq(M1) 6= Asfq(M2) and mM1

= mM2
= m, rM1

= rM2
= r.

5.3.20 Definition and Lemma. Let α ∈ (0, 0.5] and let m > md
α (md

α was
defined in 5.3.17). Let rα(m) be the maximal r such that for i = 1, . . . , r we have

10@ m
i

1A > α. Let q be a distinctive quantifier of level α. Then q is d-executive

with rmin(m, q) = rα(m) and rmax(m, q) = m− rα(m).

Proof. Let M0 = 〈M, f1〉 be a model of type 〈a〉 with mM0
= m, rM0

=
r. For distinctive quantifiers we have, by 5.3.10, C(M0) = r!(m − r)!, so that
C(M0)

m!
= 10@ m

r

1A . Let a distinctive quantifier q be given. Suppose now that

r ≤ rα(m), then 10@ m
r

1A > α. On the other hand, if there is an M ∈ exp(M0)

with Asfq(M) = 1, then putting As(M0) = card{M ∈ exp M0; AsfqM = 1} we
have, since q is of level α:
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α ≥ As(M0)

m!
≥ CM0

m
=

1(
m
r

) ,

with contradicts

1(
m
r

) > α .

Furthermore, if there is an r ∈ (rα(m),m − rα(m)) such that, for each M
with rM = r and mM = m, Asfq(M) = 0, since q is of level α we obtain
0 > α − 10@ m

r

1A ; which contradicts the definition of rα(m). On the other hand,

if for each M with rM = r, mM = m, we have Asfq(M) = 1, then we obtain
{N ∈ exp M0; Asfq(N = 1} = exp(M0). But then As(M0) = m!, and this
contradicts the left-hand inequality in (*) from 5.3.9.

5.3.21 Remark

(1) Note that 10@ m
r

1A ≥ 1
m!

so that the condition of 5.3.20 is stronger that the

condition of 5.3.14. If 10@ m
r

1A ≤ α, then m > mα.

(2) Note t hat, e.g., the Wilcoxon two sample test attains exactly the bounds
introduced above; see [Pearson and Hartley]. This means that it is of level α
(for α = 0.1 we have: m = 10, r = 1, m = 5, r = 2, . . . etc.).

(3) Corollary: Let a calculus F be given and let q be a distinctive quantifier
of the level α. Let M be a model, mM = m. For each of the designated
open formulae ϕ, F of the appropriate sorts,

card{o ∈ M ; ‖ϕ‖M [o] = 1} 6∈ (rα(m),m− rα(m))

implies M |= ¬q(ϕ, F ).

Hence, if Extr is a quantifier of type 〈a〉, with AsfExtr(M) = 1 iff rM 6∈
(rα(m),m− rα(m)), then the rule

{
Extr(ϕ)

¬q(ϕ, F )
; ϕ, F

}

is sound (Extr(ϕ) is read “ϕ is extremely frequented”).
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5.3.22 Definition

(1) Let q1, q2 be two distinctive quantifiers. q1 is stronger that q2 if, for each M ,
Asfq2(M) = 1 implies Asfq1(M) = 1. In fact, if for q1 and q2 the left-hand
inequality from (*) (5.3.9) holds, i.e., q1 and q2 are observational tests of H0,
then q1 is a uniformly more powerful test of H0 and ASL than q2 in the
usual statistical sense.

(2) {qα}α∈A (A ⊆ (0, 0.5]) is a monotone class of distinctive quantifiers if α1 <
α2 implies that qα2 is stronger than qα1 .

5.3.23 Theorem. Let q1, q2 be distinctive quantifiers both of a given level α,
and let q1 be stronger than q2. Them

{M ; Asfq1(M) = 1} = {M ; Asfq2(M) = 1} .

Proof. Denote Asqi
(M0) = {N ∈ exp(M)0; Asfqi

(N) = 1}. For each M0 of type
〈a, b〉 with mM0

= m, rM0
= r, we have the following:

(i) Asq1(M0) ⊇ Asq2(M0) ,

(ii)
card Asq1(M0)

m!
> α− 1(

m
r

) ,

(iii)
card Asq2(M0)

m!
> α− 1(

m
r

) .

Suppose that m > md
α and r ∈ (rα(m),m− rα(m)). If there is an M1 ∈ exp(M0)

such that Asfq1(M1) = 1 and Asfq2(M1) = 0, then the same holds for each
M ∈ exp(M0) from the class of d-equivalence determined by M1; this class is of
cardinality greater than or equal to r!(m− r)!. Then

card Asq2(M0) ≥ card Asq1(M0)− r!(m− r)!

which contradicts (iii).

5.3.24 Example. Let a : N → Q be a non-decreasing sequence of rational
numbers (cf. 5.3.6). For a model M = 〈M, f1, f2〉 of type 〈a, b〉, let a[M ] be∑
f1(o)=1

a(f2(o)). Given m and r, take a model M1 = 〈M, g1〉 of type 〈a〉 such that

mM1
= m and rM1

= r. For any M ∈ exp(M1), consider

{N ∈ exp(M1); a[N ] ≥ a[M ]} = Greater(a,M) .
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(Note that if U |= Φ0 and Q1 ¹ M = f1, then, by 5.2.21,

PU({σ; a[M ] ≥ a[M ]}) =
1

m!
card (Greater (a, M)) .)

Put

cα(r,m) = min{a[M ]; M ∈ exp(M1) and
1

m!
card (Greater (a,M)) ≤ α}

Let qα be defined by putting Asfqα(M) = 1 iff a[M ] ≥ cα(rM ,mM). Then
{qα}(0,0.5]∩Q is a monotone class.

For example, for a(i) = i, we have the monotone class corresponding to the
Wilcoxon tests for different values of significance level.

5.3.25 Remark. The above results will be used in the logic of suggestion
(cf. 7.4.2).

5.3.26 Theorem. Consider a calculus F (MOFC with enumeration models),
let q be a d-executive quantifier. There are no tautologies of the form q(ϕ, F )
(ϕ, F designated open).

The proof is left to the reader as an easy exercise (use d-executiveness).

3.5.27 Lemma. Let q be a d-executive quantifier and let ϕ, ψ be two designated
open formulae. Suppose that each of the following formulae is satisfiable: ϕ, ¬ϕ,
ψ, ¬ψ. Then q(α, F ) logically implies q(ψ, F ) iff ϕ is logically equivalent to ψ.

Proof. First, assume ϕ 2 ψ: let u10 be a card satisfying ϕ&¬ψ.

(i) If there is a card u01 satisfying ¬ϕ&ψ, then take m > mmin, r such that r ∈
(rmin(m), rmax(m)) and let M1 = 〈M, f+

1 〉 be such that mM = m and rM =
m. If M0 is a model with the field M in which r objects have the card u10

and the remaining objects have the card u01, then M1 = 〈M, ‖ϕ‖M0
〉. If we

put f−1 (o) = 1− f+
1 (o), then f−1 = ‖ψ‖M0

. Let f2 be an enumeration of M
such that f+

1 (o1) = 1 and f+
i (o2) = 0 implies f2(o1) > f2(o2). Then, for each

M ∈ exp(M1), we have M+ = 〈M, f+
1 , f2〉 ºd M so that Asfq(M

+) = 1.
Consider M− = 〈M, f−1 , f2〉. For each M ∈ exp(〈M, f1〉), we have M− ¹d

M ; hence, AsfqM
− = 0. Summarizing, if M∗ = 〈M0, f2〉 is the expansion

of M0 interpreting F as f2, then ‖q(ϕ, F )‖M∗ = 1 and ‖q(ψ, F )‖M = 0:
hence, q(ϕ, F ) does not imply q(ψ, F ).

(ii) If there is no u01, then there is a card u00 satisfying ¬ϕ&¬ψ (since ¬ϕ
is satisfiable; furthermore, since ψ is satisfiable, ϕ&ψ is also satisfiable.
Let us form a model M0 with the field M of cardinality m in which
each object has one of the cards u10, u00, u11 and, if their frequencies
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are denoted m10, m00, m11, respectively, then m11 + m10 = r but m11 ≤
rmin(m). Put ‖ϕ‖M0

= f1 and let f+
2 be such that Asfq(〈M1, f1, f

+
2 〉) = 1.

Then Asfq(〈M, ‖ψ‖M0
, f+

2 〉) = 0, since the frequency of ‖ψ‖M0
is less than

or equal to rmin(m). Put M∗ = 〈M0, f
+
2 〉; then ‖q(ϕ, F )‖M∗ = 1 and

‖q(ψ, F )‖M∗ = 0.

Finally, assume ϕ |= ψ but ψ 2 ϕ; let u10 be a card satisfying ¬ϕ&ψ. Since ϕ
is satisfiable, we have a card u11 satisfying ϕ&ψ, and and since ¬ψ is satisfiable
we have a card u00 satisfying ¬ϕ&¬ψ. Let m01, m11, m00 have the obvious
meaning; suppose that M0 is such that m11 = r but m11 + m01 ≥ rmax(m) (and,
obviously, m = card(M) = m11 + m01 + m00). Let f1 = ‖ϕ‖M0

and let f+
2 be

such that Asfq(〈M, f1, f
+
2 〉) = 1. Then, putting M∗ = 〈M0, f1, f2〉, we have

‖q(ϕ, F )‖M∗ = 1 and ‖q(ψ, F )‖M∗ = 0. The proof is thus completed.

5.3.28 Theorem. Let q be a d-executive quantifier. If R is a binary relation on
factual designated open formulae and if

I =

{
q(ϕ, F )

q(ψ, F )
; ϕRψ

}

is sound, then ϕRψ implies that ϕ and ψ are logically equivalent.

Proof. The theorem is a corollary of the previous lemma.

5.3.29 Remark. This means that there is no non-trivial deduction rule of the
form just described.

5.3.30 Key words: enumeration models, distinctive quantifiers, executive and
d-executive quantifiers, quantifiers of level α; monotone classes of distinctive
quantifiers.

5.4 Observational monadic function calculi with

rational valued models

In the present section, we introduce a class of calculi which enables us to describe
some tasks of the logic of suggestion, particularly in situations with real-valued
random quantities (cf. Section 4 of Chapter 7). In accordance with Chapter 4
and Section 1 of Chapter 5, the corresponding observational calculi have rational-
valued models.

First, we define a new kind of quantifiers (correlational quantifiers) in obser-
vational calculi with enumeration models; the theory of quantifiers of this kind
is quite uninteresting except in connection with rational-valued models and the
corresponding quantifiers. So we define with such models and the particular class
of quantifiers (rank quantifiers).
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The relation between distinctive and correlational quantifiers will be consid-
ered.

5.4.1 Definition. Let M1 = 〈M1, f1, f2〉 and M2 = 〈M2, g1, g2〉 be two models
of type 〈b, b〉. M1 is c-better then M2 (M1 ºc M2) if there is a one-to-one
mapping τ of M2 onto M1 such that |f1(τo)− f2(τo)| ≤ |g1(o)− g2(o)| for each
o ∈ M2.

A quantifier q of type 〈b, b〉 is called correlational if Asfq(M2) = 1 and M1 ºc

M2 imply Asfq(M1) = 1.

5.4.2 Discussion. As in the case of quantifiers of type 〈a, b〉 we can define
executive quantifiers of type 〈b, b〉 and (correlational) quantifiers of level α (w.r.t
all correlational quantifiers).

In the first case, we require that there is a number mmin(q) such that for
each model M of type 〈b, b〉, mM ≤ mmin(q) implies Asfq(M) = 0, and for
each m > mmin(q) there are two models M1, M2, mM1

= mM2
= m such that

Asfq(M1) = 1 and Asfq(M2) = 0.

Almost all that is said bellow (5.4.3-5.4.11) is formulated for all quantifiers of
type 〈b, b〉; but the only class of quantifiers of type 〈b, b〉 which is really useful is
the class of correlational quantifiers (as far as the authors know).

5.4.3 Definition (auxiliary). Each pair f1, f2 of enumerations of a set M
determines a permutation of {1, . . . , card(M)} denoted by πf1,f2 and defined as
follows: πf1,f2(i) = f2(f

−1
1 (i)). If M = 〈M, f1, f2〉 is a model of type 〈b, b〉, then

we write πM instead of πf1,f2 . See Problem (8).

5.4.4 Lemma. Consider two models M1 = 〈M1, f1, f2〉 and M2 = 〈M2, g1, g2〉
of type 〈b, b〉. Then πM1

= πM2
iff M1 and M2 are isomorphic.

Proof. Let τ be a one-to-one mapping of M1 onto M2 such that f1(o) = g1(τo)
for each o, and let πM1

= πM2
. Then

f2(o) = πM1
(f1(o)) = πM2

(g1(τo) = g2(τo)

and τ is an isomorphism.

Conversely, let τ be an isomorphism of M1 and M2. Then

πM1
(i) = f2(f

−1
1 (i)) = f2(τ

−1(g−1
1 (i))) = g2(g

−1
1 (i)) = πM2

(i) ,

hence πM1 = πM2 .

5.4.5 Corollary. Let card(M) = m; then structures of type 〈b, b〉 with field M
decompose into m! isomorphism classes.
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5.4.6 Discussion. Let U be a random structure (of type 〈1, 1〉, satisfying the
t.c.-condition (see 5.1.14), i.e., U |= Φ2. Given an M ⊆ U , card(M) = m, con-
sider Rk2(Mσ) = 〈M, f ∗1σ, f

∗
2σ〉 (cf. 5.2.9). As in 5.1.19 and 5.1.21, one shows

that P ({σ; Rk2(Mσ) is a structure of type 〈b, b〉}) = 1 and under H2 (indepen-
dence and d-homogeneity)

P ({σ; πRk2(Mσ) =}=
1

m!

for each permutation ν of 〈1, . . . , m〉.

5.4.7 Definition. Let a quantifier q of type 〈b, b〉 be given. Denote EM,q =
{ν permutation of 〈1, . . . , m〉; for an M with field M , πM = and Asfq(M) = 1}.
Let a number α ∈ (0, 0.5] be given. We say that q is of level α if for each m ∈ N
and for each M , card(M) = m,

α ≥ cardEM,q

m!
> α− 1

m
.

5.4.8 Discussion

(i) Let q be of level α in the sense of 5.4.7. Then q is of level α′ w.r.t. all
quantifiers of type 〈b, b〉.

(ii) The words “for each M , card(M) = m” in the previous definition can be
replaced by “for an M such that card(M) = m”.

(iii) If we consider a model M0 = 〈M, f1〉 of type 〈b〉 with card(M) = m, then
exp(M0) has cardinality m! and contains representatives of all classes of
the permutational equivalence on models of type 〈b, b〉 and of the given
cardinality. Moreover, C(M0) = 1 (w.r.t. all quantifiers of type 〈b, b〉).
Now, we have

card EM,q = card{M ∈ exp(M0); Asfq(M) = 1}

for each M0 of type 〈b〉 and with field M . Thus, we see the consistency of
the present definition with the one in 5.3.9.

(iv) Note that being of level α “w.r.t. all quantifiers of type 〈b, b, 〉” is equivalent
to being of level α “w.r.t. all correlational quantifiers”. In the following,
we shall say simply “a quantifier is of level α”.

5.4.9 Remark. As in 5.3.16, we can prove that if a quantifier q of type 〈b, b〉 is
of level α, then q is executive with mmin(q) = mα.
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5.4.10 Definition. We can define a monotone class of quantifiers of type 〈b, b〉
as follows: A class {qα}α∈A, A ⊆ (0, 0.5] is monotone class iff

(1) qα is level α,

(2) α1 < α2 implies EM,qα1
⊆ EM,qα2

for each M finite.

5.4.11 Remark. We now summarize some useful but trivial facts concerning
executive correlational quantifiers: Let a calculus F be given:

(1) For each model M , mM > mmin(q) implies M |= q(F, F ).

(2) For each model M , mM ≤ mmin(q) implies M |= ¬q(F, F ), in particular,
for quantifiers of level α, if mM ≤ mα then M |= ¬q(F, F ).

(3) Denote by qmin a quantifier of the empty type with Asfqmin
(M) = 1 iff

mM > mmin(q). Then qmin → q(F, F ) is a tautology.

(4) For q(F1, F2) where F1 6= F2, there is a models M with mM > mmin(q) such
that M |= ¬q(F1, F2).

5.4.12 Example. (1) Consider two particular cases of correlational quantifiers:

Spearmen’s ρ:

Asfq(〈M, f1, f2〉) = 1 if
∑
o∈M

f1(o)f2(o) ≥ cα(mM) ,

Kendall’s τ (w-correlational; see Problem (8,e)):

Asfτ (〈M, f1, f2〉) = 1 if
∑

o,o′∈M,o 6=o′
sign(f1(o)−f1(o

′))sign(f2(o)−f(o′)) ≥ c′α(mM) .

For further examples see Problem (9).

5.4.13 Discussion and definition. Now we shall describe a more general situa-
tion. It is usual that in many research situations we investigate real random quan-
tities and {0, 1}-random quantities together. Corresponding observational calculi
must then have models with both rational-valued and {0, 1}-valued quantities,
i.e., such models are V-structures, where V = 〈{0, 1, }k1 ,Qk2〉 (k1k2 ∈ N). Let
M be set of all finite V-structures. Hence, in such calculi we consider predicates
P1, . . . , Pk1 and rational function symbols F1, . . . Fk2 , assumed to be monadic.

The type of function calculus in question is
〈a, . . . , a, c, . . . , c〉
k1 − times k2 − times

. Further,

let there be given sets of designated open formulae of two sorts a and c. Suppose
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that ‖ϕ‖M is determined by a {0, 1}k1-structure 〈M, ‖P1‖M , . . . , ‖Pk1‖M〉 if ϕ is
of sort a and by a Qk2 structure 〈M, ‖F1‖M , . . . , ‖Fk2‖M〉 if ϕ is of sort c. Now,
we can consider a reasonable class of quantifiers.

The most important thing now is the definition of a rank quantifier. (Cf. Def-
inition 5.1.14). A quantifier q of type 〈a, c〉 (or 〈c, c, 〉 or 〈b, c〉) is a rank quantifier
if:

Asfq(M) = Asfq(Rk(M))

i.e., If M = 〈M, f1, f2〉, then Asfq(M) = Asfq(〈M, f ∗1 , f ∗2 〉). Analogously, a
quantifier q of type 〈c, c〉 is a strong rank quantifier (cf. 5.1.9) if Asfq(M) =
Asfq(Rk2(M)), i.e., if M = 〈M, f1, f2〉, then Asfq(M) = Asfq(〈M, f1, f2〉).

5.4.14 Remark. Consider random 〈{0, 1},R〉- structures now; considerations
for 〈R,R〉-structures are similar.

Remember that – by 5.1.19 – if U satisfies Φ0 (d.c.-condition) or Φ2 (p.c.-
condition) and if M ⊆ U is a finite sample, then P ({σ; Rk2(Mσ) is of type
〈a, b〉}) = 1. i.e., if Mσ = 〈M, f1σ, f2σ〉, then P (f ∗2σ is an enumeration) = 1.

Let q0 be a quantifier of type 〈a, b〉 i.e., Asfq0 is defined on all structures of
type 〈a, b〉. How can q0 be extended to a rank quantifier q?

If M = 〈M, f1, f2〉 is a model of type 〈a, c〉 and if f2 is one-to-one, then
Rk(M) is of type 〈a, b〉 (f ∗2 ∈ RM) and Asfq(M) = Asfq0(Rk(M)) is uniquely
determined. If this is not the case, then f ∗2 is a mapping of M onto a proper
subset of {1, . . . , card(M)} with the following property: If i has ki pre-images
in f ∗2 , then i − 1, i − 2, . . . , i − ki + 1 have no pre-images. Call a function η :
M → {1, . . . , card(M)} a pseudoenumeration if η has the property just stated
about f ∗2 . Say that an enumeration ξ of M linearizes η if, for each i in the range
of η, when η−1(i) has ki elements then ξ maps η−1(i) onto {i− 1, . . . , i− ki + 1}.
The following table gives an example:

M a b c d e f
2 2 5 5 5 6
1 2 3 4 5 6

By 5.1.20, we assume that if in our observed Mσ = 〈M, f1σ, f2σ〉, f2σ is not one-
to-one, then, in fact, Mσ is an inexact observation of a structure 〈M, f1σ, f̂2σ〉
where f̂ ∗2σ is a linearization of f̂ ∗2σ. Hence, one way in which to extend the def-
inition of Asfq to models 〈M, f1, f2〉 where f ∗2 is a pseudoenumeration is to put

Asfq(〈M, f1, f2〉) = 1 iff Asfq0(〈M, f1, f̂2〉) = 1 for all linearizations f̂2 of f ∗2 . Then
Asfq extends to all models of type 〈a, c〉 and q is a rank quantifier. This extension
can be called the secured extension of q0, and the obtained rank quantifier q can
be called the secured rank quantifier.
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Another possibility is to associate with each M a preserred enumeration enM

of M (corresponding, e.g., to the order in which the objects were observed) and
associate with each pseudoenumeration η the preferred linearization s defined
in accordance with preferred enumeration (for each o1, o2 ∈ M , η(o1) = η(o2)
and enm(o1) enM(o2), Hence, we can define the preferring expension of q0 by
putting Asfq(〈M, f1, f2〉) = 1 iff Asfq0(〈M, f1, f̂2〉) = 1 where f̂2 is the preferred
linearization of f ∗2 .

For strong rank quantifiers (i.e. random 〈R,R〉-structures), extensions are
completely analogous.

5.4.15 Definition and Lemma. Let q be a rank quantifier of type 〈a, c〉. Let
M = 〈M, f1, f2〉 be a model of type 〈a, c〉. A critical linearization of f ∗2 w.r.t. M
is each f̂2 such that Asfq(〈M, f1, f̂2〉) = 1 implies Asfq(〈M, f1, f2〉) = 1 for each

linearization f̂2 of f ∗2 .
Thus, for secured rank quantifiers, if f ∗2 is a pseudoenumeration, we need to

look for a critical linearization.

Lemma. Let q be a secured extension of a distinctive quantifier and let M =
〈M, f1, f2〉 be a model for which f ∗2 is a pseudoenumeration. Each f̂2 satisfying
the following conditions is a critical linearization of f ∗2 w.r.t. M :

(1) If (f ∗2 )−1(i) has one element, then f̂−1
2 (i) = (f ∗2 )−1(i).

(2) If card(f ∗2 )−1(i) = ki > 1, then f̂2 maps (f ∗2 )−1(i) onto {i−1, . . . , i−ki +1}
in such a way that f1(o1) = 1 and f1(o2) = 0 imply f̂2(o1) > f̂2(o2) for
arbitrary o1, o2 ∈ (f ∗)−1(i).

Proof. 〈M, f1, f̂2〉 is the least element (w.r.t. ¹d) in the set of all models obtained
by the linearization of Rk(M).

5.4.16 Remark

(1) In a similar way, we obtain the critical linearization of the secured exten-
sion q of a correlational quantifier. Then we use the following condition:

If f ∗1 (o1) > f ∗1 (o2), then f̂2(o1) < f̂2(o2)

(i.e., we first linearize f ∗2 ) and

if f̂2(o1) < f̂ ∗2 (o2), then f̂1(o1) > f̂1(o2) .

For example,
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f ∗1 f ∗2 f̂2 (or) f̂1 (or)
2
2
5
5
5
6

1
2
5
4
4
6

1
2
5
4
3
6




1
2
5
3
4
6




2
1
3
4
5
6




2
1
3
5
4
6




Note that both possibilities determine the same permutation.

Obviously, we can first linearize f ∗1 ; in our example we get

f̂1 f̂2

2 1
1 2
3 5 and we obtain the same permutation.
4 4
5 3
6 6

(2) Remember Theorem 4.5.6 which states the preservation of the test property
for secured extensions.

5.4.17 Definition. A strong rank quantifier is a correlational rank quantifier
if q restricted to models of type 〈b, b〉 is a correlational quantifier in the sense
of 5.4.1.

5.4.18 Lemma. Let q be a correlational rank quantifier, and let IM be as
in 5.1.14 (〈M, f1, f2〉 ∈ IM iff f2 are one-to-one). Then, for each M ∈ IM and
all designated open formulas ϕ1, ϕ2 of sort c,

‖q(ϕ1, ϕ2‖M = ‖q(ϕ2, ϕ1‖M .

Proof.

‖q(ϕ1, ϕ2‖M = Asfq(〈M, ‖ϕ1‖M , ‖ϕ2‖M〉) = Asfq(〈M, (‖ϕ1‖M)∗, (‖ϕ2‖M)∗〉) .

Hence it suffices to prove that Asfq(〈M, f1, f2〉) = Asfq(〈M, f2, f1〉) for 〈M, f1, f2〉
of type 〈b, b〉. But the last fact follows directly from the definition.
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5.4.19 Remark. From Kendall’s considerations in [Kendall 1975] we can use
the definition of general correlation coefficient. General correlation coefficients
are functions on 〈R,R〉-structures of the following form:

k(〈M, f1, f2〉) =

∑
i,j,∈M

aijbij

√ ∑
i,j,∈M

a2
ij

∑
i,j,∈M

b2
ij

,

where aij = f(f1(i), f1(j)), bij = g(f2(i), f2(j)) for some functions f , g satisfying
f(y, x) = −f(x, y), g(y, x) = −g(x, y) (in particular, f(x, x) = g(x, x) = 0).

5.4.20 Lemma. (Kendall) Let f(x, y), g(x, y) be positive, non-decreasing recur-
sive functions of |x− y|. Define a quantifier q as follows: For each M ∈ IM〈Q,Q〉,

Asfq(〈M, f1, f2〉) = 1 if k(Rk2(M)) ≥ c(mM) ,

where c is a recursive function on N. Then the secured extension of q is a w-
correlational rank quantifier.

Proof. See Problem (8).
Compare with the form of Spearmen’s ρ and Kendall’s τ .

5.4.21 Now we have to interrupt our investigations of rank calculi. For further
considerations that are connected with the logic of suggestion we need notions
that will be introduced in Chapter 6. We shall continue with some discussions
on the practical applicability of rank calculi in Chapter 7, Section 4.

5.4.22 Key words: correlational quantifiers, rank quantifiers, strong rank quan-
tifiers, secured extensions, correlational, distinctive rank quantifiers.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 5

(1) Consider random 〈R,R〉-structures satisfying the d.c.-condition (see 5.1.5).
Under this frame assumption we can formulate the alternative of general
regression in location (AGRL):

There is a function F (x) such that

DV2,o(x) = F (x−Q1(o)∆) ,

where ∆ 6= 0. If ∆ = 0, we obtain H0.

Moreover, if one defines general conditional distribution functions (see, e.g.,
[Burril]), then the conditional AGRL can be stated as follows: There is a
function F (x) such that
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D(V2/V1),o(x/y) = F (x−∆y) (∆ 6= 0) .

If we consider ∆ > 0, then we can use tests of the form:

∑
o∈M

b(f1(o))a(f2(o)) ≥ cα(〈M, f1〉) , (∗)

where a and b are non-decreasing recursive sequences of rational numbers.
Apply to such a case considerations of 5.1.19-5.1.22 and 5.2.8. (Prove that
by (*) we can define a regression quantifier in the sense of 7.4.10.)

(2) Consider the following statistic (Haga test) for testing ASL (and c.ASL):

T (〈M, f1, f2〉) = A(〈M, f1, f2〉) + B(〈M, f1, f2〉) ,

where

A(〈M, f1, f2〉) = card{o, f1(o) = 1 and f2(o) > max{f2(o
′); f1(o

′) = 0}}

and

B(〈M, f1, f2〉) = card{o, f1(o) = 0 and f2(o) < min{f2(o
′); f1(o

′) = 1}} .

Prove that a quantifier with the associated function

Asfq(M) = 1 if T (M) ≥ c(m, r)

is a distinctive rank quantifier.

Note that T is not a simple linear function (and T is not asymptotically
normal, cf. [Hájek and Šidák]).

(3) Consider 〈a, b〉-models. We can define “asymptotical forms” of the Wilcoxon
and median quantifiers:

Asfw.as.(〈M, f1, f2〉) = 1 iff
∑
o∈M

f1(o)f2(o) ≥ cas
α (mM , rM) ,

where

cas
α (m, r) =

(
α +

1

2
r(m + 1)

) √
1/12 · rm(m− r) .
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Analogously for m · as·

cas
α (m, r) =

(
α +

1

2
r

) √
r(m− r)

4K
,

where

K =

{
m− 1 for m even ,
m for m odd .

Prove that such quantifiers are distinctive and d-executive. Are they of
level α?

(4) The general form of simple linear rank statistics for testing H2 is the fol-
lowing:

s(〈M, f1, f2〉) =
∑
o∈M

a(f ∗1 (o))a(f ∗2 (o)) ,

where a is as in Problem (1). Note that, for models of type 〈b, b〉,

s(〈M, f1, f2〉) =
∑
o∈M

a(i)a(f2(f
−1
1 (o))

the so-called dual form, cf. [J.Hájek]. Use the considerations of 5.1.21, 5.2.9
and prove that for each M , card M = m, under H2 we have

Es(Mσ) = ma, VAR s(Mσ) =
1

m− 1

(
m∑

i=1

(a(i)− a)2

)2

Prove the analogue of Theorem 5.1.21.

(5) Prove the correlationality of Spearmen’s ρ.
Prove Lemma 5.4.15. (Hint: Consider the behaviour of a k-function under
transformations which are improving in the sense of ≤c.)

(6) For testing H2, we can use the following statistic:

s(〈M, f1, f2〉) =
∑
o∈M

sign

(
f ∗1 (o)− 1

2
(m + 1)

)
sign

(
f ∗2 (o)− 1

2
(m + 1)

)
.

(quandrant test). Prove the correlationality of the corresponding quantifier.
Is it level α?
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(7) Prove: Let F be an MOFC with enumeration models.

(a) Each sentence is logically equivalent to a Boolean combination of pure
prenex formulae. (Hint: The proof is analogous to that of 5.2.3.)

(b) Each MOFC with enumerations models is decidable. (Hint: Use the
same method as for 5.2.6 via 5.2.5 from 5.2.4.)

(8) In [Yanagimoto 1969] there are, in fact, considered ordering of models and
their relation to correlational rank statistics. These orderings are based on
orderings of permutations

πM = πf1,f2 , if M = 〈M, f1, f2〉 .

(a) These orderings of permutations are denoted there by≤w and≤s. ≤s is
stronger than ≤w. Both orderings are based on interchanging members
of permutations in accordance with the order of indices (for ≤w we
can use only repeated interchanging of neighbours). Our ordering of
models (c-better) generates an ordering of permutations also: denote
it by ≤c. For cardinality of samples equal to 3 we obtain for ≤c:

123

213 132

231 312

321

(arrow mean: strictly c-better, double lines: c-equivalent).
For ≤w we have:

123

213 132

231 312

321

Hence ≤c bears no relation to ≤w and ≤s.
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(b) If π1 ≤w π2 or π1 ≤s π2 then π1 >c π2 cannot occur.

(c) ≤w is “nonsymmetrical”, i.e. if we have models

M1 = 〈M, f1, f2〉, M2 = 〈M2, g1, g2〉, M ′
1 = 〈M1, f2, f1〉, M ′

2 = 〈M2, g2, g1〉

and πM1
≤w πM2

we do not know anything about πM ′
1
, πM ′

2
(note that

π−1
Mi

= πM ′
i
).

(d) ≤c is “symmetrical”: clearly, if M1 ≤c M2 then M ′
1 ≤c M ′

2. This
justifies our usage of πM .

(e) Nevertheless, we could base the notion of correlational quantifiers
on ≤w or ≤s, but we claim that ≤c is more reasonable. With respect
to ≤c the models




1 2
2 3
3 1


 and




1 3
2 1
3 2




are equivalent but they are incomparable in ≤w and ≤s. The question

whether




1 2
2 3
3 1


 is better than




1 3
2 1
3 2


 seems to be less impor-

tant.

(f) Does Theorem 6.2 from [Yanagimoto] remain true under our ordering?

(9) We conclude with some remarks concerning acc-statistics.

(a) Note that the condition of Borel measurability in the definition of acc-
statistics is superfluous. Let U be a 〈Σ,R, P 〉-random structure. Then
we have the induced probability measure, say µP , on Borel sets ofMV

M

(for each M). Remember the notion of µP -measurable sets.

(i) If now M0 ⊆ MV
M is an open set, such that µP (M0) = 1, then

we have the following:
for each B ∈MV

M , B is µP -measurable iff B∩M0 is µP -measurable.
Hint: Note that, if µ∗P is the outer measure generates by µP , then

µ∗P (B) = µ∗P (M0 ∩B) .

(ii) If f is now as arbitrary function satisfying conditions (a), (c)
and (b’) from 5.1.2, then (for each sample M):
for each X Borel, f−1

M (X) is µP -measurable (under Φ). It is ex-
actly this property that we need (not Borel measurability). Such
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a “generalized” statistic f need not be a statistic in the classical
sense.
Hint: f is continuous on Mcont ⊆ MV

M , µP (Mcont) = 1. Hence,
for each X Borel, f−1

M (X) ∩Mcont = f−1
M (X ∩ f(Mcont)) is Borel

and, consequently, µP -measurable. Then f−1(X) is µP -measurable.

(b) Let k be a natural number and Rk the metric space of k-tuples of reals
with the metric ρ. Let λ be the Lebesgue measure.

(i) Theorem (Luzin; cf. [Oxtoby 1971]). A real function f on Rk is
Lebesgue measurable iff for each ε > 0 there is an A ⊆ Rk such
that λ(A) < ε and f ¹ Rk − A is continuous.

(ii) Let Φ be a distributional sentence. Suppose that U |= Φ implies
that, for each M ⊆ U , µP is absolutely continuous. Then each
statistic satisfying conditions (a) and (c) from 5.1.2 is an acc-
statistic w.r.t Φ. All computable statistics are acc-statistics w.r.t.
any Φ such that µP is absolutely continuous then the Borel mea-
surability of a statistic f implies by (i) that for each n there is an
An ⊆MV

M such that µP (An) ≥ 1− 1/n and f ¹ An is continuous.

Define Mcont =
∞⋃

n=1

An. Note that µP (A1 ∪ . . . ∪ An) > 1 − 1/n,

hence

P ({σ; Mσ ∈Mcont}) = µP (Mcont) = lim
n→+∞

µP (A1∪ . . .∪An) = 1 .
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Part II

A Logic of Suggestion
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Chapter 6

Listing of Important
Observational Statements and
Related Logical Problems

Let us begin with a quotation from Novalis, which stands as a motto in [Popper]:
Hypothesen sind Netze; nur der fängt, wer auswirft. The reader found in Part I
an analysis of observational and theoretical languages of science the resulted in a
study of classes of some observational and theoretical calculi and their relation-
ships. But he may object that the study of Part I was too static in character and
thus ignored hypothesis formation, i.e. “the process of discovery” [Buchanan].
This is indeed the case and corresponds to our notion of a logic of induction as an
answer to the questions (L0)-(L2) in Chapter 1. Bear in mind questions (L3)-(L4)
(cf. 1.1.5), we are now going to develop a logic of suggestion as a possible answer
to the latter questions. Since our investigation belongs to AI rather than to the
psychology of scientific thinking we shall not be forced to simulate the process
of the scientist’s guessing hypotheses but will feel free to respect and utilize the
differences between human and computer skills. Furthermore, we shall not at-
tempt to mechanize the whole process of arriving at hypotheses but only one of
its substantial parts, namely the process of intelligent observation of data. Our
aims are explained in detail in Section 1 of this Chapter; the main notions are of
a problem and its solution. This is in accordance with the concept of scientific
discovery as the solution of problems sui generis. “We speak of a problem, or a
problem-solving situation, if there is something undecided, something which is
an obstacle to activity and is to be overcome, etc. One important thing is that
a problem is not just anything unknown, but something unknown, undiscovered,
undecided . . . etc. Accordingly, a problem is the question which for one reason or
other we want, need or have to answer”. [Tondl].

Problem solving has become a well-developed part of AI particularly in con-
nection with the robot’s plan formation (cf . [Nilson], [Kowalski]); in comparison
with the usual terminology of problem solving our notions will be rather specific.
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To avoid confusion, we shall speak of observational research problems, briefly,
r-problems.

Section 1 is devoted to informal derivation of our main notions, namely r-
problems, their solutions and GUHA-methods (as methods for constructions of
solutions of r-problems). Furthermore, Section 1 contains some discussion con-
cerning realizability of GUHA-methods and some particular results, mainly con-
cerning computational complexity. Note that Section 1 is a continuation of the in-
vestigation of Chapter 1 and does not suppose any knowledge of Part I. Section 2
is devoted to some quantifiers (called helpful) which occur naturally when one
wishes to look for indirect solutions (in a sense to be defined). Section 3 studies
helpful quantifiers in connection with associational and implicational quantifiers.
The final short Section 4 is devoted to some specific problems concerning helpful
quantifiers in connection with associational quantifiers in cross-nominal calculi.
Results of Sections 3, 4 will be used in the next chapter where we shall describe
in detail a rather complex GUHA-method. The final chapter is devoted to some
statistical questions arising in immediate connection with GUHA-methods but
having general importance for logics of discovery similar to our own.

6.1 Observational research problems and their

solutions

6.1.1 As we have already mentioned in Chapter 1, many philosophers of science
deny the possibility of formulating a logic of suggestions. “These authors as-
sume that there are no rational methods for the formulation of hypotheses, that
hypotheses are merely happy guesses or leaps out of the reach of methods as
Whewell says” [Buchanan]. On the other hand, Meltzer [1970] emphasizes the
possibility of Hypothesis Formation in the spirit of AI. There is elaborate work
on this subject; [Plotkin], [Meltzer 1970b] and [Morgan] can serve as selected im-
portant examples. All the papers mentioned use the first order predicate calculus
and understand induction as a short of inverse deduction. In a slightly different
context, Kowalski claims that “predicate logic is a useful language for represent-
ing knowledge”. Reeken [1971] is an interesting paper considering possibilities
of mechanized statistical inference. Possible criticism of Hypothesis Formation
based on logic should also be mentioned. (a) The discussion of [Rabin 1974]
concerning AI is relevant also for Hypothesis Formation. The main observation
concerning AI, Rabin points out, is that its projects often contain components
whose complexity grows too rapidly. (b) Minsky argues that “traditional logic
cannot deal very well with realistic, complicated problems because it is poorly
suited to represent approximations to solutions – and these are absolutely vital.”
(c) Critism can come also from statisticians; Van Reeken says: “. . . those toys are
dangerous in the hands of nonstatisticians . . . . I sincerely hope this possibility of
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misuse will not be offered to anybody who merely asks for it, at least not before
it is “foolproof”. Otherwise it would become true that: there are lies, dammed
lies and statistics”. We shall formulate some comments on this criticism below
(in 6.1.11).

6.1.2 The logic of suggestion developed in the rest of the present book is moti-
vated by the principal idea of the GUHA-method, which can be found already in
[Hájek, Havel and Chytil 1966a]. This idea can be formulated as the task gener-
ating automatically all interesting hypotheses based on given data. Take note of
the contrasting character of “all” (exhaustiveness) and “interesting” (minimiza-
tion). A very similar idea was formulated independently by Leinfellner [1965]: he
images a machine producing all hypotheses “wahllos einfache Hypotheses bilden”
but retaining only all interesting hypotheses “auf keinen Fall ohne nachherige Se-
lektion”. Note that Leinfellner thought an “Induktions-machine” to be “heute
noch fiktiv” whereas [Hájek and al, 1966a] contains already a realized even if
simple method.

6.1.3 Let us stress the fact that by saying “hypotheses” we mean scientific hy-
potheses. We have accepted the distinction between observational and theoretical
languages; in Part I we gave possible formalizations of both sorts of languages as
well as of the statistical inference rules bridging the gap between them.

We claim that the scientist has to choose his observational and theoretical
language and inference rules; they are not determined by his evidence. Certainly
this choice is (or at least, can be) creative in character; but even if the conceptual
frame has been chosen, the task remains to formulate and justify the hypotheses.
We have already stressed in Chapter 1 that it is an intelligent observation of
the data (important observational statements) that leads to justified theoretical
hypotheses, not the data themselves. Thus the task of formulating interesting
justified hypotheses has a subtask of formulating important (interesting) observa-
tional statements. It can be seen from the investigations of Chapter 4 that there
are many inference rules such that observational sentences of a certain form are
in one-one correspondence with the respective theoretical sentences; if such a
rule has been chosen then the task of finding interesting justified hypotheses is
reduced to the subtask just formulated. In the present context, the idea of the
GUHA method can be specified as the task of the automatic listing of all impor-
tant observational statements. Cf. [Hájek 1973]. Naturally, by “important” one
means “important at a certain stage of scientific research in a certain branch and
relative to certain data (evidence)”.

6.1.4 We need some more detailed informal discussion so as to arrive at appro-
priate mathematical notions. Suppose the scientist has chosen (elaborated) his
conceptual frame, i.e. observational and theoretical language and inductive in-
ference rule and has collected some data – an observational model (in the sense
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of observational semantic systems). Remember that this problem is not just any-
thing unknown but something unknown. Consequently, observational sentences
can be classified (in principle) as relevant or irrelevant w.r.t. the general scien-
tist’s problem. Let us distinguish between relevant observational questions and
relevant observational truths. An observational sentence ϕ is a relevant observa-
tional question if the decision whether ϕ is true in given data or not, is valuable
since (i) we do not know whether ϕ is true and (ii) if ϕ is true then it leads, via the
inference rule, to an interesting theoretical hypothesis which is justified since ϕ
is true. We call ϕ a relevant observational truth if it is a relevant observational
question and is true in the data.

The computer should help us to convert all relevant questions true in M into
relevant statements. We want to have the whole relevant truth at our disposal.
But, evidently, should the computer only list all the relevant questions true in a
given model, the resulting output would be a formidably long list of unorganized
truths and therefore of little value. So we shall suppose that the scientist and the
computer have a (sound) observational deduction rule and can draw immediate
conclusions. We prefer the notion of immediate conclusion rather then the notion
of deductive consequence (probability) since the former notion can be considered
as a formalization of the scientist’s ability to see some consequences at a glance.
This ability can be used to construct a handy representation of the set of all rele-
vant observational truths, namely by an appropriate set X of true observational
statements such that each relevant truth is an immediate conclusion from X.
The set X can be optimalized in various directions; if optimalized, then its ele-
ments can be called important statements (or better, X is an important set of
statements).

We now give an exact definition of an r-problem and of its solution. Remember
that, given a semantic system, TrV0(M) denotes the set of all sentences V0-true
in M i.e.

TrV0(M) = {ϕ ∈ Sent; M |=V0 ϕ} .

6.1.5 Definition. Let S = 〈Sent,M, V, Val〉 be an observational semantic
system. An observational research problem (briefly r-problem) in S is a triple
P = 〈RQ, V0, I〉, where RQ is a non-empty recursive subset of Sent, V0 is a non-
empty recursive subset of V and I is a recursive inference rule on Sent V0-sound
w.r.t S. RQ is called the set of relevant questions, V0 is called the set of designated
values, I is the deduction rule.

In addition, let M ∈ M; a solution of P in M is an arbitrary X ⊆ TrV0(M)
such that RQ ∩ TrV0(M) ⊆ I(X).

6.1.6 Example. Recall the semantic system Snof 1.2.6 (1): models of Sn are
matrices of zeros and ones with n columns and for each e ⊆ {1, . . . , n} we have
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a sentence ϕe saying “the properties {Pi; i ∈ e} are incompatible”. Put

RQn = {ϕe; e ⊆ {1, . . . , n}}
and put V0 = {1} (the designated value is 1-truth). Let In be the deduction rule
defined in 1.2.9, i.e.

In =

{
ϕe

ϕe′
; e ⊆ e′

}
.

Then P = 〈RQ, V0, In〉 is an r-problem. Let M be a model and let ϕe ∈ RQ; call
ϕe P-prime in M if (i) ‖ϕe‖M = 1 but (ii) for each proper subset e′ ⊂ e we have
‖ϕe′‖M = 0. It is an easy exercise to show that the set of all sentences P-prime
in M is a solution of P in M .

6.1.7 Discussion. Remember our question (L3): What are the conditions for a
theoretical statement or set of theoretical statements to be interesting (important)
with respect to the task of scientific cognition? We must admit that so far we
have not given any explicit answer to this question. But we have achieved at
least two things: First, in Part I we have analysed theoretical and observational
languages together with inductive inference rules so that we have a relatively
broad variety of possibilities for answering the question in a more specific context
of one science or of one general research area. Second, we have stressed the role
of interesting observational statements as a necessary step towards interesting
hypotheses (cf. 6.1.3, 1.1.6, 4.4.17, 4.4.27 and have formulated the notion of an r-
problem and its solution as a possible formalization of the notion “an interesting
set of observational truths’. This leads to a modification of the question L4, to
the following question:

(L4) Are there methods for constructing good solutions to r-problems?

The desired methods facilitate good answers to (L3) in each particular case.
In other words, they should offer a satisfactorily broad frame for answering (L3).
each particular answer will be a result of the collaboration of a mathematician
and a scientists. The following aspects should be respected:

(1) One must be able to choose an appropriate type of questions; a method
must allow satisfactorily variable syntactical descriptions of sets of relevant
questions.

(2) The notion of interest should depend on the length and complexity of sen-
tences: if no other criteria apply a shorter (simpler) sentence is more inter-
esting than a long one.

(3) Some properties of objects may be declared as more important than some
other properties; sentences referring to more important properties are more
important than others (when no other criteria apply).
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(4) If an observational sentence names a test for a statistical hypothesis then
the significance of the test is relevant for the interest of the sentence as an
observational statement (cf. critical strengthening, 8.2.5).

These criteria may be combined in particular cases in various ways to obtain
a definition of an “interest” – quasiordering. On the other hand, there are other
factors, hardly formalizable, such as surprise, beauty, etc.; thus we cannot rely
too much on any one interest – quasiordering. Let us repeat what we said in 1.1.6:
we want to construct methods aiding the choice of the best hypothesis.

Such methods will be called GUHA-methods. The formal notion of a GUHA-
method together with a supply of particular realizable examples will form the
first part of our logic of suggestion (Chapters 6, 7). Since we have paid our main
attention to inductive rules of a statistical nature, we are faced with several sta-
tistical questions concerning the statistical properties of solutions of r-problems.
Chapter 8 is devoted to this topic; that chapter provides additional information
on the concept of interesting theoretical statements (hypotheses) and completes
our answer to (L3) and (L4).

Intuitively, a method for constructing solutions of r-problems is something
that, having obtained a particular observational model and information speci-
fying an r-problem (i.e. determining relevant questions, designates values and
deduction rule – everything with respect to an observational semantic system),
produces a solution. Now, r-problem acceptable by such a method vary over a
system {P(p); p parametr} where the parametr p may be identified with the in-
formation specifying P(p) and the corresponding observational semantic system.
The method defines a mapping X associating with each p and each model M a
solution of P(p) in M . Hence, we have the following formal definition:

6.1.8 Definition

(1) Let Par be a recursive set (of parameters). A GUHA-method is a parametric
system Ξ = {S(p),P(p), Xp}p∈Par where each S(p) = 〈Sent(p),M(p), V (p),
Val(p)〉 is an observational semantic system and P(p) = 〈RQ(p), V0(p), I(p)〉
is an r-problem in S(p); Xp is a function associating with each M ∈M(p)
a solution Xp(M) of P(p).

(2) A GUHA-method Ξ = {S(p),P(p), Xp}p∈Par is realizable (in principle) if
for each parameter p and each model M ∈ M(p) the set Xp(M) is a finite
set of sentences and the function X associating with each p ∈ Par and each
M ∈M(p) their solution Xp(M) is a partial recursive function of p and M .

(3) Ξ is realizable in polynomial time if there is a Turing machine operating in
polynomial time and computing the function X. (Note that one assumes
an appropriate encoding of all necessary objects.)
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6.1.9 Example. We illustrate the definition by a very simple example. Further
examples will be presented in Section 2; and the whole of Chapter 7 will be an
extensive example of a complex GUHA method.

It is convenient to describe a GUHA method by describing successively the
set Par of parameters and a certain structure on it corresponding to the variety
of things one has to decide to determine this semantic system, r-problem and,
for each model, the solution.

In our example, each parameter p decomposes into two parts: TYPE and
SYNTR. TYPE is a positive natural number; if TYPE is n then our observational
system will be Sn of 1.2.6 (1) mentioned in example 6.1.6. (Thus input models are
matrices of zeros and ones with n columns.) Our relevant questions will be some
sentences ϕe determined by syntactical restrictions SYNTR. SYNTR consists of
a subset ê of {1, . . . , n} and a positive natural number b ≤ n. A sentence ϕe is
a relevant question iff e ⊆ ê and if e has at most b elements. (Say, ϕe contains
only interesting predicates and is simple enough.) Thus RQ is specified. Since
we work with two values 0, 1, our designated value is 1 (truth). Hence, we have
only to specify our deduction rule and the problem P(p) will be defined. We take
the rule In mentioned in 6.1.6.

For each model M , we put Xp(M) = {ϕe ∈ RQ; ϕe prime in M}. (Prime sen-
tences were defined in 6.1.6.) Obviously, Xp(M) is a solution of P(p) in M ; hence
we have described a GUHA method Ξ0. We shall call it the Baby-GUHA. This
method is certainly realizable in principle (in fact, our example is a simplifica-
tion of the first GUHA-method as described in [Hájek and al. 1966]); experience
shows that if b = n = 15 and the model has about 1000 rows then the com-
puter finds the whole solution in a reasonable time. If the number is larger (say,
about 30) then it is reasonable to change the definition of relevant questions, e.g.
put b = 5 < n = 30.

We shall show later on in this section that after similar natural restrictions
we can obtain methods realizable in polynomial time.

6.1.10 Remark. We neglect here the choice of a theoretical language and of
an inductive inference rule. Note that, on the one hand, the notion of a GUHA-
method does not depend on such a choice. On the other hand, the question
whether a particular GUHA-method is useful (adequate) at a particular stage of
particular scientific research does depend on the whole conceptual frame, includ-
ing a theoretical language and inductive inference rules that must be specified at
least implicitly. Furthermore, after one has decided to use a particular GUHA-
method, the general theoretical problem one wants to solve is reponsible for the
choice of an appropriate value of the parameter. In our example, the parameter
defines the set RQ of relevant observational questions certainly oversimplified
and would hardly be used in practice. See the next chapter.
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6.1.11 Now that we have outlined our logic of suggestion we shall try to formulate
some remarks on possible criticism as given in 6.1.1.

(a) As far as the question of complexity is concerned, notice that there are
two notions of complexity important in the present context: the computa-
tional complexity – i.e. the time and space necessary for the construction
of the solution and the structural complexity of the solution as a list of
sentences (plus various additional information). It is also true that some
famous combinatorial problems considered in the theory of computational
complexity. For the reader familiar with Cook’s paper we shall present be-
low some universal NP -problems concerning solutions of r-problems. This
is the negative part of our answer. On the other hand, it is very important
that there are natural restrictions or modifications of those well-motivated
GUHA-methods that make them realizable in polynomial time. We shall
show this in the present section for our simple example and in the next
chapter for the GUHA-method described there. This corresponds to some
of Rabin’s suggestions; other suggestions, e.g. the possibility of some “ran-
domization”, have not yet been fact stated above that we shall study efforts
to minimalize solutions by allowing indirect solutions (in a sense) in Sec-
tion 2-4 of the present Chapter.

(b) Let us formulate some comments on the role of logic in Hypothesis Forma-
tion in the style of GUHA-methods. First, scientific cognition as a solution
of problems differs from thinking in general; the specific features of scien-
tific cognition make the role of logical means in the formation of scientific
hypotheses different from their role e.g. in robot plan formation.

Second, we use logical means in a broad meaning of the word; on the one
hand, we have considered various non-traditional calculi and, on the other
hand, we have not based our considerations on iterated deduction. We
stressed explicit semantics; but, on the observational level, we have dealt
with non-iterated conclusions (seeing at a glance) and on the theoretical
level we have used quite general inference rules.

Third, a word about consistency. Minsky says that “the preoccupation
with consistency, so valuable for Mathematical Logic, has been incredibly
destructive to those working on models of the mind”. In our context, on
the observational level we have trivial consistency: the set of sentences
true in an observational model is consistent in any strict requirement of
consistency; our rationality conditions do not guarantee the consistency of
the set of all inferences made from elements of a solution of an r-problem.
See Chapter 8 for more information.

(c) The statistical criticism is fully justified; some suggestions on how to care-
fully treat results obtained by our (and similar) “toys” are contained in
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Chapter 8. On the other hand, this criticism does not concern the idea of
Hypothesis Formation, but merely the misuse of the constructed methods.

(d) Let us add some short comments on the relevance of GUHA methods of
hypothesis formation for Artificial Intelligence. There seems to be no doubt
about the AI-relevance of GUHA methods from the point of view of what
they do: they suggest hypotheses, and hypothesis formation is a branch of
Artificial Intelligence. Moreover, we show that our GUHA procedures are
realizable in practice.

6.1.12 Definition. Let I be an inference rule on a set Sent and let X,Y, Z ⊆
Sent.

(1) X is Y -sufficient (w.r.t I) if Y ⊆ I(X), i.e. if for each ϕ ∈ X either ϕ ∈ Y
or there is a e ⊆ Y such that e

ϕ
∈ I.

(2) X is Z-independent (w.r.t. I) if for each ϕ ∈ X we have Z ∩ I(X −{ϕ}) 6=
Z ∩ I(X).

6.1.13 Remark. Let S = 〈Sent,M, V, Val〉 be a semantic system, let P =
〈RQ, V0, I〉 be an r-problem in S and let M ∈ M be a model. For each X ⊆
TrV0(M) we have the following: X is a solution of P in M iff X is RQ∩TrV0(M)-
sufficient (w.r.t I). Elements of RQ ∩ TrV0(M) were called “relevant truths”;
hence X is a solution iff it consists of some sentences V0-true in M and is sufficient
for all relevant truths.

6.1.14 Remark. Let X be a solution of P in M ; then I(X) ∩ RQ = RQ ∩
TrV0(M). Consequently, X is RQ-independent iff no proper subset of X is a
solution (say, X is a ⊆-minimal solution).

6.1.15 Definition and Remark. Let I be an inference rule on Sent and let
X ⊆ Sent. X is weakly independent if, for each ϕ ∈ X,

I(X − {ϕ}) 6= I(X) ;

X is strongly independent if ϕ 6∈ I(X − {ϕ}) for each ϕ ∈ X.
One can immediately see that (1) X is weakly independent iff X is I(X)-

independent and that (2) X is strongly independent iff X is X-independent. For
transitive rules we have the following simple fact:

6.1.16 Theorem. Let I be a transitive inference rule on Sent. Then for each
X ⊆ Sent and each Z ⊆ Sent such that X ⊆ Z the following holds: X is strongly
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independent iff X is Z-independent. Hence X is strongly independent iff X is
weakly independent.

The proof is obvious.
On the other hand, one can ask how the GUHA procedures work. Some au-

thors claim that heuristic elements, the possibility of learning and formulating
subtasks are indispensable features of AI-procedures. Now, if the reader observes
our examples of GUHA methods, especially the method of Chapter 7, Section 1-3,
he will probably agree that these methods are quite complex, practically realiz-
able, and include some modest heuristic elements (cf. Problem (4) of Chapter 7)
but in principle are realizable by routine programming work, even if the pro-
grams are quite extensive. Then whether the reader qualifies GUHA procedures
as AI-procedures or not, we claim the following:

The logical analysis and formalization of statistical hypothesis testing is an
indispensable step towards mechanized formation of statistical hypotheses. Suit-
able formal calculi for this task are develiped here. The notion of an r-problem
and its solution is a useful formal model of the scientist’s suggestion of hypotheses;
and GUHA methods as methods of the construction of solutions of r-problems
are practically realizable – even by routine programming. The heuristic approach
should be applied to GUHA methods. This remains a task of further investiga-
tion; it will probably be useful to make the notion of relevant questions variable
during the computation and depend on previous results.

We now turn to some mathematical considerations. Our aim is to introduce
some useful notions concerning inference rules and solutions of r-problems and to
present some considerations relating those notions to the theory of computational
complexity. The reader not familiar with theory may omit 6.1.20-6.1.28.

6.1.17 Remark. Let P be an r-problem in a semantic system S. Let Sent be
the set of sentences of S and let I be the deduction rule of P . Let M be a model.
Notice that an ⊆-minimal solution (of P in M) is weakly independent w.r.t. I,
but a weakly independent solution need not be ⊆-minimal since it is possible
that X is a solution, X is weakly independent, but, for some ϕ, X − {ϕ} is also
a solution since the difference I(X)− I(X − {ϕ}) consists only of sentences not
in RQ.

Similarly, a strongly independent solution can be diminished by omitting a
ϕ ∈ Sent−RQ provided X − {ϕ} is (RQ ∩ TrV0(M))-sufficient.

6.1.18 Definition. Let P be an r-problem in S, let RQ be the set of relevant
questions of P and let M be a model. A solution X of P in M is direct if X ⊆ RQ.

6.1.19 Remark

(1) A strongly independent direct solution is ⊆-minimal.
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(2) It is often reasonable to deal with indirect solutions. Section 2 will be
devoted to this matter.

6.1.20 Remark. We are now going to consider the simple example of the Baby-
GUHA Ξ0; its computational properties are typical. (Cf. the considerations of
Chapter 7, Section 3.) The following simple result is due to Pudlák:

6.1.21 Lemma. Pudlák [1975c]. For each n > 0 and each m ≤ n, there is a
model M with m objects and 2n properties which has 2n prime sentences in the
sense of the Baby-GUHA method.

Proof. One can easily construct a model M0 with m objects and n properties
with exactly one prime sentence (cf. [Chytil 1975]): M0 as a matrix consists only
of rows containing exactly one zero (and n−1 ones) while each n-tuple containing
exactly one zero occurs in M0 at least once. Let M be a model with m rows and
2n columns such that, for each i = 1, . . . , n, the (n + 1)-th column coincides
with the i-th column. Then for each n-tuple 〈ε1, . . . , εn〉 of zeros and ones, the
sentence

(∀x) (¬P1+ε1n ∨ ¬P2+ε2n ∨ . . . ∨ ¬Pn+εnn)

is prime. ((∀x)(¬P1∨ . . .∨¬Pn) is prime; for each i = 1, . . . , n, one can replace Pi

by Pi+n.)

6.1.22 Discussion. Hence, if we assume that the algorithm has to “print” each
prime sentence and that “printing” each sentence takes at least one step then
the Baby-GUHA in full generality is exponentially complex. We show a natural
restriction that makes the Baby-GUHA polynomially complex. Let us measure
the complexity of the input by m and n (the number of rows and columns of the
input model M). Let ≤p be the natural linear ordering of RQ(p) (card(e1) ≤
card(e2) implies ϕe1 ≤p ϕe2 ; for card(e1) = card(e2) we use the lexicographic
ordering). The algorithm realizing the Baby-GUHA can be described by the
following simple flow-diagram:

201



first sentence F®

next sentence F®

true?F

prime?F

last?FOUTPUT

STOP

+ -

+ -

+

(We ignore the possibility of further optimalizations here; they do not affect
our considerations.) In can easily be shown that – independently of a particular
formalization of the notion of an algorithm – the realization of each single item
of the above flow diagram requires a time which is bounded from above by a
polynomial in m and n. (Note that a true sentence ϕe is prime iff there is no
element i of e such that ϕe−{i} is true.)

Hence we come to the following conclusion:

6.1.23 (Discussion continued.) If we change the definition of the Baby-GUHA
in such a way that the number of relevant questions depends polynomially on n
then the changed method is realizable in polynomial time.

We show that there is a certain natural supplementary assumption on the set
Par of parameters which implies that the cardinality of RQp depends polynomi-
ally on the TYPE part of p. Even if we allow m and n to be arbitrarily large in
theory we postulate that there is an upper bound b such that if the complexity
of ϕe i larger than b then ϕe is not intelligible (comprehensible). The complexity
of ϕe is identified with the cardinality of e. (Naturally, you can have a model
with 500 properties; but if you obtain the sentence:
“the properties 1, 7, 11, 13, 29, 31, 57, 121, 124, 200, 201, 294, 430, 444 and 491
are incopatible”
then you will probably have difficulty in understanding it as a single observa-
tional sentence. If not, make a more complicated example.) Thus we make the
following:

6.1.24 Definition. The Baby-GUHA Ξ∗0 with an intelligibility bound b̂ is the
restriction of Ξ0 to the set Parb̂ ⊆ Par of parameters p = 〈TYPE, SYNTR〉
satisfying the following SYNTR = 〈e, b〉 and b ≤ min(n, b̂). (Thus, the maximal
length of a relevant sentence in each problem is bounded by b̂.)
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6.1.25 Theorem. The Baby-GUHA with an intelligibility bound is realizable in
polynomial time.

Proof. This follows from 6.1.23. Let the intelligibility bound be b̂. Given n, the
cardinality of RQ is bounded by

min(n,b̂)∑
i=1

(
n
i

)
,

which gives a polynomial bound.
Our next aim is to exibit some universal NP -problems related to r-problems

and their solutions. The following results are due to Pudlák [1975c].

6.1.26 Lemma. Let CHOICE SET be the following problem: Given an undi-
rected graph G = 〈G, R〉 and a natural number k, to determine whether there is
a Y ⊆ G, Y of cardinality ≤ k and such that for each u ∈ G, u ∈ Y or {u, v} ∈ R
for some v ∈ Y . (Such a Y is called a choice set for G.) CHOICE SET is a
universal NP -problem.

Proof. Evidently CHOICE SET is NP . By [Karp 1972], the following problem
called NODE COVER is a universal NP -problem: Given an (undirected) graph
G = 〈G,R〉 and a natural number k, to determine whether there is a node cover
Y ⊆ G of cardinality ≤ k, i.e. a set Y such that for each edge {x, y} either x ∈ Y
or y ∈ Y . We show that this problem is reducible to the problem CHOICE SET.
Let G = 〈G,R〉 be an undirected graph and let k ∈ N, G ∩R = ∅. Define G′, R′

and k1 as follows:

G′ = G ∪R; R′ = R ∪ {{u, {u, v}}; {u, v} ∈ R; k1 = k + card(G− dom(R)) .

We show that G has a node cover of cardinality k iff G′ has a choice set of
cardinality k1.
(⇒): If Y ⊆ G is a node cover for G, card(Y ) ≤ k, then Y ∪ (G− dom(R)) = Y1

is choice set for G′, card(Y1) ≤ k1.
(⇐): If Y1 ⊆ G′ is a choice set for G′, card(Y1) ≤ k1, then Y1 can be written as a
disjoint union (G − dom(R)) ∪ Y ′

1 : Y ′
1 consists of some elements of G and some

elements of R. Construct Y as follows: For each u, v ∈ G,

(a) if u ∈ Y ′
1 , put u into Y ,

(b) if {u, v} ∈ Y ′
1 , then put one of the elements u, v, into Y . Then Y has ≤ k

elements and is a node cover for G.

6.1.27 Theorem [Pudlák 1975c]. The following two problems are universal
NP -problems:
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(1) TRUE SENTENCE. Given a matrix M of zeros and ones with m rows and
n columns and a number k, to determine whether there is a sentence ϕe

true in M (in the sense of 1.2.6 (1)) such that e has at most k elements.

(2) SUFFICIENT SET OF SENTENCES. Given a finite set Sent of sentences,
an inference rule I on Sent and a number k, to determine whether there is
a X ⊆ Sent, X of cardinality ≤ k, such that X is Sent-sufficient (w.r.t. I).

Proof. Both problems are NP . We shown that CHOICE SET is reducible both
to TRUE SENTENCE and to SUFFICIENT SET OF SENTENCES. Let G and k
be given.

(1) Consider a square matrix M = (mi,j)i,j∈G indexed by elements of G and
such that mi,j = 0 iff i = j or {i, j} ∈ R. Evidently, M has a true sentence
of length ≤ j iff G has a choice set with ≤ k elements.

(2) Put Sent = G, I =
{

u
v
; {u, v} ∈ R

}
. Then X ⊆ Sent is Sent-sufficient iff

X is a choice set for G.

6.1.28 Remark

(1) The problem TRUE SENTENCE can be interpreted as follows: Before
starting to process the model, one would like to know quickly whether there
will be some results. The preceding theorem shows that should one find a
quick (deterministic polynomial) test, one would solve positively the P −
NP -problem.

(2) Concerning the meaning of the problem SUFFICIENT SET OF SENTEN-
CES, remember that a solution of an r-problem P = 〈RQ, V0, I〉 in M is a
set X ⊆ TrV0(M) which is (RQ ∩ TrV0(M))-sufficient (w.r.t. I).

6.1.29 Key words: r-problem (relevant questions, designated values, deduc-
tion rule), solution of an r-problem, GUHA-methods, realizability, realizability
in polynomial time; sufficient set, independent set (of sentences), direct solution,
Baby-GUHA with an intelligibility bound, universal NP -problems concerning
inference rules and r-problems.

6.2 Indirect solutions

Let P be an r-problem and let RQ be its set of relevant questions; let M be a
model. We know that a solution X of P in M is indirect if X is not a subset of RQ,
hence it contains some auxiliary truths, sentences true in M but not elements
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of RQ. In the present section we first present two simple examples of problems
having reasonable indirect solutions. We shall see that in the examples, auxiliary
truths are sentences with some auxiliary quantifiers, quantifiers not occurring in
relevant questions. We shall arrive at a general notion of the helpful quantifiers –
quantifiers helpful in constructing indirect solutions. In this section we first deal
with monadic predicate calculi, later with monadic ×-predicate calculi.

6.2.1 We describe a GUHA method Ξ1 with auxiliary equivalences. Each param-
eter p decomposes into four parts: TYPE, QUANT, SYNTR and AUX. TYPE is
a positive natural number determining the type of the OPC F(p) to be used. If it
is n then the OPC determined by p will have n unary predicates P1, . . . , Pn. Fur-
thermore, F(p)has two quantifiers of type 〈1, 1〉, ∼ and ⇔. The quantifier ⇔ is
the equivalence quantifier, i.e. Asf⇔(〈M, f, g〉) = 1 iff f = g. The semantic of ∼
is determined by QUANT. It depends on the implementation which quantifiers
can really be used and how QUANT determines the corresponding associated
function.

There are no restrictions concerning the properties of the quantifiers admitted
except the following weak satisfiability condition: For each M and each pair ϕ,
ψ of designated formulae, M |= ϕ ∼ ψ implies that both ϕ and ψ are satisfiable
in M , i.e. M |= (∃x)ϕ&(∃x)ψ.

To give a particular example, imagine that ∼ may be either the Fisher quan-
tifier ∼α for rational α ∈ (0, 0.5] or the following presence quantifier prα:

Asfprα(M) = 1 iff aM ≥ αmM , bM ≥ αmM , cM ≥ αmM , dM ≥ αmM

for a rational α ∈ (0, 0.25], or some other possibilities.
(The presence quantifier says that all four cards are frequented enough. It

may seem unnatural but it serves as an example of a non-associational quanti-
fier obeying the satisfiability condition.) Denote the quantifier determined by
a particular choice of QUANT by q; relevant questions will be some formulae
(qx)(ϕ1(x), ϕ2(x)) or, briefly, ϕ1 ∼ ϕ2 where ϕ1, ϕ2 are two designated elemen-
tary conjunctions formed by some of the predicates P1, . . . , Pn and the variable x
such that ϕ1, ϕ2 have no predicates in common.

As in Baby-GUHA, SYNTR determines syntactical restrictions concerning
the length of ϕ1, ϕ2, occurence of particular predicates in ϕ1 and/or ϕ2 (e.g.
P1 never in ϕ2, P2 only without negation etc.). The deduction rule is specified
by AUX. AUX asks whether we allow auxiliary questions: it can be YES or
NO. If it is NO then we require a direct solution, i.e. consisting only of some
(true) elements of RQ. Assume that there is no (reasonably simple) rule formed
only by relevant questions and sound for all the quantifiers admitted by possible
choices of QUANT. Then our rule is empty: the unique solution is the whole of
{χ ∈ RQ; M |= χ}. If AUX is YES then we consider auxiliary questions of the
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form κ0 ⇔ κ where κ is an elementary conjunction and κ0 is its subconjunction
(notation: κ0 ⊆ κ). The rule I is then

ϕ ∼ ψ, (ϕ ⇔ ϕ′′)&(ψ ⇔ ψ′′)
ϕ′ ∼ ψ′

where ϕ ⊆ ϕ′ ⊆ ϕ′′, ψ ⊆ ψ′ ⊆ ψ′′ are elementary conjunctions. This rule is
obviously sound for any quantifier ∼ of type 〈1, 1〉. At this moment, we have
specified the problem P(p) determined by p. (Naturally, V0 = {1}.) It remains
to describe, for each model M , a solution Xp(M) (for the case of AUX being
YES); this will conclude the description of the GUHA method Ξ1. Let M be a
model. Call ϕ′ ∼ ψ′ M -obtainable from ϕ ∼ ψ if the equivalence ϕ ⇔ ϕ′, ψ ⇔ ψ′

are true in M . Call a relevant question ϕ ∼ ψ p-prime in M if it is true in M and
is not M -obtainable from any relevant question ϕ0 ∼ ψ0 different from ϕ ∼ ψ
and simpler than ϕ ∼ ψ (i.e. such that ϕ ⊆ ϕ and ψ0 ⊆ ψ).

6.2.2 Lemma. For each designated EC κ and each M such that κ is satisfiable
in M , there is a uniquely determined maximal designated EC κ ⊇ κ such that
M |= κ ⇔ κ; κ is the conjunction of all literals L such that M |= κ ⇒ L.

Proof. Denote the conjunction of all such literals by κ; evidently, M |= κ ⇔ κ
and κ is the largest conjunction of designated literals equivalent to κ in M . Now,
κ is an elementary conjunction since it is satisfiable and hence there is no F such
that M |= κ ⇒ F (x) and M |= κ ⇒ ¬F (x).

6.2.3 Notation. If κ is a designated EC satisfiable in M then we denote the EC
κ from 6.2.2 by RegM(κ).

6.2.4 We continue the description of the GUHA method Ξ1; we describe the
case in which AUX is YES. Let M be a model and let Xp(M) contain, for each
relevant question ϕ ∼ ψ p-prime in M , both ϕ ∼ ψ itself and the formula
(ϕ ⇔ ϕ′′)&(ψ ⇔ ψ′′) where ϕ′′ = RegM(ϕ) and ψ′′ = RegM(ψ). Obviously,
Xp(M) is a solution of P(p) in M ; hence the description of the GUHA method Ξ1

is completed.

6.2.5 We shall modify the GUHA method just described and obtain another
example – the GUHA method Ξ2 with associational quantifiers and auxiliary
equivalence. Each parameter p decomposes into TYPE, QUANT, SYNTR and
AUX.TYPE and SYNTR are as above; QUANT determines the semantic of ∼,
but here we require ∼ to be an associational quantifier obeying the following
satisfiability condition: If M |= ϕ ∼ ψ then M |= (∃x)(ϕ&ψ) (i.e., ϕ, ψ are
simultaneously satisfiable: think of ∼α and ⇒!

p,α). Then everything is as in Ξ1

when AUX is NO.
When AUX is YES we use the rule
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I =

{
ϕ ∼ ψ, (ϕ&ψ) ⇔ (ϕ′′&ψ′′)

ϕ′ ∼ ψ′
; ϕ ⊆ ϕ′ ⊆ ϕ′′, ψ ⊆ ψ′ ⊆ ψ′′

}
.

(ϕ, ψ etc. denote designated EC’s.)
This completes the description of P(p); we must show that I is sound.

6.2.6 Lemma. I is sound for each associational quantifier.

Proof. First we notice that if M |= (ϕ&ψ) ⇔ (ϕ′′&ψ′′) then M |= (ϕ&ψ) ⇔
(ϕ′&ψ′) thanks to the above inclusions. Let a, b, c, d be the frequencies of cards
in M1 = 〈M, ‖ϕ‖M , ‖ψ‖M〉 and a′, b′, c′, d′ the corresponding frequencies in
M2 = 〈M, ‖ϕ′‖M , ‖ψ′‖M〉. Assume M |= (ϕ ∼ ψ) and M |= (ϕ&ψ) ⇔ (ϕ′&ψ′).
Then a = a′. Since M |= ϕ′ ⇒ ϕ we have a + b ≥ a′ + b′, hence a + b ≥ a + b′

and b ≥ b′. Similarly, c ≥ c′; consequently, d ≤ d′. Hence M2 is a-better than
M2 and we obtain M |= ϕ′ ∼ ψ′.

6.2.7 We complete the definition of Ξ2. Define the notions “M -obtainable” and
“p-prime” as above, but with respect to the new rule. Define Reg+

M(ϕ, ψ) as the
maximal pair 〈ϕ′′, ψ′′〉 of EC’s such that M |= (ϕ&ψ) ⇔ (ϕ′′&ψ′′) (for each M in
which ϕ&ψ is satisfiable). Note that in general ϕ′′ and ψ′′ have common literals.
Define Xp(M) as the set containing, for each sentence ϕ ∼ ψ p-prime in M , both
ϕ ∼ ψ itself and the formula (ϕ&ψ) ⇔ (ϕ′′&ψ′′) where 〈ϕ′′, ψ′′〉 = Reg+

M(ϕ, ψ).
Then Xp(M) is a solution of P(p) in M . This completes the definition of Ξ2.

6.2.8 Lemma. Suppose that p determines the same associational quantifier and
the set of relevant questions both in Ξ1 and in Ξ2. Let M be a model. Denote
by X i the solution of the problem P ip determined by p in Ξi, i = 1, 2. Then
card (X2) ≤ card (X1).

Proof. It suffices to show that each sentence p-prime in M in the sense of Ξ2 is
p-prime in M is the sense of Ξ1. This follows from the fact (ϕ ⇔ ϕ′′)&(ψ ⇔ ψ′′)
logically implies (ϕ&ψ) ⇔ (Φ&ψ′′).

Remark. The lesson of the preceding lemma is that the complexity of the solu-
tion produced by Ξ2 is less than the complexity of the solution produced by Ξ1.
This is natural since Ξ2 makes use of the fact that one works with associational
quantifiers.

(2) One could discuss the question of computational comlexity; but as the sit-
uation is similar to that in the Baby-GUHA and since the present question
is included in the discussion concerning the complexity of the method in
Chapter 7, we therefore refer the reader to Chapter 7.

(3) A further reasonable question is, what is the relation between the direct and
indirect solution (for a given set RQ of relevant questions)? This question
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makes sense both for Ξ1 and Ξ2 but this, too is deferred to Chapter 7
7.2.11 (c) where we give a simple answer in a wider context. Roughly
speaking, the indirect solution cannot be much worse than the direct one
but the direct solution can be arbitrarily worse than the indirect one.

(4) It can be seen that the sentence (ϕ ⇔ ϕ′)&(ψ ⇔ ψ′) can be expressed as
Eq(ϕ, ϕ′, ψ, ψ′) where Eq is a quantifier of type 〈1, 1, 1, 1〉. Eq can be said
to be helpful for pairs of designated EC’s and for the class of all quantifiers
obeying the weak satisfiability condition since it yields the indirect solution.
Similarly for the quantifier Eq+ such that Eq+(ϕ, ϕ′, ψ, ψ′) is equivalent to
(ϕ&ϕ′) ⇔ (ψ&ψ′) and for associational quantifiers obeying the satisfiability
condition.

We shall give a general definition of helpful quantifiers. From now on, our
formulations make sense also for ×-predicate calculi; this will be utilized
latter.

6.2.10 Definition. Let a ×-predicate calculus F be given, let PF be a set of
pairs of designated open formulae and let ⊆ be an ordering of PF such that any
two elements of PF have the supremum. Let ¿ be a quantifier of type 〈14〉.

(1) ¿ satisfies modus ponens w.r.t. a quantifier ∼ of type 〈1, 1〉 on (PF,⊆) if
the following rule is {1}-sound:

{
ϕ ∼ ψ, (ϕ, ψ) ¿ (ϕ′, ψ′)

ϕ′ ∼ ψ′
; 〈ϕ, ψ〉, 〈ϕ′, ψ′〉 ∈ PF, 〈ϕ, ψ〉 ⊆ 〈ϕ′, ψ′〉

}
.

(2) Let C be a class of quantifiers of type 〈1, 1〉. ¿ is C-improving on (PF,⊆)
if ¿ satisfies modus ponens w.r.t. each quantifier from C on (PF,⊆).

(3) ¿ is a closure quantifier on (PF,⊆)if Φ ¿ Φ is a {1}-tautology for each
Φ ∈ PF and if the following rules are 1-sound:

(i)
Φ ¿ Ψ, Ψ ¿ Ω

Φ ¿ Ω
for Φ ⊆ Ψ ⊆ Ω

(ii)
Φ ¿ Ω

Φ ¿ Ψ
,

Φ ¿ Ω

Ψ ¿ Ω
for Φ ⊆ Ψ ⊆ Ω

(iii)
Φ ¿ Ψ1, Φ ¿ Ψ2

Φ ¿ Ω
Φ ⊆ Ψ1, Φ ⊆ Ψ2, Ω = sup(Ψ1, Ψ2) .
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(4) ¿ is C-helpful on (PF,⊆) if it is a closure quantifier on (PF,⊆) and it is
C-improving on (PF,⊆).

6.2.11 Remark. Concerning our examples of GUHA methods Ξ1, Ξ2, let EC∗

be the set consisting of all designated EC’s and of the formula 0; extend the
subformula ordering ⊆ to EC∗ making 0 be the largest element. Then all suprema
exist. Extend ⊆ to PF = EC∗ × EC∗ putting 〈ϕ, ψ〉 ⊆ 〈ϕ′ψ′〉 and ψ ⊆ ψ′. We
have the following:

(1) The quantifier Eq such that Eq(ϕ, ψ, ϕ′, ψ′) is logically equivalent to (ϕ ⇔
ϕ′)&(ψ ⇔ ψ′) is C1-helpful on (PF,⊆), where C1 is the class of all quanti-
fiers.

(2) The quantifier Eq+ such that Eq+(ϕ, ψ, ϕ′, ψ′) is logically equivalent to
(ϕ&ψ) ⇔ (ϕ′&ψ′) is C2-helpful on (PF,⊆), where C2 is the class of all
associational quantifiers.

The verification is straightforward and is left to the reader.

6.2.12 Convention. We shall say “a-helpful” for “C2-helpful” where C2 is the
class of all associational quantifiers and we shall say “i-helpful” for “C3-helpful”
where C3 is the class of all implicational quantifiers.

6.2.13 Definition. Let ≤ be an ordering on a set X. A subset Y ⊆ X is a lower
tuft if

(i) a ≤ b ≤ c and a, c ∈ Y implies b ∈ Y ,

(ii) Y has a least element.

Similarly, one defines an upper tuft replacing “least” by “largest”.

6.2.14 Lemma. If¿ is a closure quantifier on (PF,⊆) then, for each M , PF can
be expressed as a union of a system of pairwise disjoint upper tufts (w.r.t ⊆) such
that, for arbitrary Φ, Ψ ∈ PF , Φ, Ψ are in the same tuft iff RegM(Φ) = RegM(Ψ).
(Obvious.)

6.2.15 Theorem. Let ¿ be a quantifier of type 〈1, 1〉. The quantifier ¿ is
a-improving on (PF,⊆) iff the following holds:

Whenever 〈ϕ, ψ〉, 〈ϕ′, ψ′〉 ∈ PF , 〈ϕ, ψ〉 ⊆ 〈ϕ′, ψ′〉 and ‖(ϕ, ψ) ¿ (ϕ′, ψ′)‖M =
1, then 〈M, ‖ϕ′‖M , ‖ψ′‖M〉 is a-better than 〈M, ‖ϕ‖M , ‖ψ‖M〉.
Proof. ⇐. If the condition holds then evidently ¿ satisfies modus ponens w.r.t.
each associational quantifier on (PF,⊆) and hence is a-improving.
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⇒. If the condition does not hold then let M1 = 〈M, ‖ϕ‖M , ‖ψ‖M〉, M2 =
〈M, ‖ϕ′‖M , ‖ψ′‖M〉 and suppose that ‖(ϕ, ψ) ¿ (ϕ′, ψ′)‖M = 1 and M2 is not
a-better than M1. According to 3.2.4, there is an associational quantifier ∼ such
that Asf∼(M1) = 1 and Asf∼(M2) 6= 1; ¿ does not satisfy modus ponens w.r.t. ∼
and hence ¿ is not a-improving.

6.2.16 Remark

(1) Obviously, if we replace “a-improving” by “i-improving” and “a-better” by
“i-better” then the theorem remains valid; cf. 3.2.1.

(2) One could investigate properties of indirect solutions of r-problems in which
auxiliary sentences contain a helpful quantifier. We defer this subject to
Chapter 7. Our next aim will be to investigate a-helpful and i-helpful
quantifiers.

6.2.17 Key words: The GUHA method with auxiliary equivalences, the GUHA
method with associational quantifiers and auxiliary equivalences; a quantifier
satisfies modus ponens, a closure quantifier, a helpful quantifier; tufts.

6.3 Helpful quantifiers in ×-predicate calculi

In this section we shall study a-helpful and i-helpful quantifiers, i.e. quantifiers
helpful w.r.t. all associational (implicational) quantifiers.

We have already said that each associational (implicational) quantifier ∼ in
a ×-predicate calculus is secured, i.e. Asf∼(M) = 1 iff for each two-valued
completion M ′ of M Asf∼(M ′) = 1 and similarly for 0. This corresponds to the
concept of incomplete information: the truth of a formula Px ∼ Qx in M must
guarantee that it is true in all completions (among them is the “right” one). On
the other hand, helpful quantifiers from an auxiliary means for the construction
of solution of r-problems and therefore may express some facts about our present
knowledge of the “right” completion, i.e. about the three-valued model, rather
than about the “right” completion itself. Hence when studying helpful quantifiers
we do not require securedness.

6.3.1 Definition. A quantifier q of type 〈1k〉 is universally definable it there is
a set U ⊆ {0,×, 1}k such that

(i) Asfq(M) = 1 iff cards of all objects in M belongs to U ,

(ii) Asfq(M) = 0 otherwise.
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We shall restrict ourselves to universally definable helpful quantifiers since
they are rather simple but yield a sufficient number of possibilities.

6.3.2 Discussion. We shall be specific on particular sets PF we want to study.
Our main interest will be devoted (i) to pairs of elementary conjunctions and
(ii) to pairs 〈κ, δ〉 where κ is an EC or the formula 1 and δ is an ED. A formula
κ ∼ λ, where κ, λ are EC’s and ∼ is an associational quantifier, is thought of
as expressing some association (connection) between κ and λ; the meaning of
the word “association” is made precise by the associated function of ∼. Elemen-
tary conjunctions expressing the simultaneous presence of some properties can be
well understood by non-mathematicians as well; they form a reasonable compro-
mise between single literals and disjunctions of (psedo) elementary conjunctions
(cf. 3.4.18). In particular, if ∼ is implicational, then κ ∼ λ can be thought of as
expressing some “causal” connection between κ and λ. In this connection (∼ im-
plicational), a formula κ ∼ δ, where δ is an ED, is also commonly understood:
κ “causes” the occurrence of at least one of the properties joined in δ. If, in
addition, κ is 1 (i.e., identically true), then κ ∼ λ expresses the fact that λ is a
“rather frequented” property (“caused by the empty condition).

For technical reasons, we allow pseudoelementary conjunctions and disjunc-
tions (to have enough suprema); but we take care of ED’s and EC’s. As far as
orderings of pairs of such formulae are concerned, we shall use the orderings of
pairs of such formulae are concerned, we shall use the orderings ⊆, v, ←, ¢

on (psED’s) (contained in, poorer than, hoops, is hidden in). Cf. 3.4.21. These
orderings can be trivially extended to the set consisting of all psEC’s and of 1
(empty conjunction): 1 ⊆ κ, 1 ¢ κ, 1 ← κ for each κ, and 1 v κ iff κ is 1. We
have the following easy generalization of 3.4.22:

6.3.3 Lemma

(1) Let κ, λ be psEC’s or 1. If κ ← λ (in particular, if κ ⊆ λ), then ‖κ‖M [o] ≥
‖λ‖M [o] for each M and each o ∈ M .

(2) Let γ, δ be psED’s. If γ¢δ (in particular, if γ ⊆ δ), then ‖γ‖M [o] ≤ ‖δ‖M [o]
for each M and each o ∈ M . (Remember that o < x < 1; remember also
Cleave’s notion of logical implication for three-valued logic, cf. 3.3.16.)

6.3.4 Definition

(1) A (pseudo-)conjunctive pair of formulas (psCPF or CPF) is a pair 〈κ, λ〉
where κ, λ are (ps)EC’s; (pseudo-)elementary pair of formulae (psEPF or
EPF) is a pair 〈κ, δ〉 where κ is either a (pseudo)elementary conjunction or
the formula 1 and δ is a (ps)ED. Occasionally, we use psCPF and psEPF
to denote the set of all pseudoconjunctive (pseudoelementary) pairs of for-
mulae, similarly for CPF and EPF.
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(2) We introduce “product” orderings of psCPF and psEPF

〈κ, λ〉 ⊆⊆ 〈κ′, λ′〉 iff (κ ⊆ κ′ and λ ⊆ λ′) ,

the same for psEPF’s

〈κ, λ〉 ←← 〈κ′, λ′〉 iff (κ ← κ′ and λ ← λ′)

〈κ, δ〉 ← ¢〈κ′, λ′〉 iff (κ ← κ′ and δ ¢ δ′) .

(3) Introduce “product orderings” ≤c and ≤e on {0,×, 1}2:

〈u, v〉 ≤c 〈u′, v′〉 iff (u ≤ u′ and v ≤ v′) ,

〈u, v〉 ≤e 〈u′, v′〉 iff (u ≤ u′ and v ≥ v′) .

(4) Put 〈u, v〉&〈u′, v′〉 = 〈u, &u′, v&v′〉 & on the right-hand denotes the associ-
ated function of the conjunction),

〈u, v〉(&v)〈u′, v′〉 = 〈u&u′, v&v′〉

6.3.5 Lemma

(1) If 〈κ, λ〉 ←← 〈κ′, λ′〉, then

〈‖κ‖M [o], ‖λ‖M [o]〉 ≥c 〈‖κ′‖M [o], ‖λ′‖M [o]〉 .

(2) If 〈κ, δ〉 ← ¢〈κ′, λ′〉, then

〈‖κ‖M [o], ‖δ‖M [o]〉 ≥e 〈‖κ′‖M [o], ‖δ′‖M [o]〉 .

6.3.6 Remark and Definition

(1) Our choice of psEPF and psCPF as possible sets of relevant pairs of formu-
lae does not mean that other sets (such as, for instance, pairs of psED’s,
etc.) would not be interesting. But we find the pseudoconjunctive and
pseudoelementary pairs to be very typical examples and, moreover, most
useful from a practical point of view (cf. Chapter 7).

212



(2) Our next aim is to analyze and classify universally definable closure quanti-
fiers for our sets of relevant pairs of formulae. Such a quantifier is defined by
a set U ⊆ {0,×, 1}4 which can be viewed as a binary relation on {0,×1}2.
call a U ⊆ {0,×, 1}4a closure set for (PF, ⊆) if the quantifier universally
defined by U is a closure quantifier for (PF, ⊆).

(3) We shall first consider closure sets for pseudoconjunctive pairs of formulae
and ←←. By Lemma 6.3.5, we have the following:

6.3.7 Lemma. If U ⊆ {0,×, 1}4 is a closure set for (psCPF, ←←), then Û =
{〈u, v〉; 〈u, v〉 ∈ {0,×, 1}2, uUv, u ≥c v} is also a closure set for (psCPF, ←←);
if ¿ and ¿̂ are the corresponding quantifiers and if 〈κ, λ〉 ←← 〈κ′, λ′〉, then
(κ, λ) ¿ (κ′, λ′) is logically equivalent to (κ, λ)¿̂(κ′, λ′).

6.3.8 Remark and Definition. Hence, we may restrict ourselves to closure
sets U such that uUv implies u ≥c v for each u, v ∈ {0,×, 1}2. Such a U will be
called an economical closure set (for psCPF, ←←). The following lemma is an
easy consequence of the definition of an (economical) closure set.

6.3.9 Lemma. U ⊆ {0,×, 1}4 is an economical closure set for (psCPF, ←←) iff
the following holds for each u, v, w:

(a) uUv implies u ≥c v;

(b) uUu;

(c) uUv and vUw implies uUw

(d) uUw and u ≥c v ≥c w implies uUv and vUw:

(e) uUv and uUw implies uU(v&w).

Proof. If (a)-(e) are satisfied, then one easily shows that U is an economical
closure set. Conversely, let U be an economical closure set; than (a) is ob-
vious. Let M be a model with a unique object o having the card 〈1,×, . . .〉.
Put κ1 = ({1})F1, κ2 = ({1})F1&({1})F2, κ3 = (∅)F1&({1})F2; then κ1 ←
κ2 ← κ3, ‖κ1‖M [o] = 1, ‖κ2‖M [o] = ×, and ‖κ3‖M [o] = 0. Assume, e.g.,
not (〈×, 0〉U〈×, 0〉), then ‖(κ2, κ3) ¿ (κ2, κ3)‖M = 0. Similarly, assume e.g.
(〈1,×〉U〈×, 0〉) but not (〈1,×〉U〈1, 0〉), then ‖(κ1, κ2) ¿ (κ2, κ3)‖M = 1 but
‖(κ1, κ2) ¿ (κ1, κ3)‖M = 0 (whereas 〈κ1, κ2〉 ←← 〈κ1, κ3〉 ←← 〈κ2, κ3〉). Sim-
ilarly for the other cases one shows that if one of the conditions (b)-(e) is not
satisfied, then U does not define a closure quantifier.
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6.3.10 Definition. If a set X is decomposed into a system Y = Y1, . . . Yk of
disjoint subsets, then we call u, v ∈ X Y -equivalent if they belong to the same
set Yi.

6.3.11 Theorem. U ⊆ {0,×, 1}4 is an economical closure set for (psCPF, ←←)
iff {0,×, 1}2 can be expressed as a union of a system Y1, . . . , Yk of pairwise disjoint
lower tufts w.r.t. ≤c such that, for each u, v ∈ {0,×, 1}2,

(∗) uUv iff (u ≤c v and u, v are Y−equivalent) .

Proof. If the condition of the theorem holds, one verifies easily (a)-(e) of 6.3.9.
Conversely, suppose that (a)-(e) are satisfied. Consider U as a graph on {0,×, 1}2

and let Y1, . . . , Yk be all the components of this graph. (I.e., u, v are in the
same set Yi iff there exist u1, . . . , un such that u0 = u, un = v and, for each i,
either uiUui+1Uui.) If uUv, then u ≥c v and u, v are obviously Y -equivalent.
Conversely, if u, v are Y -equivalent and u0, . . . , un are as above, then using 6.39
one easily shows uU(u&ui) by induction; hence, if further we have u ≥c v then we
obtain uUv. This proves (*). It remains to verify that each Yi is a tuft. First, we
have just proved that if u, v ∈ Yi then uU(u&v) and vU(u&v); hence (u&v) ∈ Yi

and u&v is the infimum of v, v. Hence, Yi is closed under the infimum and has a
least element. Finally, if u ≥c v ≥c w and u,w ∈ Yi, then uUw and, consequently,
uUv (by 6.3.9 (d)); hence v ∈ Yi.

6.3.12 Examples. The preceding theorem enables us to represent a closure set
as an appropriate decomposition on {0,×, 1}2. The set {0,×, 1}2 is represented
as a square matrix where the first row/column corresponds to the value 1, the
second to × and the third to 0. (See next page.) Heavy lines define subsets of
{0,×, 1}2 which constitute the decomposition. The decomposition (a)-(d) define
closure sets while (e) and (f) do not; in (e), 〈1,×〉 and 〈×, 0〉 are equivalent,
〈1,×〉 ≥c 〈1, 0〉 ≥c 〈×, 0〉 but 〈1,×〉 and 〈1, 0〉 are not equivalent. In (f), the
decomposition is {〈0, 0〉}∪Y1 where Y1 contains all pairs except 〈0, 0〉 but Y1 has
no least element.

6.3.13 Definition. Let ¿ be a closure quantifier for (psCPF, ←←). Define, for
each M ,

‖Ant (ϕ1, ϕ2, ψ)‖M = ‖(ϕ1, ϕ2) ¿ (ϕ1&ψ, ϕ2)‖M ,

‖Suc (ϕ1, ϕ2, ψ)‖M = ‖(ϕ1, ϕ2) ¿ (ϕ1, ϕ2&ψ)‖M .

(Hence Ant and Suc are quantifiers of type 〈13〉 called the antecedent quantifier
and the succedent quantifier corresponding to ¿.)
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(a) (b) (c)

(d) (e) (f)

6.3.14 Definition. If ¿ is a closure quantifier for (psCPF, ←←) and if κ,
λ are psEC’s, then Reg¿M

(κ, λ) = 〈κ, λ〉, where κ is the conjunction of all

pseudoliterals (X)Fi such that (X) is the smallest coefficient (Z) such that
‖Ant(κ, λ, (Z)Fi)‖M = 1 and Z 6= Vi. Similarly, λ is the conjunction of all
pseudoliterals (X)Fi such that (X) is the smallest coefficient (Z) such that
‖Suc(κ, λ, (Z)Fi)‖M = 1 and Z 6= Vi.

6.3.15 Remark. The last definition shows that one find Reg¿M
(κ, λ) quickly;

one has to consider separate pseudoliterals and not pairs 〈κ, λ〉 such that 〈κ, λ〉 ←←
〈κ, λ〉. (Cf. Chapter 7 Section 3.)

6.3.16 Remark. We are interested in EC’s; we are dealing with psEC’s since
thay are closed under the supremum w.r.t ←←. Having a closure quantifier, the
natural question is: If 〈κ, λ〉 is a CPF (i.e., a pair of EC’s), is Reg¿M

(κ, λ) a pair
of EC’s? The following theorem gives some information.

6.3.17 Theorem. Let U be an economical closure set for (psCPF, ←←). The
following are equivalent:

(i) 〈1, 1, u, v〉 ∈ U implies u = v = 1.

(ii) For each M and for each CPF 〈κ, λ〉 such that κ&λ is satisfiable in M (i.e.,
for some o ∈ M we have ‖κ&λ‖M [o] = 1) Reg¿M

(κ, λ) is a CPF.

Proof. Suppose that (i) is valid. Let ‖(κ, λ) ¿ (κ&XF, λ‖M = 1 and ‖κ&λ‖M [o] =
1. We want to show that X = ∅ is impossible. Let X = ∅. Then ‖κ&(0)F‖M [o] =
1, hence, 〈‖κ‖M [o], ‖λ‖M , ‖κ&(∅)F‖M [o], ‖λ‖M [o]〉 ∈ U , which is a contradiction.
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Suppose that not (i) is valid. Then either 〈1, 1, 1,×〉 ∈ U or 〈1, 1,×, 1〉 ∈ U ;
suppose 〈1, 1, 1,×〉 ∈ U . Let F be a functor not in κ, λ and let M be a model
in which, for each object o, ‖κ‖M [o] = ‖λ‖M [o] = 1 and ‖F‖M [o] = ×. Then
‖(κ, λ) ¿ (κ&(∅)F ; λ)‖M = 1, hence, Reg¿M

(κ, λ) is not a pair of EC’s.

6.3.18 Remark and Theorem. Consider pseudoelementary pairs (psEPF),
i.e., pairs 〈κ, δ〉 where κ is either an EC or the formula 1 and δ is an ED. We have
the ordering ← ¢ which is related to ≥e for psEPF’s exactly as ←← is related
to ≥c for psCPF’s (cf. 6.3.4). Hence, we can prove an analogue of 6.3.9, namely
the following:

(Theorem.) U ⊆ {0,×, 1}4 is an economical closure set for (psEPF, ← ¢) iff
{0,×, 1}2 can be decomposed into a system Y1, . . . , Yk of pairwise disjoint lower
tufts w.r.t. ≤e such that, for each u, v ∈ {0,×, 1}2, uUv iff u ≥e v and u, v are
Y -equivalent. Here “economical” means that uUv implies u ≥e v.

6.3.19 Remark and Definition. We return to pseudoconjunctive pairs. We
want to describe a-helpful (i-helpful) universally defined quantifiers. Helpful
means closure + improving. Obviously, a closure quantifier for (psCPF, ←←)
defined universally by U ⊆ {0,×, 1}4 is a-improving iff uUv implies that u is
a-improved by v (cf. 3.3.22) and similarly for “i-”instead of “a-”. Furthermore,
it is obvious that one can restrict oneself to economical closure sets. Hence, let
us present the following definition:

(Definition.) A set U ⊆ {0,×, x}4 is an economical a-helpful set for (psCPF,←←)
is U us an economical closure set for (psCPF, ←←) such that uUv implies that
v a-improves u (for u, v ∈ {0,×, 1}2). Similarly for “i-”.

6.3.20 Theorem

(1) An economical closure set U for (psCPF, ←←) is a-improving iff the fol-
lowing quadruples are not in U¿

〈1, 1, 1,×〉, 〈×, 1, ,×,×〉, 〈1, 1,×, 1〉, 〈1,×,×,×〉 .

(2) U is i-improving iff the following quadruples are not in U :

〈1, 1, 1,×〉, 〈×, 1,×,×〉, 〈1, 1,×, 1〉 .

Proof. Let U be an economical closure set. U is a-improving iff the following
holds: If u ≥c v and if v does not improve u, then not uUv. Similarly for
“i-”. Hence, the theorem follows by inspection of the a-improving (i-improving)
ordering, cf. 3.3.24. Use the tables of 3.3.25. The a-improvement relation is
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expressed by the following table: the long arrow indicate the ≥c-ordering. Hence,
one must take care of forbidden transitions from the left to the right and from
above to below. These transitions are just (1, 1) → (1,×), (×, 1) → (×,×) and
(1, 1) → (×, 1), (1,×) → (×,×) (indicates by short arrows).

6.3.21 Corollary and Remark. There are four maximal economical a-helpful
sets for (psCPF, ←←); they are given by the following tables:

(i) (iv)(ii) (iii)

“Maximal” concerns inclusion. Note that all these sets satisfy 6.2.14 (i). We want
U as large as possible since, obviously, if U1 ⊆ U2 are economical a-helpful sets
and if ¿1, ¿2 are the corresponding quantifiers, then (κ, λ) ¿1 (κ, λ) logically
implies (κ, λ) ¿2 (κ, λ) and, hence Reg¿1

M
(κ, λ) ←← Reg¿2

M
(κ, λ). Hence,

if ‖κ ∼ λ‖M = 1 where ∼ is an associational quantifier, then having found
Reg¿2

M
(κ, λ) we have more consequences then when using ¿1.

6.3.22 Corollary. There are two maximal economical i-helpful sets for (psCPF,←←),
they are given in the following tables:

(i) (ii)

Both of them satisfy 6.2.14 (i).
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6.3.23 Remark. For psEPF and← ¢ (instead of psCPF and←←) the situation
is completely analogous. One has only to replace≥c by≥e and change accordingly
the meaning of “economical”. Thus, we have the following theorem:

6.3.24 Theorem. An economical closure set U for (psEPF, ← ¢)

(1) is a-improving iff the following quadruples are not in U :

〈1, 1,×, 1〉, 〈1,×,×,×〉, 〈×, 0,×,×〉, 〈0, 0, 0,×〉 ,

(2) is i-improving iff 〈1, 1,×, 1〉is not in U .

Proof

6.3.25 Corollary

(1) There are two maximal economical a-helpful sets for (psEPF, ←, ¢):

(i) (ii)and

(2) There are three maximal economical i-helpful sets for (psEPF, ←, ¢):

(i) (ii) (iii)
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6.3.26 Remark. In accordance with 6.2.12, we shall study psEPF’s (i.e., pairs
〈κ, δ〉 where κ is a psEC or 1 and δ is a psED) in connection with implicational
quantifiers. Then we obtain a non-trivial rule exactly as in 3.2.19-3.2.22. First,
note that the following rules are sound for each cross-qualitative calculus with an
implicational quantifier ∼:

ϕ∼ψ
ϕ∼(ψ∨χ)

(ϕ&¬χ)∼ψ
ϕ∼(ψ∨χ)





ϕ, ψ, χ non− atomic designated open.

Thus, we may obtain the despecifying-dereducing rule as in 3.2.20: moreover,
we can generalize the definition of reduction for psED’s as follows:

6.3.27 Definition

(1) A psEPF 〈κ, δ〉 is disjointed if κ, δ are disjoint formulae, i.e. if they have
no functors in common. Similarly for psCPF.

(2) Let 〈κ1, δ2〉, 〈κ2, δ2〉 be (disjointed) psEPF’s. 〈κ1, δ1〉 despecifies to 〈κ2, δ2〉
if either 〈κ1, δ1〉 coincides with 〈κ2, δ2〉 or if there is a psED δ0 having no
functors in common with either κ2 or δ1 such that κ1 is con (κ2, neg (δ0))
and δ2 is dis (δ1, δ0)

(3) 〈κ1, δ1〉 dereduces to 〈κ2, δ2〉 if κ1 is κ2 and δ1 ¢ δ2.

(4) The pair 〈κ1, δ1〉 is acuter than 〈κ2, δ2〉 if 〈κ2, δ2〉 results from 〈κ1, δ1〉 by
successive despecification and dereduction, i.e., if there is a 〈κ3, δ3〉 such
that 〈κ1, δ1〉 despecifies to 〈κ3, δ3〉 and 〈κ3, δ3〉 dereduces to 〈κ2, δ2〉. (We
then write 〈κ1, δ1〉 ∝ 〈κ2, δ2〉.

6.3.28 Theorem. Let SpRd be the rule

{
κ1 ∼ δ1

κ2 ∼ δ2

; 〈κ1, δ1〉 is acuter than 〈κ2, δ2〉
}

.

Then SpRd is sound in any ×-qualitative calculus in which ∼ is an implicational
quantifier. Furthermore, this rule is transitive.

(The first part is obvious from 6.3.27, cf 3.2.21, transitivity is proved as
in 3.2.22.)

6.3.29 Remark. How can the rule SpRd be combined with rules using helpful
quantifiers? To answer this question we first analyse the composition of the
relations ← ¢ and ∝; then we show that it always suffices first to use a helpful
quantifier (in a particular manner) and then to use SpRd.
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6.3.30 Lemma

(1) The composition of the relations ← ¢ and ∝ is an ordering of the set of all
disjointed psEPF’s.

(2) In more detail, whenever

〈κ1, δ1〉 ∝ 〈κ2, δ2〉 ← ¢〈κ3, δ3〉 ,
then there is a κ+ such that

〈κ1, δ1〉 ← ¢〈κ+, δ1〉 ∝ 〈κ3, δ3〉 .

Proof. Clearly, (2) implies (1). We prove (2). We have the following relations:
κ2 ⊆ κ1, δ1 ¢ δ2, κ2 ← κ3, δ2 ¢ δ3; hence δ1 ¢ δ3. Put κ+ = con(κ1, κ3). Then
κ1 ← κ+; we prove 〈κ+, δ1〉 ∝ 〈κ3, δ3〉. Let κ1 be con(κ2, κ

′
2) (κ2, κ

′
2 disjoint, κ′2

may be 1) and let δ2¢dis(δ1, neg(κ′2)). Let κ3 be con(κ31, κ32) where κ31 is poorer
than κ2 and κ32 is disjoint from κ2. Then κ32 is disjoint from κ′2 since κ3, δ3 are
disjoint and δ3 ¤ neg(κ′2). Hence, κ+ is con(κ3, κ

′
2) and κ3, κ

′
2are disjoint. This

together with δ3 ¤ dis(δ1, neg(κ2)) proves the lemma.

6.3.31 Corollary. Under the above notation, if 〈κi, δi〉 are disjointed EPF’s then
κ+ is an EC (i.e., np coefficient is empty) and, hence, 〈κ+, δ1〉 is an EPF.

Proof. We showed that κ+ is con(κ3, κ
′
2) where κ3, κ

′
2 are disjoint; κ3 is an EC

and κ′2 as a subconjunction of κ+ is also an EC.

6.3.32 Lemma. Denote the i-helpful quantifiers defined by 6.3.36 (i), (ii), (iii)
by ¿1, ¿2, ¿3 respectively.

(1) If 〈κ1, δ1〉 ∝ 〈κ2, δ2〉 ← ¢〈κ3, δ3〉 (〈κj, δj〉 disjointed psEPF) and if κ+

is as in the preceding lemma (i.e., κ+ = con(κ1, κ3)), then ‖(κ2, δ2) ¿j

(κ3, δ3)‖M = 1 implies ‖(κ1, δ1) ¿j (κ+, δ1)‖M = 1 for each M(j = 1, 2, 3).

(2) ‖(κ1, δ1) ¿1 (κ+, δ1)‖M = 1 implies ‖(κ1, δ1) ¿2 (κ+, δ1)‖M = 1, which
implies ‖(κ1, δ1) ¿3 (κ+, δ1)‖M = 1.

Proof

(1) (i) We have to verify: If ‖κ1‖M [o] = 1, then ‖κ+‖M [o] = 1. Let ‖(κ1, δ1) ¿3

(κ+, δ1)‖M = 1. Then ‖κ2‖M [o] = 1 since κ2 ⊆ κ1; hence, by ‖(κ2, δ2) ¿1

(κ3, δ3)‖M = 1, we have ‖κ3‖M [o] = 1. Thus, ‖κ+‖M [o] = 1. (ii) We
have to verify: If ‖κ1‖M [o] = 1 and ‖δ1‖M > 0 then ‖κ+‖M [o] = 1. Let
‖κ1‖M [o] = 1. Then ‖κ2‖M [o] = 1 and hence, by ¿2 we have ‖κ3‖M [o] = 1.
Analogously for (iii): Verify that if ‖(κ1&δ1)‖M = 1 then ‖κ+‖M = 1.

(2) follows from the reformulations of ‖(κ1, δ1) ¿j (κ+, δ1)‖M = 1 just given.
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6.3.33 Conclusion. Suppose one has a model M such that ‖κ ∼ δ‖M = 1 (where
∼ is an implicational quantifier and 〈κ, δ〉 is disjointed EPF). Let conM(κ, δ) be
the set of all sentences κ ∼ δ obtained from κ ∼ δ by the iterated application of
SpRd and the “helpful” rule

{
κ1 ∼ δ1, (κ1, δ1) ¿ (κ2, δ2)

κ2 ∼ δ2

; 〈κ1, δ1〉 ← ¢〈κ2, δ2〉
}

,

where ¿ is an i-helpful quantifier (universally definable) and where all sentences
(κ1, δ1) ¿ (κ2, δ2) true in M are at one’s disposal. Then conM(κ, δ) is the set of
all κ ∼ δ such that there is a 〈κ1, δ1〉 satisfying 〈κ, δ〉 ← ¢(κ1, δ1) ← ¢〈κ, δ〉 and
〈κ1, δ1〉 ∝ 〈κ, δ〉. We shall use this fact in the next chapter.

6.3.34 Key words: Economical closure sets, antecedent and succedent quanti-
fiers, economical a-helpful sets.

6.4 Incompressibility

In the present short section we shall study notions of incompressibility of pseudo
elementary conjunctions in cross-qualitative calculi. An EC is viewed as a certain
description of a set of objects, namely, the set of all objects having simultaneously
all the properties expressed by the literals involved. An incompressible conjunc-
tion is an “economical” description. Our main aim is to consider the relation of
incompressibility to various helpful quantifiers.

6.4.1 Definition. A psEC κ is incompressible in a model M (or: M -incompressible)
if there is no κ0 6= κ poorer than κ and equivalent to κ in M (i.e., such that
‖κ ⇔ κ0‖M = 1).

6.4.2 Remark. The notion of incompressibility is obviously redudant in predi-
cate calculi since each EC is M -incompressible in each M .

6.4.3 Lemma

(1) Each subconjunction of an M -incompressible psEC is M -incompressible.

(2) For each psEC κ and each M , there is a uniquely determined κ0 v κ which
is M -incompressible and equivalent to κ in M .

Proof

(1) Let κ0 6v κ1, κ1 ⊆ κ, ‖κ0 ⇔ κ1‖M = 1; form κ by adding to κ0 literals
from κ with function symbols not in κ0. Then κ 6v κ and ‖κ ⇔ κ‖M = 1;
hence, κ is not M -incompressible.
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(2) Let κ =
∧
I

(Xi)Fi and let κj =
∧
I

(Xj
i )Fi (j = 1, . . . , k) be all the conjunc-

tions poorer than κ and M -equivalent to κ. Put κ0 =
∧
I

(
k⋂

j=1

(Xj
i )Fi

)
; then

κ0 v κ, ‖κ0 ⇔ κ‖M = 1 and κ0 is M -incompressible.

6.4.4 Remark. Consider a quantifier ¿ which is a closure quantifier w.r.t.
(psEC, ←←). We have the following natural questions: Let κ, λ be psEC’s
and let Reg¿M

(κ, λ) = 〈κ, λ〉. Are κ, λ M -incompressible? Is con(κ, λ) M -
incompressible?

6.4.5 Theorem

(1) If ¿ is a closure quantifier for (psCPF, ←←) and if 〈κ, λ〉 is a psCPF (pair
of pseudoelementary conjunctions), then for each M Reg¿M

(κ, λ) is a pair
of M -incompressible psEC’s.

(2) Let ¿ be universally defined by an economical closure set U . The following
are equivalent:

(i) 〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉 ∈ U (and thus all pairs containing at least one 0
are Y-equivalent in the sense of 6.3.11).

(ii) For each M and each psCPF 〈κ, λ〉, if we put Reg¿M
(κ, λ) = (κ, λ)

then κ&λ is M -incompressible.

Proof

(1) Follows from 6.4.3 (2).

(2) Suppose that (i) is valid. It suffices to verify the following: If ‖(κ, λ) ¿
(κ&(X)F, λ)‖M = 1 and ‖κ&λ&(X)F ⇔ κ&λ&(X0)F‖M = 1 for an X0 ⊆
X, then ‖(κ, λ) ¿ (κ&(X0)F, λ)‖M = 1 (and similarly for κ, λ&(X)F ).
Indeed, if for an object o the value of κ&λ&(X)F is 1, then the value of
κ&λ&(X)F is also 1 and thus ‖(X0)F‖M [o] = ‖(X)F‖M [o] = 1, hence
the quadruple 〈u, v, u, v〉 of the values of κ, λ, κ&(X)F, λ is equal to the
quadruple 〈u, v, u, v〉 of the values of κ, λ, κ&(X0)F, λ and thus the latter
is in U . If the value of κ&λ&(X)F is ×, then either ‖F‖M [o] = × and
hence ‖(X)F‖M [o] = ‖(X0)F‖M [o] = × or ‖(X)F‖M [o] = 1 and then
‖(X0)F‖M = 1, which follows from

‖(κ&λ&(X)F ⇔ κ&λ&(X0)F‖M = 1 .

If ‖κ&λ&(X)F‖M = 0, then ‖(X0)F‖M [o] can be different from ‖(X)F‖M [o]
and we still have |(κ&λ&(X)F ⇔ κ&λ&(X0)F‖M = 1. But in the present
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case we have (u = 0 or v = 0) and (u = 0 or v = 0), hence 〈u, v〉 yields
〈u, v, u, v〉 ∈ U .

Suppose that not (i) is valid and let, e.g., 〈1, 0〉 be not Y -equivalent to
〈0, 0〉. Let M , κ, λ, X0 ⊂ X be such that for each o

‖κ‖M [o] = ‖(X)F‖M [o] = 1, ‖λ‖M [o] = ‖(X0)F‖M [o] = 0 .

Then

‖(κ, λ) ¿ (κ&(X)F, λ)‖M = 1, ‖(κ, λ) ¿ (κ&(X0)F, λ)‖M = 0

‖κ&λ&(X)F ⇔ κ&λ&(X0)F‖M = 1

Hence, if 〈κ, λ〉 = Reg¿M
(κ, λ), then κ&λ is M -compressible.

6.4.6 Remark. Recall 6.3.17 where we have shown that the regularization of a
pair of EC’s is a pair of EC’s iff

(i) 〈1, 1〉 forms a one-element tuft.

The condition in 6.4.5 requires that

(ii) 〈0, 0〉 lies in a tuft containing at least all pairs with al least one zero.

Consider now the quantifier of 6.3.21: we know that all of them satisfy (i).
but only the first one satisfies (ii). Hence, we prefer the first quantifier. Similarly
for the quantifiers of 6.3.22 – we prefer the first quantifier.

6.4.7 Theorem. If both 6.4.6 (i) and (ii) hold and if 〈κ, κ〉 is a disjointed pair of
EC’s, then for Reg¿M

(κ, λ) = 〈κ, κ〉 we have: Whenever (X)F occurs in κ and

(Y )F occurs in λ, then X = Y 6= ∅.
Proof. The fact that all coefficients are non-empty follows from (i). If ‖(κ, λ) ¿
(κ&(X)F, λ&(Y )F‖M = 1, observe that

‖(κ&λ&(X)F&(Y )F ) ⇔ (κ&λ&(X)F&(X ∩ Y )F )‖M = 1

so that, by the proof of 6.4.5, we have ‖(κ, λ) ¿ (κ&(X ∩ Y )F ), λ)‖M = 1.
Similarly, we obtain ‖(κ, λ) ¿ (κ&(X ∩ Y )F, λ&(X ∩ Y )F )‖M = 1.

6.4.8 Theorem. Let ¿ be a closure quantifier for (psEC, ←←) defined by an
economical closure set U .
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(1) Suppose, first, that U is the identity relation on {0,×, 1}2, thus (κ, λ) ¿
(κ, λ) is equivalent to (κ ⇔ κ)&(λ ⇔ λ). If κ, λ is a pair of M -incompressible
psEC’s and if 〈κ, λ〉 = Reg¿M

(κ, λ), then κ ⊆ κ and λ ⊆ λ.

(2) Suppose that 〈u, v, u, v〉 ∈ U implies u&v = u&v (thus (κ, λ) ¿ (κ, λ)
logically implies (κ&λ) ⇔ (κ&λ). If con(κ, λ) is M -incompressible and if
〈κ, λ〉 = Reg¿M

(κ, λ), then con(κ, λ) ⊆ con(κ, λ).

Proof. Let 〈κ, λ〉 = Reg¿M
(κ, λ), then 〈κ, λ〉 ←← 〈κ, λ〉. Let κ w κ0 ⊆ κ and

λ w λ0 ⊆ λ (i.e., κ0 is the subconjunction of κ with the same function symbols
as κ; similarly for λ0).

(1) In the first case we have ‖κ ⇔ κ‖M = ‖λ ⇔ λ‖M = 1, whence ‖κ ⇔ κ0‖M =
‖λ ⇔ λ0‖M = 1, which implies κ0 = κ, λ0 = λ by incompressibility.

(2) In the second case we have ‖con(κ, λ) ⇔ con(κ, λ)‖M = 1, so that ‖con(κ, λ) ⇔
con(κ0, λ0)‖M = 1, which implies con(κ, λ) = con(κ0, λ0) by incompress-
ibility. Hence, con(κ, λ) ⊆ con(κ, λ).

6.4.9 Remark. Obviously, the quantifier of 6.4.8 (1) is an a-helpful quantifier
for (psEC, ←←). Observe that if ‖(κ, λ) ¿ (κ, λ‖M = 1, the models

〈M, ‖κ‖M , ‖λ‖M〉, 〈M, ‖κ‖M , ‖λ‖M〉
coincide. U is defined by the decomposition of {0,×, 1}2 into one-element tufts:

6.4.10 Theorem. Say that a set U respects equivalence of conjunctions if
〈u, v, u, v〉 ∈ U implies u&v = u&v (cf. 6.4.7).

(1) The largest economical a-helpful set for (psEC,←←) respecting equivalence
of conjunctions is given by
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(2) The largest economical i-helpful set for (psEC,←←) respecting equivalence
of conjunctions is given by

Proof. Remember 6.3.20 and cf. 6.3.21, 6.3.22. The decomposition must be finer
than

6.4.11 Remark

(1) Note that is an economical a-helpful set U respects equivalence of conjunc-
tions it satisfies 6.4.6 (i), i.e. 〈1, 1〉 forms a one-element tuft. The a-helpful
set defined by 6.4.10 (1) is the unique a-helpful set U satisfying both 6.4.6 9i)
and (ii) and respecting equivalence of conjunctions.

(2) Note that in the case of qualitative calculus (without incomplete informa-
tion)

(a) for the quantifier of 6.4.8 (1), (κ, λ) ¿ (κ, λ) is logically equivalent to
(κ ⇔ κ)&(λ ⇔ λ,

(b) for the quantifiers defined by

(κ, λ) ¿ (κ, λ) is logically equivalent to (κ&λ) ⇔ (κ&λ).
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6.4.12 Remark and definition. Consider now (pseudo) elementary pairs 〈κ, δ〉
and implicational quantifiers. Till the end of the present section, ¿ will denote
the i-helpful quantifier for (psEP, ← ¢) defined by 6.3.25 (2) (iii), i.e. by

For any disjointed 〈κ, δ〉, let Regant¿M
(κ, δ) be the ←-sup of all κ → κ

such that ‖(κ, δ) ¿ κ, δ‖M = 1. In analogy to the above considerations, we
ask whether Regant(κ, δ) has the incompressibility property and whether (under
some assumption on 〈κ, δ〉) κ is a subconjunction of Regant¿M

(κ, δ).

6.4.13 Definition. κ is strongly M-incompressible w.r.t. δ is for each κ0 poorer
that κ and different from κ there is an o ∈ M such that ‖κ&δ‖M [o] = 1 but
‖κ0&δ‖M [o] = 1.

6.4.14 Remark. If κ is strongly M -incompressible w.r.t δ, then κ is obviously
M -incompressible. The intuitive meaning is as follows: The set of all objects
having κ is described by κ in an economical way, with particular emphasis to
objects having δ. Indeed, let M δ = {o ∈ M ; ‖δ‖M [o] = 1}. Then making a
coefficient in κ poorer we obtain a κ0 such that we find in M δ objects having κ
but not having κ0.

6.4.15 Lemma. Under the present notation, Regant¿M
(κ, δ) is strongly M -

incompressible w.r.t δ.

Proof. We can see that if ‖(κ, δ) ¿ (κ, δ)‖M = 1 and if κ0 v κ = Regant¿M
(κ, δ)

is such that, for each o ∈ M , (‖κ&δ‖M [o] = 1 implies ‖κ0&δ‖M = 1), then we
have ‖κ, δ) ¿ (κ0, δ)‖M [o] = 1 and thus ‖(κ, δ) ¿ (κ0, δ)‖M = 1/ Hence, κ0 ← κ,
which implies κ0 = κ.

6.4.16 Theorem. If κ is strongly M -incompressible w.r.t δ, then κ ⊆ Regant¿M
(κ, δ).

Proof. Analogous to the proof of 6.4.8.

6.4.17 Remark. Let ∼ be an implicational quantifier. Observe that if ‖κ ∼
δ‖M = 1 but κ is not strongly M -incompressible w.r.t δ, then there is a κ0

poorer than κ, strongly M -incompressible w.r.t δ and such that ‖κ0 ∼ δ‖M = 1.
(Take the subconjunction of Regant¿M

(κ, δ) with the function symbols of κ.)
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This suggests that sentences κ ∼ δ true in M and such that κ is strongly M -
incompressible w.r.t δ are of particular interest. (See the next chapter.)

6.4.18 Theorem. If there is an o ∈ M such that ‖κ&δ‖M [o] = 1 and if κ is an
EC then Regant ¿M (κ, δ) is an EC (all coefficients non-empty).

Proof analogous to the proof of 6.3.17 (i) ⇒ (ii).

6.4.19 Key words: M -incompressibility, economical helpful sets respecting
equivalence of conjunctions, strong M -incompressibility.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 6

(1) Note the following concerning independence and sufficiency:

(a) X is I(X) sufficient;

(b) If X is Z-independent then X is Z ′-independent for each Z ′ ⊇ Z
(consequently, if X is strongly independent then X is Z-independent
for each Z ⊇ X, hence it is weakly independent);

(c) X is Y -independent iff X is (I(X) ∩ Y )-independent;

(d) if X is Z-independent then X need not be Z ′-independent for a proper
subset Z ′ of Z. (Consider Sent = {1, 2, 3}, I =

{
1
2
, 2

3

}
and X = {1, 2},

then X is weakly independent but not strongly independent.)

(e) Z-independence is not hereditary (consider Z = Sent = {1, 2, 3, 4, 5},
I =

{
1
4

1
2

2,3
5

}
, X = {1, 2, 3} and X ⊇ X ′ = {1, 2}.)

(f) Strong independence is hereditary.

(2) We can define (as in Hájek 1973) a linearly ordered syntactic system (`.o. syn-
tactic system) as a triple L = 〈Sent, I, S〉, where 〈Sent, I〉 is a syntactic
system and S is a linear ordering of Sent. If L is a `.o. syntactic system,
then a set X ⊆ Sent is increasingly independent if there is no ϕ ∈ X we
have ϕ 6∈ I(X − {ϕ}) ∩ SEGS(ϕ).

Prove:

(a) Any subset of an increasingly independent set is increasingly indepen-
dent.

(b) If Sent is finite then for each Y ⊆ Sent there is a ⊆-minimal X ⊆ Y
such that X is increasingly independent and Y -sufficient.

(c) Find a condition on S and I implying that, for each X ⊆ Sent, X is
increasingly independent iff X is strongly independent. (Note that if
Sent is finite then there is an increasingly independent direct solution
for each given r-problem.)
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(3) (a) Definition. (cf. Hájek 1973). Let A be a finite set. A monotone
covering of A is a system H of subsets of A such that (i) H is linearly
ordered by the inclusion, (ii) A ∈ H.

Let S = 〈Sent,M, V, Val〉 be a semantical system. A hierarchical r-
problem in S is a quadruple P = 〈RQ, V0, I, H〉, where 〈RQ, V0, I〉 is
an r-problem in S (denoted by P0) and H is a monotone covering of
Sent. A solution of P , for M ∈ M, is a system {Xh, h ∈ H} such
that, for each h, h′ ∈ H, h ⊆ h′ implies Xh ⊆ Hh′ and that, for each
h ∈ H, X ∩h is a solution of the r-problem P0 ¹ h in S ¹ h (obviously,
XSent is then a solution of P0).

(b) Remark. The definition of a hierarchical problem and of its solution
is motivated by two facts:

(1) We imagine that the computer will successively construct the sets Xh

for increasing H: the program will thus have the form of a loop
with parameter h. If it is necessary to break off the computation,
and if h is the last processed value of the parameter, then we have
a solution of P) ¹ h.

(2) The interpretation of results is also divided by a hierarchical so-
lution into a set of subtasks, namely the interpretations of the
various sets Xh as solutions of r-problems P) ¹ h.

(c) Let H be a monotone ordering of Sent and let I be an inference rule
on Sent. H is I-saturated if the following holds for each h ∈ H : e

ϕ
∈ I

and ϕ ∈ h implies e ⊆ h for each ϕ, e.

(d) Theorem. Let S be a semantic system, let P = 〈RQ, V0, I, H〉 be a
hierarchical r-problem in S and let H be I-saturated. Then for each
model M there is a locally ⊆-minimal solution {Xh; h ∈ H} of for M .

(4) Consider observational monadic predicate calculi (two-valued): show that
there are exactly four universally definable a-helpful quantifiers for (psCPF,
⊆⊆).

(5) There is no quantifier ¿ a-helpful w.r.t (psCPF, ¢¢). (Hint: find CPF’s
κi, λi (i = 1, 2, 3) and a model M such that (a) 〈κ1, λ1〉 ¢ ¢〈κ2, λ2〉 ¢

¢〈κ3, λ3〉 and (b) for each o ∈ M , the M -value of κ1, λ1, κ3, λ3, λ2 is 1
but the M -value of λ1 is 0; then 〈M, ‖κ1‖M , ‖λ1‖M〉 = 〈M, ‖κ3‖M , ‖λ3‖M〉
so that ‖(κ1, λ1) ¿ (κ3, λ3)‖M = 1 hence ‖(κ1, λ1) ¿ (κ2, λ2)‖M = 1 but
〈M, ‖κ2‖M , ‖λ2‖M〉 is not a-better than 〈M, ‖κ1‖M , ‖λ1‖M〉:
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(6) We can define the theoretical notion of incompressibility:
κ is U -incompressible if there is no κ0 $ κ such that pU

κ0
= pM

κ .

From theoretical considerations of Chapter 4 we obtain the condition:

(∗) for each 〈j1, . . . , jn〉 , where ji ∈ Vi, pU
(j1)F1&...&(jn)Fn

> 0 .

(Theorem.) If U |= (∗), then each κ ∈ EC is U -incompressible.
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Chapter 7

A General GUHA-Method with
Associational Quantifiers

In the present chapter, we use the considerations of Chapter 6 for the description
and investigation of a particular (rather complex) GUHA-method. The whole
chapter can be viewed as an extensive example capable of concrete machine re-
alization (cf. the postscript). Remember the notion of a GUHA-method as a
parametrical system 〈S(p),P(p),X (p); p parameter〉 where each S(p) is a se-
mantic system, P(p) is an r-problem in S(p), and X (p) is a function associating
with each model M of S(p) a solution of P(p) in M . The whole of Section 1 is in
fact a single (commented) definition: We successively define the set Par of param-
eters, and the system S(p) and the r-problem P(p) defined by the parameter p.
In fact, we do not define a single method since some details remain undecided.
First, we neglect some formal questions concerning the particular representation
(coding) of things, i.e. Par will not be defined uniquely as a set, and, secondly,
we do not discuss questions of the particular bounds for various subparameters
since this question is relevant only only when one is going to write a program for
a particular machine. Hence, the notion we shall define is: G is a GUHA-method
with associational quantifiers. We wish to avoid unnecessary formalism: one can
read Section 1 as a list (review) of aspects involved in determining an r-problem
with an associational quantifier.

In Section 2, we describe a solution of an r-problem of the form discussed in
Section 1 and investigate properties of that solution. For this purpose, we classify
r-problems of Section 1 into four classes according to those of their properties
expressible without mentioning any structure of sentences (while mentioning the
properties of the deduction rule w.r.t. a certain ordering of relevant questions
only). In the present context, the reader will always see classes of r-problems
of Section 1 and apply our considerations to them; general formulations help to
stress relevant features and might perhaps be useful elsewhere.

Section 3 discusses questions of optimized machine realization of the method
described. In our opinion, these questions are discussed in enough detail so
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that the programmer can clearly see his task and, in addition, there are some
suggestions as to how to proceed. Moreover, we use our considerations to briefly
discuss questions of the complexity of machine computations; we show under what
conditions the method is realizable in polynomial time. Some simple strategies
(heuristics) for the search of the solution are described in Problem 4.

7.1 A system of r-problems

We are going to describe successively the set Par of parameters and associate with
each parameter p a function calculus F(p) and an r-problem P(p). If the reader
wishes to simplify the example, he may omit things concerning incompressibility
(assuming FORQ to be SIMPLE below) or concerning helpful quantifiers (as-
suming WHELP to be NO). If the reader makes both restrictions simultaneously,
then the example will be rather short (and unnecessarily poor).

7.1.1. Definition (beginning). The set Par of parameters of the GUHA-method
with associational quantifiers is supposed to have the following structure: Each
parameter p decomposes into three parts, namely (a) the part describing the func-
tion calculus in question, (b) the part determining the set of relevant questions,
and (c) the part deciding whether and what helpful quantifiers will be taken into
consideration. We write p = 〈CALC, QUEST, HELP〉. (To be continued).

7.1.2 Remark. Our function calculus will be a cross-qualitative MOFC with an
associational quantifier ∼, a quantifier¿ of type 〈14〉 (helpful for something) and
possibly other quantifiers. We must be specific as regards the number and range
of our function symbols and as regards the associated functions of our quantifiers.
Hence, we continue the definition as follows:

7.1.3 Definition (continued). Let CALC be the calculus-part of a parame-
ter p. Then CALC decomposed into three parts, namely (a) the characteris-
tic CHAR of the calculus in question, (b) the KQUANT part determining the
kind of the associational quantifier used, and (c) the PQUANT part reserved
for parameters determining uniquely the associated function of the quantifier ∼
(in accordance with the declared kind). The characteristic determines (aa) the
number of function symbols, (ab) for each function symbol Fi its set of regu-
lar values Vi = {0, 1, . . . , hi−1}, and (ac) information whether we admit mod-
els with incomplete information. The possible kinds of associational quanti-
fiers are: IMPL - implicational, SYMNEG - obeying the rules SYM and NEG
(cf. 3.2.17), and OTHER. We require that the particular associational quantifier
defined by PQUANT satisfies the following satisfiability condition: Whenever
‖ϕ ∼ ψ‖M = 1, then ϕ&ψ is satisfiable in M , i.e., there is an o ∈ M such that
‖ϕ&ψ‖M [o] = 1 (ϕ, ψ designated open). (To be continued.)
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7.1.4 Remark

(1) We shall not be specific about the form of PQUANT; e.g., if we include
⇒!

p,α among the particular quantifiers allowed, then PQUANT could be
the triple 〈!, p, α〉, where ! indicates that we mean the quantifier of probable
implication and p, α are its parameters.

(2) Note that all particular examples of associational quantifiers presented in
Chapter 4 Section 5 were either implicational (namely, ⇒!

p,α, ⇒?
p,α, ⇒p)

or satisfied SYM and NEG (namely ∼, ∼α, ∼2
α). All of them satisfied the

satisfiability condition.

(3) Our function calculus F(p) is uniquely determined except for the associated
function of ¿ (and of the remaining quantifiers, if any). We postpone the
definition of that function (those functions) to the time when HELP will
be described; then we can easily define Asf¿.

7.1.5 Definition (continued). Let QUEST be the part of a parametr p deter-
mining the set of relevant quantions. Then QUEST decomposes into three parts:
(a) the KRPF part determining the kind of relevant pairs of formulae, (b) the
FORQ part determining the form of relevant questions, and (c) the SYNTR part
determining syntactic restrictions for the occurrence of literals in relevant ques-
tions. The admissible kinds of relevant pairs of formulae are: (aa) CPF – then
relevant pairs of formulae are (some) disjointed conjunctive pairs of formulae,
and (ab) EPF – then relevant pairs are (some) elementary pairs of formulae.
The admissible forms of relevant questions are: (ba) SIMPLE – relevant ques-
tions are prenex sentences ϕ ∼ ψ where 〈ϕ, ψ〉 is a relevant pair of formulae, and
(bb) INCOMPR – relevant questions are conjunctions (ϕ ∼ ψ)& . . . where ϕ ∼ ψ
is as above and . . . is a sentence expressing a certain incompressibility condition
(to be made precise below).

Thus, in all cases the set of relevant questions consists of all sentences S(ϕ, ψ),
where 〈ϕ, ψ〉 varies over the set of relevant pairs of formulas and S(−,−) is
a function such that S(ϕ, ψ) is ϕ ∼ ψ either alone or in conjunction with an
incompressibility condition.

Each parameter must satisfy the following correctness condition: If the kind
of relevant pairs is EPF, then the kind of the associational quantifier is IMPL
(i.e., ∼ is implicational). (To be continued.)

7.1.6 Remark and Definition

(1) For the choice of CPF’s or EPF’s and for the requirement that EPF’s are
to be used only with implicational quantifiers see 6.3.12.
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(2) If κ is a (pseudo) EC then the incompressibility of κ is expressible as follows:

κ is M -incompressible iff

∥∥∥∥∥
∧

κ0$κ

¬(κ ⇔ κ0)

∥∥∥∥∥
M

= 1. Write Incompr (κ) for

∧
κ0$κ

¬(κ ⇔ κ0). Similarly, let ‖ϕ ⇔1 ψ‖M = 1 iff, for each o ∈ M ,

(‖ϕ‖M [o] = 1 iff ‖ψ‖M [o] = 1). Then κ is strongly M -incompressible w.r.t.
δ iff ‖SInc(κ, δ)‖M = 1, where SInc(κ, δ) is

∧
κ0$κ

(¬(κ0&δ) ⇔1 (κ&δ)).

(3) We shall not be specific as regards the syntactic restrictions; but let us
assume that KRPF together with SYNTR define uniquely the set of relevant
pairs of formulas. (Cf. Problem (2).) SYNTR may postulate that some
function symbols may occur only in the antecedents and some only in the
succedents, some function symbols can be allowed to have only certain
specific arguments, one can impose upper and lower bounds to the number
of literals in the antecedents and succedents, etc.

7.1.7 Definition (continued). We make the following economy assumption: If
the quantifier satisfies SYM and NEG (i.e., if KQUANT is SYMNEG), then

(a) 〈ϕ, ψ〉 ∈ RPF(p) and ϕ 6= ψ implies 〈ψ, ϕ〉 6∈ RPF(p);

(b) 〈ϕ, ψ〉 ∈ RPF(p) implies 〈neg(ϕ), neg(ψ)〉 6∈ RPF(p). (To be continued.)

7.1.8 Remark

(1) First, note that in a predicate calculus each EC is incompressible; hence, in
this case (two-valued data), it would make no sense to declare the form of
relevant questions as INCOMPR.

(2) In the general case, declaring the form of relevant questions as SIMPLE
one considers as relevant truths all sentences ϕ ∼ ψ true in a given model,
where 〈ϕ, ψ〉 ∈ RPF; declaring INCOMPR one considers as relevant truths.
What incompressibility condition should be imposed on the relevant pairs?
This depends on the desired sound deduction rules. Remember that for EPF
(and implicational quantifiers) we have the despecifying-dereducing rule; for
CPF we have no non-trivial direct rule (without auxiliary formulae), but if
we admit helpful quantifiers we have modus ponens for helpful quantifiers.
In all these rules we have dealt with prenex formulae ϕ ∼ ψ; we want to
find our incompressibility conditions in such a way that our rules remain
sound when ϕ ∼ ψ is replaced by S(ϕ, ψ). We observe that our first task
is to describe the HELP part of our parameters (determining our helpful
quantifiers); then the description of the structure of parameters will be
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completed, and we shall also complete the description of relevant questions
and deduction rules (i.e., of our r-problem). We begin with the definition
of some particular helpful quantifiers.

7.1.9 Definition (continued)

(1) The conservative helpful quantifier is the quantifier ¿ universally defined
by the set

U = {〈u, v, u, v〉; u = u and v = v, u, v ∈ {0,×, 1}} .

(2) If the kind of relevant pairs is CPF, then the designated helpful quantifier
is universally defined by the economical a-helpful (i-helpful) set determined
by the following table:

KQUANT IMPL IMPL SYMNEG SYMNEG
or or

OTHER OTHER
FORQ SIMPLE INCOMPR SIMPLE INCOMPR

(a) (b) (c) (d)

(3) If the kind of relevant pairs is EPF, then the designated i-helpful quan-
tifier is universally defined by the following economical i-helpful set for
(psEPF, ← ¢):
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7.1.10 Remark

(1) Hence, if ¿ is the conservative helpful quantifier, then (a) (ϕ, ψ) ¿ (ϕ, ψ)
is logically equivalent to (ϕ ⇔ ϕ)&(ψ ⇔ ψ), (b) ¿ is a-helpful w.r.t.
(psCPF, ←←) and i-helpful w.r.t. (psEPF, ← ¢). (Cf. 6.4.8 (1).)

(2) The designated quantifier is as strong as possible given some desired prop-
erties (first of all, it must be a-helpful or i-helpful respectively). The quan-
tifiers in 7.1.9 (2) are i-helpful and a-helpful for (psCPF, ←←) by 6.3.21
and 6.3.22 respectively; 6.4.6 gives reason for our choice of (a) and (c)
among the quantifiers of 6.3.21, 22, while 6.4.10 gives reasons for our choice
of (b) and (d). The quantifier in 7.1.9 (3) is i-helpful for (psEPF, ← ¢)
by 6.3.26; cf. also 6.4.16.

(3) Remember the meaning of the diagrams: e.g., if ¿ is defined by 7.1.9 (b),
then ‖(κ, λ) ¿ (κ, λ)‖M = 1 (for 〈κ, λ〉 ←← 〈κ, λ〉) if for each o ∈ M we
have the following: Put

〈‖κ‖M [o], ‖λ‖M [o], ‖κ‖M [o], ‖λ‖M [o]〉 = 〈u, v, u, v〉 .

Then [(〈u, v〉 = 〈1, 1〉 or 〈×, 1〉 or 〈×,×〉) implies 〈u, v〉 = 〈u, v〉] and
[〈u, v〉 = 〈1,×〉 implies 〈u, v〉 = 〈1,×〉 or 〈u, v〉 = 〈×,×〉].

7.1.11 Definition (continued). The HELP part of a parameter decomposes into
two parts: WHELP which indicates whether helpful quantifiers are used or not
and can be YES or NO, and KHELP indicating the kind of the helpful quantifier
used. If the second part can be either CONSV or DESIGN (conservative or
designated helpful quantifiers).

7.1.12 Remark. This completes the definition of the set of parameters and of its
structure; in what remains of the present section we shall complete the description
of the function calculus and of the problem determined by a parameter, and also
define other notions concerning the GUHA-method described.

7.1.13 Definition (continued). We describe the set RQ(p) of relavant quanstions.
It consists of all sentences S(ϕ, ψ) where 〈ϕ, ψ〉 is a relevant pair of formulae
(〈ϕ, ψ〉 ∈ RPF(p)) and S is defined as follows:

(a) If FORQ is SIMPLE, then S(ϕ, ψ) is ϕ ∼ ψ.

(b) If FORQ is INCOMPR, then S(ϕ, ψ) is as follows:
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KRPF WHELP KHELP

CPF NO – S(κ, λ) is κ ∼ λ & Incompr (κ) & Incompr (λ)
CPF YES CONSV S(κ, λ) is κ ∼ λ & Incompr (κ) & Incompr (λ)
CPF YES DESIGN S(κ, λ) is κ ∼ λ & Incompr (con (κ))
EPF NO – S(κ, δ) is κ ∼ δ & Incompr (κ)
EPF YES CONSV S(κ, δ) is κ ∼ δ & Incompr (κ)
EPF YES DESIGN S(κ, δ) is κ ∼ δ & SInc (κ, δ))

7.1.14 Remark. Hence, if we use no helpful quantifier or if we use the conserva-
tive helpful quantifier, the sentence expresses both the association and the incom-
pressibility of the conjunctions in question; for the designated helpful quantifier
the additional sentence is still stronger. We repeat that the choice is determined
by our desire that the rules described below be sound.

7.1.15 Definition (completed)

(1) If relevant pairs are CPF and WHELP is NO, then I(p) is the trivial identity
rule:

I(p) =

{
S(κ, λ)

S(κ, λ)
; 〈κ, λ〉 a conjunctive pair

}
.

(2) If relevant pairs are EPF and WHELP is NO, then (KQUANT is necessarily
IMPL) I(p) is the despecifying-dereducing rule:

I(p) =





S(κ, δ)

S(κ, δ)
;

〈κ, δ〉 results from 〈κ, δ〉
by successive despecification and dereduction,

〈κ, δ〉, 〈κ, δ〉 ∈ EPF





(3) If KRPF is CPF and WHELP is YES, then I(p) is the modified modus
ponens:

I(p) =

{
S(κ, λ), (κ, λ) ¿ (κ, λ)

S(κ, λ)
; 〈κ, λ〉 ←← 〈κ, λ〉 ←← 〈κ, λ〉

conjuctive pairs

}
.

(4) If KRPF is EPF and WHELP is YES, then I(p) is the set of all pairs

S(κ, δ), (κ, δ) ¿ (κ, δ)

S(κ, δ)

where κ ← κ and 〈κ, δ〉 is constructed as follows:
(a) One takes a κ0 such that κ ← κ0 ← κ (improves the antecedent),
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and (b) one despecifies and dereduces the pair 〈κ0, δ〉. Call this I(p) the
combined rule.

7.1.16 Remark. Note that we have indeed defined a set of parameters with a
certain structure on it and for each p a function calculus F(p), a set RQ(p) of
relevant questions and a rule I(p). To prove that P(p) = 〈RQ(p), {1}, I(p)〉 is an
r-problem it remains to verify the following:

7.1.17 Lemma. For each parameter p, the rule I(p) is sound.

Proof. First, suppose WHELP to be NO (no helpful quantifiers). Then the case
of CPF is trivial. If KRPF is EPF and if FORQ is SIMPLE (no incompressibility
sentences), we have the usual despecifying-dereducing rule which is sound for
each implicational quantifier. (Remember that in the present case KQUANT
is IMPL.) If FORQ is INCOMR, recall that, by 6.4.3, a subconjunction of an
incompressible conjunction is incompressible.

Suppose now that we have the conservative helpful quantifier. (KHELP is
CONSV.) If FORQ is SIMPLE (no incompressibility), then for CPF we have the
modified modus ponens

{
κ ∼ λ, (κ, λ) ¿ (κ, λ)

κ ∼ λ
; 〈κ, λ〉 ←← 〈κ, λ〉 ←← 〈κ, λ〉

}

which is obviously sound; for EPF the soundness also is obvious. If FORQ is
INCOMPR, and if KRPF is CPF we have to verify the following: Let ‖κ ∼
λ‖M = 1 and ‖(κ, λ) ¿ (κ, λ)‖M = 1, let κ, λ be M -incompressible and let

〈κ, λ〉 ←← 〈κ, λ〉 ←← 〈κ, λ〉. Then κ, λ are M -incompressible. But here¿ is the
conservative helpful quantifier and hence it follows, by 6.4.8 (1), that κ ⊆ κ ⊆ κ

and λ ⊆ λ ⊆ λ. Now, κ, λ are M -incompressible by 6.4.5, thus κ, λ are also
M -incompressible. For EPF one proceeds similarly.

Finally, assume KHELP to be DESIGN. Everything is obvious if FORQ
is SIMPLE (cf. 7.1.10 (2)); hence, assume KHELP to be INCOMPR. First
let KRPF be CPF. Then relevant questions have the form κ ∼ λ & Incompr
(con (κ, λ)); ¿ is now the quantifier 7.1.9 (2) (b) or (d). To verify the sound-
ness of the modified modus ponens, assume ‖κ ∼ λ‖M = 1, con (κ, λ) M -

incompressible, ‖(κ, λ) ¿ (κ, λ)‖M = 1, 〈κ, λ〉 ←← 〈κ, λ〉 ←← 〈κ, λ〉. We know
that ‖κ ∼ λ‖M = 1, we have to prove that con (κ, λ) is M -incompressible. We can

assume 〈κ, λ〉 = Reg ¿M (κ, λ) without loss of generality. Now, con (κ, λ) is M -

incompressible by 6.4.5: by 6.4.8 (2), con (κ, λ) is a subconjunction of con (κ, λ)

and, hence, con (κ, λ) is M -incompressible. Secondly, let KRPF be EPF. Sup-
pose ‖(κ ∼ δ)‖M = 1, ‖(κ, δ) ¿ (κ, δ)‖M = 1, κ ← κ0 ← κ, and let 〈κ, δ〉 result
from 〈κ, δ〉 by despecification and dereduction (i.e., 〈κ, δ〉 is more acute that
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〈κ0, δ〉). We have to prove that κ is strongly M -incompressible w.r.t. δ. It follows
easily as in the previous paragraph that κ0 is strongly incompressible w.r.t. δ
(use 6.4.15, 16). To prove that κ is strongly M -incompressible w.r.t. δ it suffices
to observe the following two easy facts: (a) If κ ⊆ κ0, then SInc (κ0, δ) logically
implies SInc (κ, δ) (b) If δ ¢ δ, then SInc (κ, δ) logically implies SInc (κ, δ). This
completes the proof.

7.1.18 Theorem. For each p ∈ Par, F(p)is a cross-qualitative MOFC and
P(p) = 〈RQ(p), {1}, I(p)〉 is an r-problem in the semantic system given by F(p).

Proof. Immediate from the preceding.

7.1.19 Discussion. First, let us summarize the things determined by a param-
eter (and determining the calculus and r-problem):

CHAR characteristic
CALC KQUANT kind of assoc. quantifier (IMPL, SYMNEG, OTHER)

PQUANT parameters of the assoc. quantifier
KRPF kind of relev. pairs of formulae (CPF, EPF)

QUEST FORQ form of relev. questions (SIMPLE, INCOMPR)
SYNTR syntactic restrictions to literals

HELP WHELP whether helpful quant. YES, NO
KHELP what helpful quant. CONSV, DESIGN

Presumably, the choice of particular values of the above parameters except
FORQ and HELP will be satisfactorily determined by the extramathematical
problem to be solved, but the hypothetical user may be ill at ease when answer-
ing the following questions: (1) Whether to make the restriction to incompressible
things (choose FORQ to be INCOMPR) and (2) whether and what helpful quan-
tifier should be used (how to choose HELP). Some remarks are in order. In fact,
we shall repeat things already stated elsewhere above; we will be able to give
some more information in the next section (in dependence on the solutions).

When one changes FORQ from SIMPLE to INCOMPR (keeping other things
fixed), one diminishes the set of relevant truths: A true sentence ϕ ∼ ψ is relevant
only if the pair 〈ϕ, ψ〉 satisfies the respective incompressibility condition. Hence,
if one is afraid that the set of relevant truths will be too large this is a reasonable
restriction. (The statistical significance of this restriction is considered below.)

Helpful quantifiers are intended to strengthen our capability of “seeing at a
glance” and, in particular, to provide non-trivial deduction rules for KQUANT
not being IMPL. This often helps to diminish the solution (see the next section)

by replacing the whole set {κ ∼ λ; 〈κ, λ〉 ←← 〈κ, λ〉 ←← 〈κ, λ〉} (where κ ∼ λ
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and (κ, λ) ¿ (κ, λ) are true) by κ ∼ λ and (κ, λ) ¿ (κ, λ). The stronger the
quantifier ¿, the larger is the hope for a better (smaller) solution. Even the con-
servative quantifier can be of considerable help: the designated quantifier is the
strongest possible (for a given case). On the other hand, the conservative quanti-
fier is called conservative since if ‖(κ, λ) ¿ (κ, λ‖M = 1 (where¿ is conservative)
then 〈M, ‖κ‖M , ‖λ‖M〉 equals 〈M, ‖κ‖M , ‖λ‖M〉, and hence every statistic takes
the same value for κ, λ as for κ, λ in M , which might be useful. For the desig-
nated quantifier¿, 〈M, ‖κ‖M , ‖λ‖M〉 is a-better (i-better) than 〈M, ‖κ‖M , ‖λ‖M〉
so that for reasonable statistics (defining associational quantifiers) the value for
κ, λ is better than for κ, λ.

Note that a practical user need not know the particular definitions of desig-
nated helpful quantifiers for all the cases; it is sufficient if he knows the notion
of an a-(i-)helpful quantifier and knows the fact that the corresponding rule is
sound. Neither is he obliged to know the optimality properties as expressed
by 6.3.21, 22, 6.4.6, 6.4.10 etc.

When one uses helpful quantifiers and also restricts oneself to incompressible
pairs, then for CPF the designated helpful quantifier is slightly weaker than the
corresponding designated quantifier for FORQ being SIMPLE. It is a delicate
question which is then better (and in what sense), whether to consider all pairs
or only the incompressible ones.

The restriction to incompressible pairs has one more advantage, namely it
makes it possible to order relevant questions such that both syntactical simplicity
and logical strength is respected. We shall go into details in the next section.

7.1.20 Key words: The set of parameters of a GUHA method with associatical
quantifiers; structure of parameters: CALC – description of the function calculus,
QUEST – determination of the set of relevant questions, HELP – deciding the
usage of helpful quantifiers;

CALC: characteristic of calculus, kind of associational quantifiers, parameter
of associational quantifiers; QUEST: kind of relevant pairs of formulae, form of
relevant questions, syntactic restrictions; HELP: no, conservative or designated
helpful quantifiers.

7.2 Solutions

Now our task is to describe, for each parametr p ∈ Par and each model M of the
corresponding characteristic, a solution X(p,M) of the problem P(p). For this
purpose it is reasonable to classify problems into four groups depending on their
deduction rules (cf. 7.1.15). (If the reader has disregarded helpful quantifiers
and/or incompressibility in Section 1 he also must – and can – disregard them in
the present section.)

We shall isolate some general properties of problems in connection with certain
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orderings on sets of relevant questions. This makes it possible to have a uniform
definition of the solution as the set of all P(p)-prime sentences of M and, in
addition, if the solution is indirect, of some auxiliary sentences. The following
definition will be useful:

7.2.1 Definition. Let P = 〈RQ, V0, I〉 be an r-problem and let ∅ 6= RQ0 ⊆ RQ.
The restriction of P to RQ0 is the problem P ¹ RQ0 = 〈RQ0, V0, I〉.
7.2.2 Definition. Let P = 〈RQ, V0, I〉 be an r-problem. P is deductionless (or:
of the first kind) if I consists only of (some) pairs ϕ

ϕ
where ϕ ∈ Sent.

7.2.3 Remark. For the problems of Sections 1, if relevant pairs are CPF
and helpful quantifiers are not used (WHELP is NO), P(p) is deductionless –
cf. 7.1.15.

7.2.4 Lemma. Let P be deductionless. Then

(a) for each M there is a uniquely determined solution consisting of all relevant
truths (X = RQ ∩ TrV0(M));

(b) for each non-empty RQ0 ⊆ RQ, P ¹ RQ0 is deductionless; if X is the
solution of P in M , then X ∩RQ0 is the solution of P ¹ RQ0 in M .

Proof. Obvious, for a generalization see Problem (5).

7.2.5 Definition (G – i.e., concerning the system of Sect. 1 - part 1). If KRPF is
CPF and WHELP is NO, then for each M we put X(p,M) = RQ(p)∩Tr{1}(M).
For the sake of uniformity, in this case call each relevant question Φ true in M a
P(p)-prime sentence of M (or: sentence P(p)-prime in M); X(p,M) consists of
all P(p)-prime sentences of M . Observe that X(p,M) is a solution.

7.2.6 Definition. P = 〈RQ, V0, I〉 is a simple problem (or: problem of the
second kind) if there is an ordering ≤ on RQ such that I consists exactly of all
pairs ϕ

ψ
such that ϕ, ψ ∈ RQ and ϕ ≤ ψ.

7.2.7 Lemma. Let P be a simple problem.

(a) For an arbitrary M let X be the set of all ≤-minimal elements of RQ ∩
TrV0(M). Then X is the ⊆-least solution; i.e., X is a solution and is a
subset of each solution.

(b) Let RQ0 be a non-empty subset of RQ and let M be a model. Let X0

be the set of all ≤-minimal elements of RQ0 ∩ TrV0(M). Then X0 is the
⊆-least direct solution of P ¹ RQ0. If RQ0 is a lower ≤-segment of RQ
(i.e., if Φ ≤ Ψ ∈ RQ0 implies Φ ∈ RQ0), then X0 = X ∩RQ0.

Proof. Obvious.
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7.2.8 Remark. (G). Let KRPF be EPF and WHELP be NO. Let P̂(p) be the
problem differing from P(p) only in the fact that relevant pairs of formulae are
all EPF’s (without any restrictions). Then P(p) = P̂(p) ¹ RQ(p) and P̂(p) is
a simple problem; the corresponding ordering is ∝ (more acute than, cf. 6.3.27;
more precisely, one considers the ordering of relevant questions induced by the
ordering of relevant pairs of formulae).

7.2.9 Definition (G - part 2). If KRPF is EPF and WHELP is NO, then call a
Φ ∈ RQ(p) a P(p)-prime sentence of M if ‖Φ‖M | = 1 and there is no Ψ distinct
from Φ such that Ψ ∝ Φ and ‖Ψ‖M = 1. let X(p,M) be the set of all P(p)-prime
sentences of M .

7.2.10 Definition. Let P be a problem, let ≤ be an ordering of RQ, and suppose
that I consists of some pairs of the form ϕ,aux

ψ
where ϕ, ψ ∈ RQ, ϕ ≤ ψ and

aux 6∈ RQ. Call ψ M -obtainable from ϕ if there is an aux such that ϕ,aux
ψ

∈ Iand

aux∈ TrV0(M). Call P a tuft problem w.r.t. ≤ (or: a problem of the third kind)
if, for each M , RQ ∩ TrV0(M) is a union of disjoint (upper) tufts Y1, . . . , Yk

satisfying the following property: For arbitrary ϕ ≤ ψ, ϕ, ψ belong to the same
tuft iff ‖ϕ‖M = 1 and ψ is M -obtainable from ϕ.

7.2.11 Lemma (G). KRPF be CPF and let WHELP be YES. Let P̂(p) be the
problem differing from P(p) only in the fact that relevant pairs of formulae are
all CPF’s (without any restrictions). Then P(p) = P̂(p) ¹ RQ(p) and P̂(p) is
a tuft problem w.r.t. ←← (more precisely, w.r.t. the ordering induced by the
ordering ←← of relevant pairs of formulae). In fact, if Φ is S(κ1, λ1) and if
Ψ is S(κ2, λ2), then Φ, Ψ are in the same tuft iff (‖Φ‖M = ‖Ψ‖M = 1 and
Reg ¿M (κ1, λ1) = Reg ¿M (κ2, λ2).

Proof. Obviously S(κ2, λ2) is M -obtainable from S(κ1, λ1) iff 〈κ1, λ1〉 ←←
〈κ2, λ2〉 and ‖(κ1, λ1) ¿ (κ2, λ2)‖M = 1. Since ¿ is a closure quantifier it
follows by 6.2.12 that the set psCPF decomposes into pairwise disjoint tufts
Z1, . . . , Z1 such that 〈κ1, λ1〉, 〈κ2, λ2〉 are in the same tuft iff Reg ¿M (κ1, λ1) =
Reg ¿M (κ2, λ2). For each such tuft Zi, either there is no 〈κ, λ〉 ∈ Zi such
that ‖S(κ, λ)‖M = 1 or, otherwise, the collection {〈κ, λ〉 ∈ Zij; ‖S(κ, λ)‖M = 1}
forms a subtuft Z0

i of Zi with the same top point (since I(p) is sound). Put
Yi = {S(κ, λ); 〈κ, λ〉 ∈ Z0

i }. Note that for a CPF 〈κ, λ〉, ‖S(κ, λ)‖M = 1 im-
plies that Reg ¿M (κ, λ) is a CPF, not only a psCPF, since then we have ‖κ ∼
λ‖M = 1. Hence, κ&λ is satisfiable (by the satisfiability requirement 7.1.3); then
Reg ¿M (κ, λ) is a CPF by 6.3.17. Thus the sets Z0

i are tufts in (CPF, ←←).

7.2.12 Discussion. Let P be a tuft problem w.r.t. ≤; suppose that for each
ϕ ∈ RQ and M we have se sentence RegM(ϕ) such that
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(∗) ψ is M − obtainable from ϕ iff
ϕ, RegM(ϕ)

ψ
∈ I .

This is satisfied by the problem P(p) of 7.2.11; RegM(S(κ, λ)) is (κ, λ) ¿ (κ, λ)

where 〈κ, λ〉 = Reg ¿M (κ, λ).

(a) Let M be a model; let RQ ∩ TrV0(M) = Y1 . . . Yk where Y1, . . . , Yk are
tufts as described in 7.2.10. Call ϕ ∈ RQ a P-prime sentence of M if ϕ is a
minimal element of a tuft Yi, i.e., ϕ is true in M and not M -obtainable from
any true ψ < ϕ. Let X be the set containing, for each P-prime sentence ϕ
of M , both ϕ and RegM(ϕ). Then X is obviously a solution of P in M

(since if ϕ ∈ Yi and if ψ is the top point of Yi, then
ϕ,RegM (ϕ)

ψ
∈ I).

(b) Let ∅ 6= RQ0 ⊆ RQ and put P0 = P ¹ RQ0. Call a ϕ ∈ RQ0 a P-prime
sentence of M if ϕ is M -true and is not M -obtainable from any M -true
ψ < ϕ, ϕ ∈ RQ0. Let X0 be the set, containing for each P0-prime sentence ϕ
of M , both ϕ and RegM(ϕ). Then X0 is a solution of P0 in M . (Note that
RegM(ϕ) is determined by I and not by RQ0). In general, P ¹ RQ0 is not
a tuft problem since, e.g., the supremum of sentences in RQ0 obtainable
from a ϕ ∈ RQ0 need not belong to RQ0.

(c) How good is the solution just described? Would it not be better to take the
direct solution Z = RQ ∩ TrV0(M)? Unfortunately, we cannot assert that
card(X) is always≤ card(Z) (e.g., if RQ∩TrV0(M) has exactly one element,
then X has two: ϕ and RegM(ϕ)). But we have the following lemma giving
satisfactory reasons for our preference of the indirect solution:

(Lemma.) For each tuft problem P satisfying (*), if X is the indirect solution
described in (a) above and if Z = RQ∩TrV0(M), then card(X) ≤ 2 card(Z). On
the other hand, for each natural number m there is a tuft problem satisfying (*)
such that card(Z) > m · card(X).

Proof. Let RQ∩ TrV0(M) = Y1 . . . Yk as above; consider Yi. Let Yi have p mini-
mal elements; then Y1 produces ≤ 2p elements of X and ≥ p elements of Z. This
proves the first part. As concerns the second part, let RQm be the tuft of all the
non-empty subsets of {0, 1, . . . , m − 1} ordered by inclusion; if M is such that
RQm ⊆ TrV0(M) and if Im is such that ψ is M -obtainable from ϕ iff ϕ ⊆ ψ, then
card(X) = 2m and card(Z) = 2m − 1; the ratio (2m − 1) : (2 ·m) converges to
infinity with m. (It is easy to find a tuft problem with CPF and an associational
quantifier simulating the described situation, see Problem (3).)

7.2.13 Definition (G - part 3). If KRPF is CPF and WHELP is YES, then
call a sentence S(κ, λ) ∈ RQ(p) a P(p)-prime sentence of M if ‖S(κ, λ)‖M = 1
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and there is no 〈κ0, λ0〉 ←← 〈κ, λ〉, 〈κ0, λ0〉 different from 〈κ, λ〉 and such that
‖S(κ0, λ0)‖M = 1 and ‖(κ0, λ0) ¿ (κ, λ)‖M = 1. We define X(p,M) to be the set
containing, for each P(p)-prime sentence S(κ, λ), both S(κ, λ) and (κ, λ) ¿ (κ, λ)
where 〈κ, λ〉 = Reg ¿M (κ, λ). The sentence (κ, λ) ¿ (κ, λ) is omitted if there is
no S(κ′, λ′) ∈ RQ(p) distinct from S(κ, λ) and such that 〈κ, λ〉 ←← 〈κ′, λ′〉 ←←
〈κ, λ〉. (This is the case e.g. if 〈κ, λ〉 = 〈κ, λ〉.)

7.2.14 Lemma. In the situation of 7.2.13, if FORQ is INCOMPR, then S(κ, λ)
is a prime sentence of M iff ‖S(κ, λ)‖M = 1 and if there is no 〈κ0, λ0〉 ⊆⊆
〈κ, λ〉 different from 〈κ, λ〉 and such that ‖S(κ0, λ0)‖M = 1 and ‖(κ0, λ0) ¿
(κ, λ)‖M = 1.

Proof. ⇒ is obvious. We prove ⇐. Let 〈κ0, λ0〉 ←← 〈κ, λ〉, let S(κ, λ) and
(κ0, λ0) ¿ (κ, λ) be M -true. We prove 〈κ0, λ0〉 ⊆⊆ 〈κ, λ〉. Suppose 〈κ, λ〉 =
Reg ¿M (κ0, λ0) without loss of generality. For the conservative helpful quantifier
we obtain from ‖S(κ0, λ0)‖M = 1 the M -incompressibility of κ and λ and, hence,
6.4.8 (1) yields κ0 ⊆ κ, λ0 ⊆ λ. For the designated helpful quantifier, we have
the M -incompressibility of con(κ, λ) and 6.4.8 (2) gives con(κ0, λ0) ⊆ con(κ, λ);
but 〈κ0, λ0〉 is disjointed and by 6.4.7 if a function symbol F occurs both in κ
and in λ, then it has the same coefficient in both formulae. Hence κ0 ⊆ κ and
λ0 ⊆ λ.

7.2.15 Remark. The preceding lemma will be useful when we discuss the order
in which the solution is to be generated. The lemma yields an additional argument
for the restriction to incompressible things (FORQ taken to be INCOMPR);
namely, the solution can be obtained in a more natural ordering. See below.

7.2.16 Definition. A problem P = 〈RQ, V0, I〉 is combined (or: of the fourth
kind) if there are rules I1, I2 and orderings ≤1, ≤2 such that P1 = 〈RQ, V0, I1〉
is a simple problem w.r.t ≤1, P2 = 〈RQ, V0, I2〉 is a tuft problem w.r.t. ≤2

satisfying (*) of 7.2.12, and, moreover, the following holds: ϕ,aux
ψ

∈ I iff there is a

ϕ such that ϕ,aux
ϕ

∈ I2 and ϕ
ψ
∈ I1. Finally, we assume the following: For each M

‖ϕ‖M = 1, ϕ
ψ0
∈ I1 and ψ is M -obtainable from ψ0 using I2, then there is a ϕ

M -obtainable from ϕ such that ϕ
ψ
∈ I1.

7.2.17 Remark and Definition. Let KRPF be EPF and let WHELP be
YES. Let P̂(p) be the problem differing from P(p) only in the fact that relevant
pairs of formulae are all disjointed EPF’s (without further restrictions). Then
P(p) = P̂(p) ¹ RQ(p) and P̂(p) is a combined problem in which I1 is the modified
modus ponens of the following form:

I2 =

{
κ ∼ δ, (κ, δ) ¿ (κ, δ)

κ ∼ δ
; κ ← κ ← κ

}
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and ≤2 is← 2 (〈κ1, δ1〉 ← 2〈κ2, δ2〉 iff κ1 ← κ2 and δ1 = δ2). Note that we admit
only disjointed EPF’s. Evidently, for each disjointed EPF 〈κ, δ〉 and each M
such that ‖S(κ, δ)‖M | = 1 there is a ≤2-largest disjointed EPF 〈κ, δ〉 such that
‖(κ, δ) ¿ (κ, δ)‖M = 1. (Take Regant ¿M (κ, δ) and omit from it all literals with
function symbols occurring in δ.) Denote this EC by RegantD ¿M (κ, δ), the
disjointed regularization of the antecedent of 〈κ, δ〉. By 7.1.15, I(p) is obtained
from I1 and I2 exactly as one requires in 7.2.16. As regards the last condition of
the definition, cf. 6.3.33.

7.2.18 Discussion. Let P be a combined problem (notation as in 7.2.16). For
each ϕ, let RegM(ϕ) be the formula guaranteed by (*) of 7.2.12 w.r.t. I2. Call
ϕ ∈ RQ P-prime in M if ϕ is both P1-prime and P2-prime in M . Let X be
the set containing, for each P-prime sentence ϕ both ϕ and RegM(ϕ). Then
X is a solution of P in M . (Cf. 6.3.33 again; use the last condition of 7.2.16.)
Similarly, if ∅ 6= RQ0 ⊆ RQ and P0 = P ¹ RQ0, then put P0

1 = P1 ¹ RQ0 and
P0

2 = P2 ¹ RQ0. Then call ϕ P0-prime if ϕ is both P0
1 -prime and P0

2 -prime (this
makes sense by the above). Let X0 be the set containing, for each P0-prime ϕ,
both ϕ and RegM(ϕ) (computed w.r.t P2!). Then X0 is a solution of P0. One
could make optimality remarks similar to 7.2.12 (c).

7.2.19 Definition (G - part 4). If KRPF is EPF and if WHELP is YES, then
call a sentence S(κ, δ) ∈ RQ(p) a P(p)-prime sentence of M if (i) ‖S(κ, δ)‖M = 1,
(ii) there is no 〈κ0, δ0〉 ∝ 〈κ, δ〉 distinct from 〈κ, δ〉 such that ‖S(κ0, δ0)‖M = 1
and (iii) there is no κ0 ← κ, κ0 6= κ such that ‖S(κ0, δ)‖M = 1 and ‖(κ0, δ) ¿
(κ, δ)‖M = 1. Define X(p,M) to be the set containing, for each P(p)-prime
sentence S(κ, δ) of M , both S(κ, δ) and (κ, δ) ¿ (κ, δ), where κ = RegantD ¿M

(κ, δ).

The sentence (κ, δ) ¿ (κ, δ) is omitted if there is no S(κ′, δ) ∈ RQ(p) distinct
from S(κ, δ) and such that κ ← κ′ ← κ. (This is the case e.g. if κ = κ.)

7.2.20 Lemma. In the situation of 7.2.17, if FORQ is INCOMPR, then S(κ, δ)
is P(p)-prime in M iff (i), (ii) and (iii’), where (iii’) is as follows: (iii’) There is no
κ0 ⊆ κ distinct from κ such that ‖S(κ0, δ)‖M = 1 and ‖(κ0, δ) ¿ (κ, δ)‖M = 1.

The proof is similar to that of 7.2.14.

7.2.21 Conclusion (G). In all cases, the set X(p,M) defined by 7.2.5, 7.2.8, 7.2.13
and 7.2.19 is a solution of the problem P(p). hence the system

〈F(p), P(p), X(p, M); p ∈ Par, M a F(p)-model〉
is a GUHA-method called the general GUHA method with associational quanti-
fiers.

(Strictly speaking, in the first place one expects not a function calculus but a
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semantic system. Hence, let Sent(p) be the set of all sentences involved in I(p),
then replace F(p) by S(p)-the semantic system determined by F(p) and Sent(p).)

In all cases, moreover, X(p,M) is an RQ(p)-independent solution and, hence,
a ⊆-minimal solution (cf. 6.1.14).

7.2.22 Remark and Definition. For each p and each M we have the notion
“a P(p)-prime sentence of M”. If WHELP is NO, then X(p,M) is a direct
solution consisting of all the prime sentences; if WHELP is YES, then X(p,M)
is indirect and contains sentences with helpful quantifiers as well as the prime
sentences. For each p, we describe a quasiordering ≤des on Sent p such that “Ψ
M -obtainable form Φ” implies Φ ≤des Ψ. The quasiordering will be induced by
a corresponding ordering of RPF (p).

7.2.23 Definition. For each p ∈ Par, we define the designated ordering of
RPF (p) as follows:

KRPF WHELP FORQ design. ordering remark
CPF NO arb. 2 2 identity
EPF NO arb. ∝ “more acute than”
CPF YES SIMPLE. ← ←
CPF YES INCOMPR ⊆ ⊆
EPF YES SIMPLE (← 2) ∝ composition of (← 2) and ∝
EPF YES INCOMPR (⊆ 2) ∝ similarly

The designated ordering extends to a quasiordering of Sent (p) as follows:
First, define for each Φ ∈ Sent (p) its characteristic pair. If Φ is S(ϕ, ψ) then
cp (Φ) = 〈ϕ, ψ〉; if Φ is (ϕ, ψ) ¿ (ϕ, ψ), then cp (Φ) = 〈ϕ, ψ〉. Then let Φ ≤des Ψ
iff cp (Φ) ≤des cp (Ψ), where ≤des is the designated ordering of RPF (p).

7.2.24 Remark. The composition of ← 2 and ∝ (in this order) is an ordering
of the set of all disjointed EPF’s by 6.3.30. Obviously, 〈κ1, δ1〉 ⊆ 2〈κ2, δ2〉 iff
κ1 ⊆ κ2 and δ1 = δ2; the fact that the composition of ⊆ 2 and ∝ is an ordering
is proved exactly as 6.3.30.

7.2.25 Lemma

(1) For each p ∈ Par the designated quasiordering of Sent (p) restricted to
RQ(p) is an ordering (hence, if WHELP is NO, then ≤des is an ordering).

(2) Let WHELP be NO. If Φ, Ψ ∈ RQ(p) and if Φ
Ψ
∈ I(p), then Φ ≤des Ψ.
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(3) Let WHELP be YES. If Φ, Ψ ∈ RQ(p), ‖Φ‖M = 1, ‖aux‖M = 1 and
Φ,aux

Ψ
∈ I(p), then aux ≡des Φ ≤des Ψ.

Proof. (1) and (2) are obvious; (3) is obvious if FORQ is SIMPLE; (3) if FORQ
is INCOMPR – cf. 7.2.14 and 7.2.20.

7.2.26 Corollary. If H is a hierarchy on Sent (p) such that each h ∈ H is a lower
≤des-segment (i.e., Ψ ≤des Φ ∈ h implies Ψ ∈ h), then X(p,M) is a hierarchical
solution of P(p) w.r.t. H. (Obvious; cf. Problem (3) of Chapter 6.)

7.2.27 Remark. For example, if the designated ordering is ⊆⊆, then we can
somehow linearize the ordering ¢¢ of RPF (p) and extend the linearization to
Sent (p); the corresponding segments of Sent (p) form a hierarchy “respecting
syntactical simplicity”. If the designated ordering is ←← then we can only partly
respect syntactical simplicity (we can respect ⊆ but not v). It is reasonable to
use a linearization of the designated ordering for successive treatment of relevant
pairs in the construction of the solution, cf. the next section.

Key words: r-problems: deductionless (of the first kind), simple (of the sec-
ond kind), tuft problems (of the third kind) and combined (of the fourth kind);
their solutions; prime and auxiliary sentences: application to GUHA-problems
form 7.1, designated orderings.

7.3 Remarks on realization and optimalization

In the present section, we shall discuss three topics: (i) How the solution should
be represented on the machine output, and how to find the input corresponding
to one prime sentence quickly, (ii) how to verify quickly the truth of ϕ ∼ ψ in a
model with incomplete information and, finally, (iii) under what conditions the
method is realizable in polynomial time.

7.3.1 Discussion. Our first question is uninteresting for the case without helpful
quantifiers (WHELP being NO): If the parameter is known, then the solution is
fully represented by the list of pairs 〈ϕ, ψ〉 of relevant formulae such that S(ϕ, ψ)
is a P(p)-prime sentence of M . According to 7.2.25, one goes through RPF (p)
in a linear order linearizing the designated ordering of RPF (p). For the case
of helpful quantifiers (WHELP is YES) the question is, assuming that S(ϕ, ψ)
is prime, how to find (represent) the corresponding auxiliary sentence of the
form (ϕ, ψ) ¿ (ϕ, ψ). (Recall that if relevant pairs are CPF, then 〈ϕ, ψ〉 is
Reg ¿M (ϕ, ψ); if relevant pairs are EPF, then ϕ is Regant ¿M (ϕ, ψ) and ψ
is ψ.) Here we use Theorem 6.3.14 (cf. remark 6.3.15). Recall that Ant(ϕ, ψ, χ) is
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logically equivalent to (ϕ, ψ) ¿ (ϕ&χ, ψ) and, similarly, Suc(ϕ, ψ, χ) is logically
equivalent to (ϕ, ψ) ¿ (ϕ, ψ&χ). We have the following:

7.3.2 Lemma. Let WHELP be YES (helpful quantifiers used).

(1) If relevant pairs are CPF and if S(κ, λ) is a P(p)-prime sentence of M , then
Reg¿M

(κ, λ) can be constructed as follows: For each function symbol Fi,

ask whether there is an X $ Vi such that ‖Ant(κ, λ, (X)Fi)‖M = 1; if so,
let Xi be the least such X and put i into A. Further, ask whether there
is a Y $ Vi such that ‖Suc(κ, λ, (Y )Fi)‖M = 1; if so, let Yi be the least
such Y and put i into S. Let κ =

∧
i∈A

(Xi)Fi and let λ =
∧
i∈S

(Yi)Fi. Then

Reg¿M
(κ, λ) = 〈κ, λ〉.

(2) If relevant pairs are EPF and if S(κ, δ) is a P(p)-prime sentence of M ,
then RegantD

¿M
(κ, δ) can be constructed as follows: For each functions

symbol Fi not occurring in δ ask whether there is an X $ Vi such that
‖Ant(κ, δ, (X)Fi)‖M = 1; if so, let Xi be the least such X and put i into A.
Let κ be

∧
i∈A

(Xi)Fi then κ = RegantD
¿M

(κ, δ).

Proof

(1) follows immediately from 6.3.14;

(2) is proved analogously.

Note that we know that each Xi is non-empty (cf. 7.2.10 and 7.2.15).

7.3.3 Remark

(1) We can now answer the question of the desired output in the case with
helpful quantifiers. For each prime sentence S(ϕ, ψ), the output contains:

(a) the pair 〈ϕ, ψ〉
(b) the list of all literals (X)Fi where X is the smallest coefficient Z $ Vi

such that (Z)Fi improves the antecedent of S(ϕ, ψ) (if KRPF is EPF
disregard the function symbols occurring in ψ);

(c) in addition, if KRPF is CPF, then the output contains the list of all
literals (X)Fi where X is the smallest coefficient Z $ Vi such that
(Z)Fi improves the succedent of S(ϕ, ψ).

In dependence on the particular quantifier used (PQUANT), we may also
require further information, e.g. the exact value of the statistic used in the
definition of the quantifier, etc.
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(2) Our next aim is to show how to find Xi (i ∈ A) and Yi (i ∈ S) directly.
Let κ, λ, Fi, M be given; recall that ¿ is given by the parameter p. The
quantifier ¿ is universally defined by an economical set U . Let o ∈ M and
consider the quadruple

〈‖κ‖M [o], ‖λ‖M [o], ‖κ&(X)Fi‖M [o], ‖λ‖M [o]〉 = 〈u, v, u, v〉 .

We want to choose the least X such that this quadruple is in U , for all
o ∈ M . Take note of the following (1) if u 6= 0 and ‖Fi‖M [o] = ×, then
u = × independently of X. (2) If u = 1 and ‖Fi‖M [o] ∈ X, then u = 1.
(3) If u = × and ‖Fi‖M [o] ∈ X or ‖Fi‖M [o] = ×, then u = ×. (4) If u = 0
then u = 0. Hence if, for given u, v, the only w such that 〈u, v, w, v〉 ∈ U
is w = u, then we can force u to be equal to u (possibly enlarging the
coefficient unless u = 1 and ‖Fi‖M [o] = ×). If 〈u, v, w, v〉 ∈ U implies
w 6= 0, then we may always force u to be 6= 0. We obtain the following
definition:

7.3.4 Definition. Let ¿ be universally defined by a set U ⊆ {0,×, 1}4.

(1) Strongly A-critical pairs for ¿ are pairs 〈1, v〉 (v ∈ {0,×, 1}) such that
〈1, v, w, v〉 ∈ U implies w = u = 1.

(2) Weakly A-critical pairs for¿ are pairs 〈u, v〉 with u 6= 0 such that 〈u, v, w, v〉 ∈
U implies w 6= 0.

(3) Strongly S-critical pairs (weakly S-critical pairs are pairs 〈u, v〉 where (v = 1
(v 6= 0) and 〈u, v, u, w〉 ∈ U implies w = 1 (w 6= 0).

7.3.5 Lemma. Let WHELP be YES.

(1) Let relevant pairs be CPF, let S(κ, λ) be P(p)-prime in M , and let Fi be a
function symbol. There is an X such that ‖Ant(κ, λ, (X)F‖M = 1 iff there
is no object o ∈ M such that 〈‖κ‖M [o], ‖λ‖M [o]〉 is strongly A-critical and
‖Fi‖M [o] = ×. If the last condition is satisfied, then the least such X is

X = {‖Fi‖M [o]; ‖Fi‖M [o] 6= × and 〈‖κ‖M [o], ‖λ‖M [o]〉

is A-critical.

(2) Analogously if KRPF is CPF and Ant is replaced by Suc, A-replaced by S-.

(3) Analogously if KRPF is EPF and λ is replaced by δ.
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Proof. By using 7.3.3.

7.3.6 Remark. We make a list of critical pairs for quantifiers involved (first come
the strongly critical pairs; they are separated from those not strongly critical by
a semicolon).

KHELP KRPF FORQ KQUANT A-critical S-critical
CONSV CPF arb. arb. 11, 1×, 10; ×1, ××, ×0 11, ×1, 01; 1×, ××, 0×
CONSV EPF arb. arb. 11, 1×, 10; ×1, ××, ×0 —
DESIGN CPF SIMPLE IMPL 11; ×1 11; ×1
DESIGN CPF SIMPLE not IMPL 11, 1×; ×1 11, ×1, 1×
DESIGN CPF INCOMPR IMPL 11; 1×, ×1, ×× 11, ×1; 1×, ××
DESIGN CPF INCOMPR not IMPL 11, 1×; ×1, ×× 11, ×1; 1×, ××
DESIGN EPF arb. IMPL 11; — —

Hence, we see that to decide whether there is an X such that ‖Ant(κ, λ, (X)Fi‖M =
1 and if so to find the least X one needs only one inspection of the model, ob-
ject by object. Caution: It is possible that the least coefficient X such that
‖Ant(κ, λ, (X)Fi‖M = 1 is X = Vi, then (X)Fi will not be included in the regu-
larized antecedent.

We see directly why the constructed coefficient cannot be empty: 〈1, 1〉 is
always a critical pair and, since S(ϕ, ψ) is true, ϕ&ψ is satisfied by at least one
object (cf. 7.1.3).

7.3.7 Remark. If we have a particular pair 〈ϕ, ψ〉 (CPF or EPF) and want
to evaluate ϕ ∼ ψ in a model M then everything is determined by Mϕ,ψ =
〈M, ‖ϕ‖M , ‖ψ‖M〉, which is a three-valued ({0,×, 1}-valued) model. Should one
apply the definition directly, one would have to consider all two-valued comple-
tions of the last model, which would be tiresome. It is useful if we can effectively
associate with Mϕ,ψ one particular two-valued completion w(Mϕ,ψ) such that
‖ϕ ∼ ψ‖M = 1 iff Asf∼(w(Mϕ,ψ)) = 1. Then we can call w(Mϕ,ψ) the worst
completion of Mϕ,ψ.

We consider three-valued models of type 〈1, 1〉.

7.3.8 Lemma. Let M be a three-valued model of type 〈1, 1〉 and let ∼ be an
associational quantifier. Put

N = M(〈1,×〉 : 〈1, 0〉)(〈×, 0〉 : 〈1, 0〉)(〈×, 1〉 : 〈0, 1〉)(〈0,×〉 : 〈0, 1〉)
(i.e., each card 〈1,×〉 is replaced by 〈1, 0〉 etc.) Then N and M are a-equivalent,
i.e., M is a-better than N and N is a-better than M . This follows directly from
3.3.24.
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7.3.9 Remark (continued). Hence, looking for the worst completion wM we
know what to do with all cards except 〈×,×〉. Obviously, for symmetrical quan-
tifiers, the last card must be competed partly to 〈1, 0〉 and partly to 〈0, 1〉; but
how many objects with card 〈×,×〉 should be completed to 〈1, 0〉 and how many
to 〈0, 1〉? We shall show that in the particular cases discussed in Chapter 4 we
can answer this question.

7.3.10 Definition

(1) N is a symmetric completion of M if all cards except 〈×,×〉 are completed
as in 7.3.8, i.e.

cards 1× ×0 ×1 0×
are completed 1 0 1 0 0 1 0 1

and if the cards 〈××〉 are completed partly to 〈1, 0〉 and partly to 〈0, 1〉 in
such a way that |bN − cN | is as small as possible. (Remember that bN is
the frequency of the card 〈1, 0〉 in N , etc.)

(2) N is an implicational completion of M if all cards are completed as follows:

cards 1× ×0 ×× ×1 0×
are completed 1 0 1 0 1 0 0 1 0 1

7.3.1 Theorem. Let ∼ be one of the quantifiers ∼, ∼α, ∼2
α (i.e., in words,

the simple, Fisher, and χ2 quantifiers). Then, for each M and each symmetric
completion N of M , N is a-equivalent to M , i.e., Asf∼(N) = 1 iff Asf∼(N ′) = 1
for each completion N ′ of M .

Proof. Our proofs will be easy in all cases except the Fisher quantifier; for the
Fisher quantifier the result is due to Rauch.

In all cases, we know by lemma 7.3.8 that we can restrict ourselves to com-
pletions of a model M having the following 3× 3 table of frequencies:

1 0
1 a 0 b r

0 n 0 n
0 c 0 d s

k n l m
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Then a completion N has a 2× 2 table of the form:

a b + n′N
c + n− nN d

(1) First, consider the quantifier of simple association ∼: (r +n′N)(k +n−n′N)
attains its maximum if

δ(N) = |(r + n′N)− (k + n− n′N)| = |bN − cN |
attains its minimum. Now we have a completion N for which δ(N) attains
its minimum and Asf∼(N) = 1, i.e., am > (r + n′N)(k + n − n′N); then
clearly Asf∼(N) = 1 for each completion N ′ of M .

(2) Consider now the quantifier of χ2-association ∼2
α: Asf∼2

α
(N) = 1 iff

H(N) =
(ad− (b + n′N)(c + n− n′N))2m

(r + n′N)(k + n− n′N)(s + n− n′N)(l + n′N)
≥ χ2

α .

H(N) attains its minimum iff δ(N) attains its minimum. Thus if N is a
symmetrical completion, then H(N ′) ≥ H(N) for each completion N of M .

(3) The last case is the quantifier of the Fisher association ∼α: Suppose (with-
out any loss of generality due to the symmetry of ∼α) that r + n′N ≥
k + n − n′N . Observe that the completions N1, N2 with n′N1

= n′N2

are equivalent for our purposes and thus we shall consider the function
δ(n′) = r − k + 2n′ − n ≥ 0. Denote

I(n, r, k) = {n′; δ(n′) ≥ 0, 0 ≤ n′ ≤ n} .

I(n, r, k) is an interval in N and δ(n′) is strictly increasing on I(n, r, k). The
least element of I(n, r, k) corresponds to a symmetrical completion.

We know that the associated function of ∼α:

Asf∼α(N) = 1 if ∆(aN , rN , kN ,mN) ≤ α .

Hence, it is sufficient to prove that the function

H(n′) = ∆(a, r + n′, k + n− n′,m)

is decreasing in n′ ∈ I(n, r, k), i.e. that H(n′) ≥ H(n′ + 1). We already know
that
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H(n′) = ∆(a, r + n′, k + n− n′,m) = ∆(a, r + n, r + n′ − δ(n′),m) =

=

r+n′−δ(n′)∑
i=0

σ(i, r + n′, r + n′ − δ(n′),m) ,

where

σ(i, r + n′, r + n′ − δ(n′),m) =

=
(r + n)!(m− (r + n′))!(r + n′ − δ(n′))!(m− (r + n′ − δ(n′)))!

i!(r + n′ − i)!(r + n′ − δ(n′)− i)!(m− 2(r + n′)− δ(n′) + i)!m!

Note that r + (n′ + 1)− δ(n′ + 1) = r + n′ − δ(n′)− 1.
We want to prove that, for arbitrary given k, r, m, n, H(n′) ≥ H(n′ + 1) for

each possible value of a (see 4.4.23), i.e. for a0 = max(0, 2(r + n′)−m− δ(n′) ≤
a ≤ r + n′ − δ(n′)− 1. For a0 = a, H(n′) = 1 for each n′.

Thus we shall suppose that a0 < a < r + n′ − δ(n′)− 1. Denote

σi = σ(i, r + n′, r + n− δ(n′),m)

and

σ′i = σ(i, r+n′+1, r+(n+1)−δ(n′+1),m) = σ(i, r+n′+1, r+n′−δ(n′)−1,m) .

Observe that

σi

σ′i
=

(m− (r + n′))(r + n′ − δ(n))

(r + n′ + 1)(m− (r + n′) + δ(n′) + 1)

r + n′ + 1− i

r + n′ − δ(n′)− i
=

= C
(r + n′ + 1− i)

(r + n′ − δ(n′)− i)
= Cf(i) .

It is easy to see that f(i) is an increasing function of i. Then we have two cases:
First: σi < σ′i for each i; second: σi ≤ σ′i for i ≤ i0, and σi > σ′i for i > i0. In

the second case, if a > i0, then clearly

H(n′)−H(n + 1) =

r+n′−δ(n′)−1∑
i=a0

(σi − σ′i) + σr+n′−δ(n′) > 0 .

If a ≤ i0 or the first case occurs, then we use the following equality:

H(n′)−H(n′ + 1) =

r+n′−δ(n′)−1∑
i=a

(σi − σ′i) + σr+n′−δ(n′) −
a−1∑
i=a0

(σi − σ′i) .
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(We can see that 2(r + n′ + 1)− δ(n′ + 1) = 2(r + n′)− δ(n′).)
We have

a−1∑
i=a0

(σi − σ′i) ≤ 0 ,

hence,

H(n′)−H(n′ + 1) ≥
r+n′−n′−1∑

i=0

(σi − σ′i) + σr+n′−δ(n′) = 0 .

7.3.12 Theorem. Let ∼ be an implicational quantifier. Then for each M and
the implicational completion N of M , N is i-equivalent to M , i.e., Asf∼(N) = 1
iff Asf∼(N ′) = 1 for each completion N ′ of M .

Proof. By using 3.3.24, we have 〈××〉 ≡i 〈1,×〉 ≡i 〈1, 0〉 and 〈0,×〉 ≡i 〈×, 1〉 ≡i

〈0, 1〉 ≡i 〈0, 0〉, cf. Remark 3.3.25 (Note that, in fact, 〈0,×〉 can be completed to
〈0, 0〉 and/or to 〈0, 1〉.) The proof of the present theorem is rather trivial now,
but the theorem is stronger than Theorem 7.3.11; it gives the worst completion
for each implicational quantifier.

7.3.13 Discussion. Clearly, one does not need to know the symmetric comple-
tion but only its frequencies: they are easily computable from the frequencies
of all the 9 cards (elements of {0,×, 1}2) in M . Hence, returning to 7.3.7, to
evaluate ϕ ∼ ψ one needs only one inspection of the model, object by object.
Our next questions are: How does one decide whether it is prime?

The first question is easy to answer: If there is a κ0 $ κ such that ‖κ0 ⇔
κ‖M = 1, then there is such a κ0 which differs from κ only in one literal, say,
containing Fi, and if (X)Fi is in κ and (X0)Fi is in κ0, then we may assume that
the difference X − X0 has exactly one element. Hence, κ is M -incompressible
if whenever one takes a literal (X)Fi from κ and diminishes X by omitting one
elements one obtains a conjunction κ0 not equivalent to κ in M . Hence, if M
has n function symbols for each i, Vi has at most h elemnts, then to decide
incompressibility one needs to inspect the model not more than n · h times.

The situation for primeness is similar. One can summarize the definition of
a prime sentence as follows: S(ϕ, ψ) is a P(p)-prime sentence of M iff S(ϕ, ψ)
is true in M and there is no 〈ϕ0, ψ0〉 strictly less that 〈ϕ, ψ〉 in the designated
ordering (given by p) such that S(ϕ0, ψ0) is ture (and – if helpful quantifiers are
used – (ϕ0, ψ0) ¿ (ϕ, ψ) is true in M). It is easy to see that the words “strictly
less than” can be replaced by “immediate predecessor of”; and it is easy to verify
that pair 〈ϕ, ψ〉 has at most n(h + 1) immediate predecessors. (For example,
consider ∝: Immediate predecessor result either by removing one element from
one coefficient in the succedent – if the coefficient was a one-element set, omit
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the whole literal – or, otherwise, by transferring a literal from the succedent into
the antecedent with the obvious change; this yields at most n(h + 1) cases.) We
already know that the evaluation of ϕ0 ∼ ψ0 needs one inspection of the model;
the evaluation of (ϕ0, ψ0) ¿ (ϕ, ψ) also clearly needs only one inspection since
our ¿ is universally definable. And we showed that the decision whether ϕ, ψ
are incompressible (ϕ&ψ is incompressible or ϕ is strongly incompressible w.r.t ψ
respectively) needs at most n · h inspections.

7.3.14 The above considerations are not only useful for the construction of rea-
sonable machine programs but also enable the formulation of some theoretical
consequences concerning the complexity of the realizing algorithm. Suppose that
we have a “natural” syntactically described linear order ≤(p) on RPF(p) lineariz-
ing the designated ordering. The algorithm realizing our method can be described
by the designated ordering. The algorithm realizing our method can be described
by the simple flow-diagram presented in 6.1.22 (for further optimization se Prob-
lem (4)). The input consists of the investigated model M (represented e.g. as a
matrix) and of the parametr p. The complexity of M can be measured by three
numbers: m - the number of object in M , n - the number of function symbols,
and h - the maximum of cardinalities of sets of regular values of the functions
symbols (Vi). It is hoped that the above considerations give enough evidence for
the claim that each single item of the flow-diagram is realizable in polynomial
time (in the three variables m, n, h). Here, n and h are given by the parameter p
(in particular, by CHAR); M must have the prescribed characteristic (but it is
allowed to have, theoretically, any finite non-zero cardinality). Hence we come
to the following Conclusion. If the cardinality of RPF(p) depends polynomially
on n and h and if the statement of 7.3.11 holds for each associational quanti-
fier admitted by PQUANT, then the time necessary for the construction of the
solution X(p, M) depends polynomially on m, n, h. (Cf. 6.1.23.)

Hence, let us make the following assumption:

7.3.15 Assumption. The syntactic restirctions SYNTR always imply that
RQ(p) consists of some sentences of complexity less than b (in addition, each
quantifier allowed by PQUANT satisfies the assertion of 7.3.11).

Here, of course, we wish the complexity of a sentence S(ϕ, ψ) – or, say of the
pair 〈ϕ, ψ〉 – to be defined in such a way that the number of all disjointed CPF’s
(EPF’s) of complexity at most b is polynomial in n and h.

This can be achieved as follows: First, impose an upper bound on the number
of function symbols occurrung in ϕ and ψ – say, b1.

Second, improve an upper bound – say b2 – on the number of elements of Vi

determining a single coefficient. “Determine” can mean “form” (i.e., determine
by listing) but it need not. For example, we may allow only coefficients that are
intervals in the set of natural numbers (when our attributes have a more or less
comparative and not entirely qualitative character); each interval is determined
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by two elements – its end-points. It is then elementary to see that the number of

possible coefficients is majorized by
b2∑

i=1

(
h
i

)
= p2(h), which is a polynomial in h

(b2 being fixed), the number of pairs 〈A, S〉 of disjoint sets of function symbols
satisfying card(A) + card(S)+ ≤ b1 is

∑

i+j≤b1

(
n
i

)(
n− i

j

)
= p1(n)

and, hence, the cardinality of RQ(p) is majorized by (p2(h)) p1(n), which is a
polynomial in n, h.

7.3.16 Conclusion. Under the assumption 7.3.15 the time needed to construct
the solution X(p, M) depends polynomially on m, n, h. Thus the GUHA method
with associational quantifiers is realizable in polynomial time (assuming 7.3.15).

7.3.17 Key words: Representation of the solution, critical pairs, worst comple-
tions, intelligibility bound.

7.4 Some suggestions concerning GUHA meth-

ods based on rank calculi

We now present some suggestions concerning the further development of new
particular GUHA methods. In Chapter 5 we developed a theory of calculi with
mixed two-valued, enumerational and rational valued models and generalized
quantifiers inspired by statistical rank tests. The next step is to apply these
calculi in the logic of suggestion. Such methods could be practically applicable
in the whole field of underlying statistical rank tests or tests on enumrational
structures in general.

The construction of particular GUHA methods and their machine realization
is, at the present stage of research, only just beginning. Many questions in this
field are as yet open, therefore we give only some suggestions for their further
development. A promising area for further investigation and construction remains
open here.

7.4.1 First, we concentrate on calculi with distinctive quantifiers. The reader
should have in mind both the notion of distinctive quantifiers (with mixed two-
valued and enumeration models) from Chapter 5, Section 3, and the notion of
distinctive rank quantifiers from 5.4.13-5.4.15.

7.4.2 We shall consider some r-problems. We put V0 = {1} and
RQ = {qα(ϕ, F )}α∈A,ϕ∈B,F∈C , where A ⊆ (0, 0.57] ∩ Q and B, C are non-empty
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sets of designated open formulae of the appropriate sort. Suppose that {qα}α∈A is
a monotone class of d-executive quantifiers. The following deduction rules could
be used in such a situation:

M :

{
qα(ϕ, F )

qα′(ϕ, F )
; α′ > α

}

〈ϕ,F 〉∈B×C

,

E :

{
qα(ϕ, F ), ϕ ⇔ ϕ′)

qα(ϕ′, F )

}

ϕ,ϕ′∈B, F∈C

.

The usefulness of rule M is clear. The algorithmic usage of E needs a particular
form of designated open formulae from B. Let B be the set of all EC’s built
up from some function symbols F1, . . . , Fk. Suppose that B is ordered by ⊆
(κ ⊆ λ means that κ is included in λ; the generalization to calculi with incomplete
information using x is straightforward). Here relevant pairs of formulae (RPF)
are 〈ϕ, F 〉, where ϕ is an EC and F is a function symbol of sort b. Define
〈κ, F 〉 ⊆ 〈λ,G〉 if κ ⊆ λ and F = G.

Let RQ = {qα(κ, F )}〈κ,F 〉∈RPF (α fixed) and consider the r-problem P =
〈RQ, E ′, {1}〉, where

E ′ =
{

qα(κ2, F ), κ2 ⇔ κ2

qα(κ3, F )
; κ1 ⊆ κ3 ⊆ κ2, κ1, κ2, κ3 ∈ EC

}
.

A prime sentence of M is each qα(ϕ, F ) such that qα(ϕ, F ) ∈ Tr(M) and there
is no κ′ $ κ such that ‖κ′ ⇔ κ‖M = 1. Let XM be the set containing, for
each prime sentence qα(ϕ, F ) and the formula κ ⇔ λ where λ is the maximal
conjunction, κ ⊆ λ, M -equivalent to κ. Then XM is a solution of P .

Define a quantifier 2 of type 〈a, b, b〉 as follows:

Asf2(〈M, f1, f2, f3〉) = 1, if 〈M, f1, f2〉 ¹d 〈M, f1, f3〉 ,
(Asf2(〈M, f1, f2, f3〉) = 0 otherwise), then we have the following deduction rule

C :

{
qα(ϕ, F ), 2(ϕ, F, G)

qα(ϕ,G)

}

α∈A,〈ϕ,F,G〉∈B×C×C

.

More generally, we can define, in analogy to Chapter 6, d-improving quantifiers.
For example, £ of type 〈a, a, b, b〉 with

Asf�(〈M, f1, f2, f3, f4〉) = 1, iff 〈M, f1, f3〉 ¹d 〈M, f2, f4〉 .
We have a good algorithm to decide whether ‖£ (ϕ1, ϕ2, F, G)‖M = 1. But if we
want to use sentences with auxiliary quantifiers in solutions of r-problems and
if we want to know whether the use of such sentences in reasonable (at least as
in 7.2), then we need more: We have said in Section 2 of the present chapter that
one prime sentence and one auxiliary sentence with a helpful quantifier has de-
termined the whole (syntactically defined and easily comprehensible) tuft of true
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sentences. The only analogy known in the present situation is the quantifier ⇔
of equivalence. Further development could push the analogy further.

7.4.3 The reader can derive from the considerations of 5.4.13-5.4.15 the way
in which distinctive quantifiers could be used in the construction of r-problems
with distinctive rank quantifiers. For this situation (r-problems concerning mixed
binary and rational valued models) two further deduction rules can be introduced:

R =

{
qα(ϕ1, ϕ2), ϕ2 ≡R ϕ3

qα(ϕ1, ϕ3)

}

and the analogue to PE (cf. 7.4.6). It seems to be clear how to combine them
with that of 7.4.2. If we have a monotone class of distinctive rank quantifiers
{qα}α, we can define a r-problem with

RQ = {qα(ϕ1, ϕ2); α, ϕ1, ϕ2}
where ϕ1 are, e.g., EC’s based on P1, . . . , Pk1 and ϕ2 can be some designated
open formulae of sort c. V0 = {1} and I is based on deduction rules from 7.4.2
and the above mentioned.

Our knowledge concerning executability (and best ways; see Problem (8)) can
be used for the optimalization of algorithms.

7.4.4 Second, we turn our attention to correlational quantifiers. Before we discuss
rank correlational quantifiers, we shall show a way in which some r-problems can
be stated in calculi with mixed two-valued and enumeration models. These r-
problems can be generalized for rational-valued models in the usual way; cf. 5.1.13
and further discussions in the present section.

We shall make a slight generalization of correlational quantifiers. Let q0 be a
correlational quantifier and define a new quantifier q of type 〈a, b, b〉 as follows:
If M = 〈M, f1, f2, f3〉 is of type 〈a, b, b〉, let Mf1 = {o ∈ M ; f1(o) = 1} and
M f1

= 〈Mf1 , f2 ¹ Mf1 , f3 ¹ Mf1〉 (the submodel of all objects satisfying f1). Put

Asfq(M) =

{
0 if Mf1 = ∅ ,
Asfq0(M f1

) otherwise .

Let A be a class of designated open formulae of sort a and let F1, . . . , Fk be
functors of type b. Put

RQ = {q(ϕ, Fi, Fj)}ϕ∈A, V0 = {1} .

In fact, this is an old idea of Metoděj Chytil called ELICO – Elimination of
nuisance objects in correlation. The question of reasonable deduction rules and
solutions is open. We can see that if ϕ are EC’s, then our remarks from 5.4.11
could be very useful for the algorithmic solution of the above mentioned problem.
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7.4.5 We now turn our attention to rank correlational quantifiers (in calculi with
rational valued models). Remember that items that are to be interpreted in our
calculi as real valued are said to be of sort c. Now we shall be more specific as to
the form of designated open formulae of sort c. Define elementary unijunctions
as follows: Let Jct1 be a finite (but possibly big) set of unary junctors with
Asf2 : Q → Q. Then elementary unijunctions (EU) are formulae built up from
designated atomic formulae F1(x), . . . , Fk2(x) (or simply F1, . . . , Fk2) of sort c
with the help of junctors from Jct1.

Note that each EU has the form τFi where τ is a sequence of junctors
from Jcg1 (possibly empty). Put Asf∅(u) = u (for u ∈ Q) and, if Asfτ is de-
fined and ι ∈ Jct1, put Asfιτ (u) = Asfι(Asfτ (u)). Note that for ι ∈ Jct1, Asfι is
defined by the function calculus in question. In the function calculi we have in
mind, the unary junctors // elements of Jct1 are names of some standard func-
tions (for example, particular polynomials in one variable or some rational-valued
approximations of sin, log, . . . etc.). We may assume that junctors from Jct1 to-
gether with their associated functions are fixed in the sequel, other components
of function calculi (type, quantifiers, binary junctors) may vary.

Write ϕ ⊆ ψ if ϕ is a subformula of ψ.

7.4.6 A relation N on EU2 is called a relation of positive expansion if (1) ϕ1Nϕ2

implies ϕ1 ⊆ ϕ2, i.e., ϕ2 = τϕ1, and (2) ϕ1Nϕ2 implies that Asfτ is increasing. If
N is such a relation, then

PE =

{
q(ϕ1, ϕ2)

q(ϕ1, ϕ3)
; ϕ2Nϕ3

}

is a sound deduction rule for each strong rank quantifier.

7.4.7 Lemma. Let R be a recursive relation on EU2 such that ϕ1Rϕ2 implies
ϕ1 ⊆ ϕ2. If q is an executive rank correlational quantifier and if a rule

{
q(ϕ1, ϕ2)

q(ϕ1, ϕ3)
; ϕ2Rϕ3

}

is sound, then R is a relation of positive expansion.

Proof. Consider q(ϕ1, ϕ2); if ϕ1Rϕ2 (ϕ2 = τϕ1), then M |= q(ϕ1, τϕ1) for each
model M such that mM > mmin(q). But this is the case iff Asfτ is increasing.

7.4.8 We can introduce the binary junctors + with the usual associated function.
Then we can consider further deduction rules, e.g.,

{
q(ϕ, (ϕ1 + ϕ2), ϕ2 ≡r ϕ1 + ϕ2

q(ϕ, ϕ1 + ϕ2 + ϕ3)
; ϕ1Nϕ3

}
.

In particular,
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AD =

{
q(ϕ, ϕ1)

q(ϕ, ϕ1 + ϕ3)
; ϕ1Nϕ3

}
.

For example, consider junctors ( )3 (third power) and B, where B > 0 (mul-
tiplication by the positive number B), with the usual semantics. Let ϕ1 be a
unijunction of sort C; then ϕ3 = B(ϕ1)

3 is a unijunction of sort c and ϕ1Nϕ3,
hence from q(ϕ, ϕ1) we can infer q(ϕ, ϕ1 + B(ϕ1)

3). Further deduction rules can
be based on the relation ¹c between 〈b, b〉 models. But the question of helpful
deduction rules of such kinds is an open one.

7.4.9 Consider a monotone class {qα}α of correlational quantifiers; for each α,
let q∗α be the extension of qα to all models of type 〈c, c〉 described in 5.4.16. Let
ϕ0 be a fixed designated open formula and let A be a class consisting of some
designated open formulae built up from F1, . . . , Fk2 using junctors from Jct1 and
also +. Put V0 = {1}, I = {PE} ∪ {AD} ∪ {M}, where

M =

{
q∗α(ϕ1, ϕ2)

q∗α′(ϕ1, ϕ2)
; α′ ≥ α, ϕ1, ϕ2

}
.

The aim is to find all “good” approximations (or correlates) of a given form to ϕ1.
(Cf. Bendová, Havránek.)

7.4.10 A class of rank quantifiers which cannot be treated on enumeration mod-
els are regression rank quantifiers. They are of type 〈c, c〉, and they are rank
quantifiers. I.e., for each model of type 〈c, c〉, Asfq(M) = Asfq(Rk(M)).They
have the following basic property: Let M1 = 〈M, f, g1〉, M2 = 〈M, f, g2〉 be two
models of type 〈c, b〉. Suppose that f(o1) < f(o2) and g1(o1) > g1(o2) implies
g2(o1)− g2(o2) < g1(o1)− g1(o2). Then Asfq(M1) = 1 implies Asfq(M2) = 1.

Such quantifiers can be treated similarly as in the previous cases, see Prob-
lem (1) of Chapter 5.

7.4.11 There remains an important open question and a crucial point for quick
application. In the present case can one construct deduction rules based on
analogues of helpful quantifiers from chapter 6?

7.4.12 Key words: r-problems with distinctive quantifiers; r-problems with
correlational quantifiers; regression rank quantifiers.

PROBLEMS AND SUPPLEMENTS TO CHAPTER 7

(1) Define a natural linearization of the designated ordering of relevant ques-
tions. This linearization is necessary for the successive generation of the
solution and also for the interpretation of results.
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(2) define the parameter SYNTR in more details. Suggestion:

(a) One declares four sets of function symbols: IMPTA, REMNA, IMPTS,
REMNS – important and remaining antecedent (succedent) function
symbols. Say that an open formula ϕ respects a set B of function
symbols if either B = ∅ or at least one formula ϕ respects a set occurs
in ϕ. A sentence ϕ ∼ ψ satisfies the conditions on function symbols
if (i) contains only function symbols from IMPTA ∪ REMNA and
ϕ respects IMPTA and (ii) ψ contains only function symbols from
IMPTS ∪ REMNS and ψ respects IMPTS.

(b) One declares maximal allowed length of antecedent and maximal al-
lowed length of succedents.

(c) Conditions concerning coefficients: for each function symbol Fi in
IMPTA ∪ REMNA one declares a set HA

i such that card(X) ≤ cA
i .

Similarly for HS
i , cS

i .

This is the realization from the textbook [Hájek et al.]. Think of other
possibilities.

(3) Specify parameters of the GUHA-method with associational quantifiers and
find a model M in such a way that the conditions of 7.2.11 (c) (end of the
discussion) are satisfied.

(4) The “jump” principle: Given the linearization < from Problem (1), the
program realizing the GUHA-method with associational quantifiers can do
the following: having processed a relevant question Φ which is not p-prime in
the input model, ask whether a whole interval of relevant questions (w.r.t <)
beginning with Φ and ending with a ψ can be omitted from the consideration
(since either all elements of that interval are true but not prime or all are
false). This question is reasonable if we have a jump function j(Φ,M)
determining Ψ such that the computation of j(Φ,M) s, in many cases,
quicker than the successive investigation of all members of the respective
interval.

Consider the following possibilities of jumping:

I- for CPF: Φ is κ ∼ λ. Assume that < has the following property:
relevant questions of any fixed length with the same antecedemt form
an interval. Denote the M -frequency of κ by r, the M -frequency
of λ by k, the M=frequency of κ&λ by a and the cardinality of M
by m. We know that ‖κ ∼ λ‖M is determined by a, r, k, m, say,
‖κ ∼ λ‖M = Asf∼(a, r, k, m). Say that the M -frequency of λ in too
low w.r.t κ if the following holds: For each a, Asf∼(a, r, k, m) = 0. If
the M -frequency of λ is too low w.r.t κ then look for an appropriate
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subconjunction λ0 ⊆ λ such that the M -frequency of λ0 is too low
w.r.t κ. Then for any λ′ such that λ0 ⊆ λ′ the M -frequency of λ′ is
too low w.r.t κ. This can be used to find j(Φ,M).

II - for EPF: (a) define (and use) the notions “the M -frequency of δ w.r.t. κ
is too high”, “the M -frequency of κ&λ w.r.t κ is too low”. (b) Iff κ ∼ δ
is true but not prime then look for an appropriate δ0 ⊆ δ such that
κ ∼ δ0 is true but not prime; then, for any δ′ ⊇ δ0, κ ∼ δ is true but
not prime.

(5) Consider deduction rules I consisting od some pairs ϕ
ψ
. Suppose that I is

an equivalent on RQ. Each class E w.r.t I can be represented by a minimal
element of E w.r.t. an ordering on RQ. Thus we obtain a simple problem.
(Cf. 7.2.6.) In this way, other kinds of problem may be generalized.

(6) In all cases, the associated functions of associational (or implicational)
quantifiers from Theorem 7.3.11 can be transformed into the form Asf∼(N) =
1 iff f∼(N) > cα∼ where f∼ is a statistic and cα∼ a (critical) value (N means
a regular model). Now we can apply the general principle of the “least
favourable value”, i.e., we look for a completion for which f∼(N) attains
the minimum value. Note that our proofs of Theorem 7.3.11 and 7.3.12 in
fact show that symmetric (implicational) completions (as defined in 7.3.10)
are models in which the least favourable value is attained (for respective
quantifiers). For further applications of this principle see 5.2 and 7.4.

(7) For f1, f2 : M → {0, 1} put f1 ≤ f2 if f1(o) = 1 implies f2(o) = 1 for
each o ∈ M . A distinctive quantifier q is interpolable if the following holds:
Let f1 ≥ f2 ≥ f3, fi : M → {0, 1} and g ∈ RM such that Asfq(〈M, f1, g〉) =
Asfq(〈M, f3, g〉) = 1. Then there is a g ∈ RM coinciding with g for each
o ∈ M such that f1(o) = 0 or f3(o) = 1 and such that Asfq(〈M, f2, g〉) = 1.

Obviously, we may impose the following additional condition on g: If
f1(o) = f1(o

′) = 0 and f3(o) = f3(o
′) = 1, and if f2(o) = 1 and f2(o) = 0,

then ĝ(o) > g(o′). A sequence f1 > . . . > fk of mappings of M into {0, 1}
is a path if, for each i = 1, . . . , k − 1, fi and fi+1 differ inexactly one ob-
ject o ∈ M . Let g be a distinctive quantifier and let Asfq(〈M, fk, g〉) =
Asfq(〈M, f1, g〉) = 1. The path f1, . . . , fk is admissible if Asfq(〈M, fi, g〉) =
1 for each i = 1, . . . , k. Prove that q is interpolable iff for each 〈M, f1, g〉),
〈M, f3, g〉) as above there is an admissible path from f1 to f2 w.r.t. g.

(8) Consider 〈M, f1, g〉), 〈M, fk, g〉), fk < f1. The worst path from f1 to fk

w.r.t. g is defined as follows: fi and fi+1 differs in o, for which

f2(o) = max{f2(o
′); fi(o

′) = 1 and fk(o
′) = 0} .

Analogously, we can define the best path. Prove the following:
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(a) If the best path is not admissible, then no path is admissible.

(b) If the worst path is admissible, then each path is admissible.

Apply this fact to the deduction for each distinctive quantifier.

(9) A d-executive quantifier with

Asfq(〈M, f1, g〉) = 1 if
∑

f1(o)a(f2(o)) ≥ c(m, r)

is iterpolable if, for each mmin(q) and each r such that r − 1, r + 1 ∈
(rmin(m, q), rmax(m, q)) we have c(m, r) ≤ 1/2(c(m, r − 1) + c(m, r + 1)).

Are quantifiers based on asymptotical forms of the Wilcoxon and median
statistics interpolable? (Hint: use a weaker inequality than the one men-
tioned above.)
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Chapter 8

Further Statistical Problems of
the Logic of Discovery

As we have already mentioned in Section 1 of chapter 6, there are some questions
of a statistical nature related to the interpretation and exact understanding of
the results obtained by methods of discovery, particularly by GUHA-methods.
Roughly speaking, we have to answer the following two questions: given an r-
problem P , a model M and a solution X of P in M : (1) What is the exact
statistical meaning of a sentence belonging to X? (2) What is the exact meaning
of X as a whole?

In Sections 1 and 2 of the present chapter we answer these questions in a
general form, hence our results can be applied to other methods of a similar
nature. It is clear that for particular methods one can obtain better results by
using specific properties of the methods considered. Some of the ways of looking
for such results are explained in Section 3.

Furthermore, in the same section we formulate some motivation for the further
development of Mathematical Statistics; this motivation in one of the results of
our investigations of the logic of discovery.

8.1 Local interpretation

In the present section, we shall investigate some local properties of statistical
quantifiers which are important from the point of view of the interpretation of
results obtained by GUHA-methods. First, we have to formulate some global
frame assumptions guaranteeing the validity of some local assumptions concerning
the statistical meaning of the fact that a pure prenex sentence is true in the model.

We shall investigate some particular cases of such assumptions, concerning
the tests described in Chapter 4 and 5 (and used in Chapter 7).

In the second part of the present section, the preservation some statistical
properties of hypothesis testing with the aid of GUHA-methods will be investi-
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gated. It will be shown that the local properties of hypothesis testing with the
help of a GUHA-method are the same as in the case of single testing.

8.1.1 Discussion. In Section 4.4, we considered random structures related to
monadic predicate calculi. If we have a fixed type 〈1n〉 and the corresponding
predicate calculus F , then a given random {0, 1}-structure U = 〈U,Q1, . . . , Qn〉
and a designated open formula ϕ of F determines a random structure, denoted
by Uϕ (cf. 2.4.6 and 4.4.0). The generalization for more designated open formulae
is natural.

Our question reads: Under what general conditions is it true that if U is a
regular random V -structure and ϕ1, . . . , ϕn are designated open formulae then
Uϕ1,...,ϕn

is also a regular random structure?
The question is important as one of the adequacy questions for the methods

described above: If we evaluate, e.g., various sentences ϕ ∼ ψ is a model Mσ, a
sample from a random universe U , then, in fact, we are testing some hypotheses
concerning the structures Uϕ,ψ and we should know that the assumptions of the
respective tests are satisfied (cf. Discussion 8.1.11).

We shall consider general random V -structures and the respective function
calculi.

8.1.2 Lemma. Let U = 〈U,Q1, . . . , Qn〉 be a regular Σ-random V -structure, let
g be a Borel measurable function from V k (k ≤ n) into V . Let Qg be defined as
follows (composition):

Qg(o, σ) = g(Q1(o, σ), . . . , Qn(o, σ)) .

Then U g = 〈U,Qg, Qk+1, . . . , Qn〉 is a regular Σ-random V -structure.

Proof. Remember conditions (0)-(2) from 4.2.1. Condition (0) is directly satis-
fied. For (1), we have to prove that Qg is a random quantity, i.e., that Q(o, .) is
a random variate for each o ∈ U . But Q1(0, .), . . . , Qn(o, .) are random variates
(measurable functions) and g is a Borel function; so the composition is measur-
able. For (2), we use the following fact (we restrict ourselves to two n-dimensional
variates; but the proof is similar for more variates):
Let Σ = 〈Σ,R, P 〉. Keep in mind the notation

V0 = 〈Q1(o, .), . . . , Qn(o, .)〉 ,
and denote

R(V0) = {A ∈ R;V0(A) ∈ Bn} ,

where Bn is the n-dimensional Borel σ-algebra (cf. 4.1.9); R(V0) is the σ-algebra
induced by the random variate V0. Similarly, introduce Vg

0 and R(Vg
0).
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Now, Vo1
and Vo2

are stochastically independent (in U) iff for each A ∈ R(Vo1
)

and B ∈ R(Vo2
) we have

P (A ∩B) = P (A) · P (B) .

Use the fact that

R(Vg
o1

) ⊆ R(Vo1
) and R(Vg

o2
) ⊆ R(Vo2

) .

8.1.3 Definition. Let V be a regular set of abstract values and let F be an
MOFC of type 〈1n〉; assume that the models of F are all the finite (V ∩ Q)-
structures. Call F continuously generated if for each junctor ι of F , of arity k,
there is a function gι : V k → V continuous on V k such that Asfι is the restriction
of gι to (V ∩ Q)k. Note that if such a gι exists then it is determined uniquely
(since V is regular). If there is no danger of confusion, we write Asfι instead of gι.

8.1.4 Remark

(1) Let Σ be a probability space. Observe that F is continuously generated
iff there is a theoretical calculus F∗ satisfying the following: (i) Models
of F∗ are all (regular) Σ-random V -structures, (ii) F and F∗ have the same
function symbols and junctors; (iii) associated functions of the junctors
in F∗ are continuous and (iv) for each junctor ι of arity k

AsfFι = AsfF
∗

ι ¹ (V ∩Q)k .

Note that F and F∗ have the same open formulae (via the identifica-
tion described in 4.4.0), and the semantics of open formulae on Σ-random
structures is determined uniquely by F . Hence e.g. for each Σ-random
V -structure U and each tuple ϕ1, . . . ϕr of designated open formulae, the
derived structure Uϕ1,...,ϕr

= 〈U, ‖ϕ1‖U , . . . ‖ϕr‖U〉 is uniquely determined
by F . If the structure U is fixed in a consideration, we write Qϕ instead
of ‖ϕ‖U .

(2) The generalization to V-structures and to calculi with more sorts of func-
tions symbols is obvious. In the case of the calculi described in Chapter 5,
we have junctors applicable either to sort a or to sort c. For the first sort,
we need no conditions, to the second we apply the continuity condition.

8.1.5 Definition. Let a continuously generated calculus be given. Let PF be a
set of pairs of designated open formulae. We say that a distributional statement Φ
is global w.r.t ψ and PF if the following holds: U |= Φ implies Uϕ1,ϕ2

|= ψ for
each 〈ϕ1, ϕ2〉 ∈ PF .

In the following lemmas we apply some cases of global frame assumptions.
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8.1.6 Lemma. Let F be continuously generated. If U is d-homogeneous, then
for each pair ϕ1, ϕ2 of designated open formulae, Uϕ1,ϕ2

is d-homogeneous.

Proof. Let Σ = 〈Σ,R, P 〉 and consider Σ-random structures: such a structure
is d-homogeneous if the joint distribution function is independent of o ∈ U .
One can easily prove that U is d-homogeneous iff, for each Borel set A ⊆ Rn,
P ({σ; 〈Q1(o, σ), . . . , Qn(o, σ)〉 ∈ A}) does not depend on o. It follows by an easy
induction that for each tuple ϕ1, . . . , ϕk of designated open formulae, each o ∈ U
and each Borel set B ⊆ Rk, there is a Borel set A ⊆ Rn such that

〈Q1(o, σ), . . . , Qn(o, σ)〉 ∈ A iff 〈Qϕ1(o, σ), . . . , Qϕk
(o, σ)〉 ∈ B .

Hence, P ({σ; 〈Qϕ1(o, σ), . . . , Qϕk
(o, σ)〉 ∈ B}) is independent of o.

8.1.7 Lemma. Consider d-homogeneous {0, 1}-structures and MOPC’s of a
given type 〈1n〉. Let Φ be the following distributional statement: For each ε ∈
{0, 1}n, P ({σ;V0(σ) = ε}) > 0. If Φ then for each pair of independent designated
open formulae ϕ1, ϕ2 we have pϕ1&ϕ2 > 0, p¬ϕ1&ϕ2 > 0, pϕ1&¬ϕ2 > 0, p¬ϕ1&¬ϕ2 > 0.

The proof is left to the reader.

8.1.8 Discussion. Thus we have global assumptions guaranteeing the satisfac-
tion of the frame assumption for each pair ϕ1, ϕ2 w.r.t. the tests based on the
quantifiers ∼α, ∼2

α, ∼3
α or ⇒!

p,α (⇒?
p,α) respectively.

The following lemma gives, similarly, the frame assumption for the tests of H−
2

and H2. In H−
2 we consider pairs of formulae: for the first formula in each pair

we have to quarantee the positivity condition by the global assumption of 8.1.7.

8.1.9 Lemma. Let F be continuously generated. Assume, moreover, that all
the functions gι are one-to-one (more generally, it suffices to assume that the pre-
image of each u ∈ V is at most countable). Let Φ be the following distributional
statement: “For each o ∈ U , DV0 is continuous”. Then U |= Φ implies for each
designated open formula ϕ that the distribution function DQϕ of Qϕ is continuous.

Proof. The distribution function DV of a variate V on 〈Σ,R, P 〉 is continuous iff,
for each u ∈ R, P ({σ;V(σ) = u}) = 0. Let the function g such that Qϕ(o, σ) =
g(Q1(o, σ), . . . , Qn(o, σ)) for each o and σ is one-to-one. Hence, for each u ∈
V, g−1(u) is point in Rn and, for each o ∈ U , P ({σ; 〈Q1(o, σ), . . . , Qn(o, σ)〉 =
g−1(u)}) = 0.

8.1.10 Theorem (global null hypothesis of independence). Let F be continu-
ously generated and let Φ be the following distributional statement: For each
o ∈ U , V1,o, . . . ,Vn,o are stochastically independent.
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Moreover, let PF be a set of pairs of disjointed designated open formulae.
Then U |= Φ implies that, for each o ∈ U and ϕ1, ϕ2 ∈ PF , the variates Vϕ1,o

and Vϕ2,o are stochastically independent.

Proof. Suppose that ϕ1 contains function symbols F1, . . . , Fk while ϕ2 contains
function symbols Fk2 , . . . , Fn, k1 < k2. For each A1 ∈ R(Vϕ1,o) and A2 ∈ R(Vϕ2,o),
we have to consider P (A1 ∩ A2). But

R(Vϕ1,o) ⊆ R(V1,o, . . . ,Vk1,o) and R(Vϕ2,o) ⊆ R(Vk2,o, . . . ,Vn,o) .

Use inductively the measurability of gι for each junctor.

8.1.11 Discussion

(1) If we consider the null hypothesis of the stochastical independence of the
two quantities Qϕ1 , Qϕ2 corresponding to logically independent designated
open formulae ϕ1, ϕ2, then rejecting this null hypothesis (i.e., inferring, on
the basis of some data M , the alternative hypothesis) means rejecting the
global hypothesis of independence too.

(2) Consider now, under some frame assumptions Φ, a null hypothesis Φ0 and
an alternative hypothesis ΦA, each of these distributional statements con-
cerning random structures of type 〈1, 1〉. Let f be a test statistic (i.e.,
PU({σ; f(Mσ) ∈ V0}) ≤ α whenever U |= Φ & Φ0). Now, if we have a
simultaneous frame assumption Ψ w.r.t Φ and a set of pairs of formula PF ,
and if U |= Ψ, then we can use this for testing samples obtained from Uϕ1,ϕ2

for each 〈ϕ1, ϕ2〉 ∈ PF . Note that the assertion “Φ0 is true in Uϕ1,ϕ2
” ex-

presses a particular property of the original structure U since Uϕ1,ϕ2
is

derived from U ; hence, let Φ0[ϕ1, ϕ2] be a sentence such that

U |= Φ0[ϕ1, ϕ2] iff Uϕ1,ϕ2
|= Φ0 ;

similarly for ΦA, etc.

(3) We can now be more specific as to the structure of statistical inference rules
considered in 4.3.3. Let q be the quantifier defined by f . We have the rule

{
Ψ, q(ϕ1, ϕ2)

ΦA[ϕ1, ϕ2]
; 〈ϕ1, ϕ2〉 ∈ PF

}
.

Cf. again 1.1.6 (L3).

(4) Moreover, the same conclusion can be made for other cases of statistical
inference, e.g. for point estimation.
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8.1.12 Example

(1) Consider random {0, 1}-structures and the corresponding MOPC’s. Un-
der the global assumption Φ from 8.1.7, the sentences ϕ1 ∼ ϕ2, where
〈ϕ1, ϕ2〉 ∈ CPF (or 〈ϕ1, ϕ2〉 ∈ EPF) and ∼ is ∼α, ∼2

α, ∼3
α or⇒!

p,α (or⇒?
p,α),

can serve as observational tests of null hypotheses Asc0[ϕ1, ϕ2] and alter-
native hypotheses AscA[ϕ1, ϕ2], where, for CPF and ∼2

α, ∼3
α Asc0 is the

hypothesis of independence and AscA is the alternative of positive associa-
tion (cf. 4.4.27), while for CPF or EPF and ⇒!

p,α they are respectively the
null and alternative hypotheses specified in 4.4.16 (equivalent to pϕ2/ϕ1 ≤ p
and pϕ2/ϕ1 > p). Hence, we have the inference rule

{
Φ, ϕ1 ∼ ϕ2

AscA[ϕ1, ϕ2]
; 〈ϕ1, ϕ2〉 ∈ PF

}
,

where PF and ∼ are specified above.

(2) Similarly if PF is CPF or EPF and ⇒?
p,α, but here the rule is

{
Φ, ϕ1 ⇒?

p,α ϕ2

Imp0[ϕ1, ϕ2]
; 〈ϕ1, ϕ2〉 ∈ PF

}
,

where Imp0[ϕ1, ϕ2] means pϕ2/ϕ1 ≥ p.

The situation is slightly different for ∼ and ⇒p (simple quantifiers). Here,
we have

{
Φ, ϕ1 ∼ ϕ2

AscA[ϕ1, ϕ2]
; 〈ϕ1, ϕ2〉 ∈ PF

}

and

{
Φ, ϕ1 ⇒p ϕ2

Imp0[ϕ1, ϕ2]
; 〈ϕ1, ϕ2〉 ∈ PF

}
,

but our criteria for these inferences are the criteria of point estimation only.

8.1.13 Discussion. Our aim now is to investigate random V -structures of a
given type, where V ⊆ Q. Let us then have a MOPC F of the appropriate type,
with models which are V -structures. Applying a GUHA-method, we consider,
moreover, an r-problem 〈RQ, I, V0〉. Let a sentence ϕ from RQ be an observa-
tional test of the null hypothesis Φ0 and of an alternative hypothesis ΦA on the
significance level α (under some frame assumptions). We have now a universe of
discourse U (regular random V -structure).
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Instead of evaluating ‖ϕ‖Mσ
for obtained Mσ, i.e. instead of testing Φ0 and ΦA

directly, we can use a GUHA-method. In fact, we use a procedure Υ giving, for
each Mσ, a solution XMσ

; we accept ΦA if ϕ is an immediate conclusion from
XMσ

. What are the properties of this inference based on XMσ
?

8.1.14 Theorem. For each U , for each ϕ ∈ RQ and for each sample M ⊆ U ,
we have

PU({σ; ϕ ∈ TrV0(Mσ)}) = PU({σ; ϕ ∈ XMσ
}) ∪

⋃

{B;B
ϕ
∈I}

{
σ; B ⊆ XMσ

}
.

Proof. This follows immediately from the obvious fact that for each finite sample

{σ; ϕ ∈ TrV0(Mσ)}) = {σ : ϕ ∈ XMσ
} ∪

⋃

{B;B
ϕ
∈I}

{
σ; B ⊆ XMσ

}
.

The inclusion ⊇ follows from the soundness of I, and ⊆ follows from the following
basic property of solutions: If for some ϕ ∈ RQ and Mσ or there is a B ⊆ XMσ

⊆
RQ ∪ AQ such that B

ϕ
∈ I (where AQ is a set of auxiliary questions; see 6.2).

8.1.15 Remark. In 8.1.13 and 8.1.14, we supposed that the random V -structures
concerned were such that V ⊆ Q. If V * Q, then the above must be reformulated
in the obvious way using the notion of a.c.c. statistics (cf. 5.1.2).

8.1.16 Discussion and Definition

(1) Now, if a ϕ ∈ RQ is an observational test of Φ0 and ΦA (on the level α), then
the testing of Φ0 against ΦA with the aid of the procedure Υ has the same
characteristics, i.e., significance level and power, as the single test ϕ. We
have similar results for the other kinds of statistical inference (for example
for inferences based on the quantifier ⇒?

p,α).

(2) Consider observational tests of a null hypothesis Φ0 and an alternative hy-
pothesis ΦA. Such tests can be considered on different significance levels
from the interval (0, 0.5]. In fact, using a computer, we can consider sig-
nificance levels α belonging only to a finite ε-net on (0, 0.5], i.e., to a finite
subset T of (o, 0.5] such that for each α ∈ (0, 0.5] there is a β ∈ T such that
|β − α| ≤ ε.

(3) Now let an ε-net T be given. We say that {ϕ(α)}α∈T forms a full monotone
class of tests (of Φ0 against ΦA) w.r.t. the net T if

(i) each ϕ(α) is a test of Φ0 on the significance level α,

(ii) if α′ > α and α, α′ ∈ T , then ϕ(α) logically implies ϕ(α′).

271



(4) In the following we shall assume an ε-net T to be given.

(5) Note that for T and for all open formulae ϕ1, ϕ2 of the appropriate sorts
the strictly monotone class of quantifiers {qα}α∈T (cf. 5.3.22) defines a full
monotone class of tests {qα, (ϕ1, ϕ2}α∈T , possessing a certain optimality
property w.r.t. the power of tests (this last fact is due to the definition of
the quantifier being of the level α).

(6) In the following, we shall consider monotone classes of tests. This means
that when we speak about a test of a given Φ0 against ΦA we shall mean a
full monotone class of tests of Φ0 and ΦA.

(7) Now let all ϕ ∈ RQ be tests on a given level (instead of RQ write RQ(α));
then the obtained solution is called the solution on the level α (and denoted
by X(α)Mσ

). Under our assumptions, X(α′)Mσ
⊆ X(α)Mσ

for α′ ≤ α if the
solutions are direct.

Suppose now that if B
ϕ
∈ I, then B = {ψ} for some ψ such that ϕ, ψ ∈ RQ

for some α ∈ T . Such a deduction rule is called invariant if the following holds:
If, for some α ∈ T , ψ(α)

ϕ(α)
∈ I.

8.1.17 Theorem. Let an r-problem P〈RQ(α), V0, I〉 be given. Let I be invariant
and let X(α)Mσ

be a solution of P . Let 0 < α′ < α, α, α′ ∈ T . Then

X ′
M = {ϕ(α′) ∈ Tr(Mσ); ϕ(α) ∈ XMσ

}
is a solution of 〈RQ(α), V0, I〉.
Proof. Remember that we have full monotone classes of rests. Then ϕ(α) ∈
RQ(α) implies that ϕ(α′) is a test of the same Φ0, ΦA as ϕ(α). If ψ(α′) ∈ X ′

Mσ
,

then ψ(α)
ϕ(α)

∈ I iff ψ(α′)
ϕ(α′) ∈ I and I(ψ(α)) ⊆ TrV0(Mσ); on the other hand, if a

ϕ(α′) ∈ TrV0(Mσ), then ϕ(α) ∈ TrV0(Mσ); hence, ϕ(α) ∈ IX(α)Mσ
.

8.1.18 Discussion

(1) The result ϕ(α′) ∈ TrV0(Mσ) for α′ < α is stronger in the statistical
sense than ϕ(α) ∈ TrV0(Mσ). By the previous theorem, having a solu-
tion on a level α, a solution on a level α′ < α can be found as a subject of
{ϕ(α′); ϕ(α) ∈ XMσ}.

(2) We can consider a more general case:

B = {ψ(α)} ∪B1 ,

where B1 ⊆ AQ. Then
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X ′
Mσ

= YMσ
∪ (AQ ∩XMσ

) ,

where

YMσ
= {ϕ(α′) ∈ TrVo(Mσ); ϕ(α) ∈ XMσ

∩RQ} .

Invariance of the rule means here that if {ψ(α)}∪B1

ϕ(α)
∈ I for an α ∈ T , then

{ψ(α)}∪B1

ϕ(α)
∈ I for an α ∈ T .

Note that our associational quantifiers of the test type (i.e., ∼α, ∼2
α, ∼3

α,
⇒!

p,α) lead to full monotone classes and our deduction rules (cf. Chapt. 6
and 7) are of the above mentioned type (SpRd is of the simpler type
from 8.1.17).

(3) Let ϕ(α) ∈ XMσ
(α) for some Mσ and α ∈ T We shall consider the critical

level α(ϕ,Mσ) = min
α∈T

{α; ϕ(α) ∈ TrV0(Mσ)}. If I is invariant, then wee

know that α(ϕ′,Mσ) ≤ α(ϕ,Mσ) for each

ϕ′ ∈ I(ϕ(α) ∪ (AQ ∩XMσ
)) ∩RQ .

The procedures described in [Hájek 1969] and [Hájek, Bendová, Renc] and
considered here in Chapter 7 give, in fact, (i) a solution X(α)Mσ

for a given
level α (parameter of the method) and (ii) the critical levels for sentences
of X(α)Mσ

∩RQ.

This will be useful for considerations of the following section; cf. also point (1)
of the present discussion.

8.1.19 Keywords: global frame assumptions, continuously generated function
calculi, preservation of regularity, d-homogeneity and independence, global as-
sumption of positivity; form of statistical inference rules; local properties of
GUHA-methods, invariance of deduction rules, full monotone classes of tests.

8.2 Global interpretation

The present section is devoted to the problem statistical interpretation of the
results obtained by GUHA-methods. Thus, we investigate errors of statistical
inference based on sets of observational sentences (tests) true in some given data.
This situation is related to the problem of simultaneous inference as formulated
in the literature. But our situation requires the investigation of cases differing
from cases usual for the application of simultaneous inference. Most of the re-
sults we obtain are independent of the structure of sentences and of particular
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relations in the set of relevant questions. Our results are not too advanced, but
they solve completely the problem of the global interpretation of the particular
interpretation of further GUHA-methods.

8.2.1 Discussion and definition. In the following, we shall suppose that all
sentences from RQ are (names of) tests of a pair of null and alternative hypotheses
and

(i) each ϕ ∈ RQ is from a full monotone class (w.r.t a given ε-net T ),

(ii) all ϕ ∈ RQ are of the same significance level α ∈ T , i.e., we have RQ(α)
(cf. 8.1.16).

Thus, we shall consider pairs of theoretical sentences of the form Φ = 〈Φ0, ΦA〉,
and assume that we have a one-to-one mapping τ associating with each ϕ ∈
RQ a pair Φ = 〈Φ0, ΦA〉 such that ϕ (under some global frame assumptions) is
(names) an observational tests of the null hypothesis Φ0 against the alternative
hypothesis ΦA on the significance level α. Put TQ = τ(RQ). (Note that under
our assumption TQ = τ(RQ(α)) for any α ∈ T .) So if we have a ϕ ∈ RQ,
it is, in fact, a ϕ(α) from a monotone class. But if there is no danger os a
misunderstanding we shall write only ϕ instead of ϕ(α).

Assume TQ to be finite, card TQ = t. Hence, for each α ∈ T , the corre-
sponding RQ(α) is finite and of the same cardinality. On the other hand, put
RQ∗ =

⋃
α∈T

RQ(α); the cardinality of RQ∗ can be much larger than that of TQ.

Say that a sentence Ψ belongs to 〈Φ0, ΦA〉 if Ψ is either the sentence Φ0 or the
sentence ΦA. A set Z of theoretical sentences is a component of TQ if (i) for each
Ψ ∈ Z there is a Φ ∈ TQ such that Ψ belongs to Φ, and (ii) the conjunction ∧Z
of all members of Z is consistent (i.e., there is a random structure U satisfying
the global condition in which ∧Z is true).

8.2.2 Remark

(1) It follows from our finiteness assumption that each component is contained
in a maximal component.

(2) It follows from the condition (ii) above that there is no 〈Φ0, ΦA〉 ∈ TQ such
that both Φ0 and ΦA are in Z.

8.2.3 Discussion. Consider random V -structures satisfying some global frame
assumptions. Moreover, consider an r-problem P = 〈RQ, V0, I〉 under the above
conditions on RQ. We shall assume, in accordance with the cases described in
Section 8.1, that H = 〈Φ0; Φ ∈ TQ〉 is a maximal component. As measures of
the statistical quality of an obtained solution X = XN , where N ∈MV

M , we can
use the following probabilities:
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(1) PI(X) = P ({σ; I(X) ∩RQ ∩ Tr(Mσ) 6= ∅}|
∧
H0)

and

(2) PII(X) = P ({σ : I(X) ∩RQ ∩D ⊆ Tr(Mσ)}|
∧
H0) ,

where H 6= H0 is a maximal component and D = {τ−1(Φ); ΦA ∈ H}. Probabil-
ity (1) is the probability of the global error of the first kind. (2) corresponds to
the global power of the procedure giving X.

We shall restrict ourselves to the more substantial case, i.e., to the probability
of the global error of the first kind.

8.2.4 Lemma. Let α ∈ T be given. If PI(X) ≤ α for each solution X of the
given r-problem, then P ({σ; τ−1(Φ) ∈ Tr(Mσ)}|Φ0) ≤ α for each Φ0 ∈ H0.

The proof is obvious, for each ϕ ∈ RQ ∩ I(X) we have

PI(X) ≥ P ({σ; ϕ ∈ Tr(Mσ)}|Φ0) .

8.2.5 Definition. Let ϕ(α) be a sentence from RQ∩Tr(N) for a given model N .
The sentence ϕcrit

N = ϕ(α′) where α′ = α(ϕ,N), is called the critical strengthening
of ϕ(α). If Y is a set of sentences from RQ(α)∩Tr(N), then we define the critical
strengthening of Y in N as

Y crit
N = {ϕcrit

N ; ϕ(α) ∈ Y }
(for α(ϕ,N) see 8.1.18).

8.2.6 Remark. We can now consider, instead of the given solution XN , its
strengthening Xcrit

N = (XN ∩RQ)crit
n ∪ (XN ∩AQ). If I is invariant, then we have

the following:

(1) τ(I(XN) ∩ RQ) = τ(I(Xcrit
N ) ∩ RQ∗); we make the same inference from

I(Xcrit
N ) ∩RQ as from I(XN) ∩RQ.

(2) All observational tests from I(Xcrit
N ) ∩ RQ) are on the level less than or

equal to

αmax = max{α(ϕ,N); ϕ ∈ RQ ∩XN} .

8.2.7 Lemma. Let XN be a direct solution. Then:
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(1) If XN is a solution on the level less than or equal to α
k
, where k = card(I(XN)

∩RQ), then PI(XN) ≤ α.

(2) Let I ⊆ RQ × RQ be an invariant deduction rule (with one-element an-
tecedents). Put, for each ϕ ∈ I(XN ∩RQ,

αϕ = min

{
α(ψ, N); ψ ∈ XN and

ψ

ϕ
∈ I

}
.

Then

∑

ϕ∈I(XN )∩RQ

αϕ ≤ α implies PI(X
crit
N ) ≤ α .

Proof. Both assertions follow from the fact that

{σ; I(XN) ∩RQ ∩ Tr(Mσ) 6= ∅} =
⋃

ϕ∈I(XN )∩RQ

{σ; ϕ ∈ Tr(Mσ)} .

Then

PI(XN) ≤
∑

ϕ∈I(XN )∩RQ

P ({σ; ϕ ∈ Tr(Mσ)}|H0) .

For Xcrit
N use α(ϕ, N) ≤ αϕ and instead of RQ use the set RQ∗.

8.2.8 Remark. Consider deduction rules of the form
{
{ψ}∪B

ϕ

}
, where ϕ, ψ ∈ RQ

(thus they are tests) and B ⊆ AQ; hence, a solution can be indirect. Then
“XN is a solution on the level α” means that the tests XN ∩ RQ are of the
significance level α; in fact, we have all tests from RQ on the significance level α
(cf. 8.1.16 (7)). Then, (1) of 8.2.7 holds. Moreover, let I be of the above form
and invariant (in the sense of 8.1.18 (2)). If

{ψ} ∪ B1

ϕ
∈ I ,

then α(ϕ,N) ≤ α(ψ,N). Put

αϕ = min

{
α(ψ, N); ψ ∈ XN ∩RQ and

{ψ} ∪B

ϕ
∈ I for a B ⊆ XN ∩ AQ

}
.

Then, (2) of 8.2.7 holds.
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8.2.9 Discussion. We shall consider the global properties of solutions in con-
nection with error rates used in multiple comparison problems (see e.g., [Balaam,
Federer], [O’Neil, Wetheril]).

The first error rate which we are going to consider is the inferencewise error
rate:

(i.e.r.) =
number of erroneous inferences

number of inferences
Remember that we are interested in hypothesis testing and our inference rules are

then of the form
{

Φ,ϕ
τ(ϕ)A

}
, i.e., we infer alternative hypotheses. Such an inference

is, naturally, erroneous if τ(ϕ)0 is true (i.e., if U |= τ(ϕ)0 for the investigated
universe U).

8.2.10 Theorem. Consider an r-problem P = 〈RQ, I, {1}〉 such that under
some frame assumptions the conditions of 8.2.1 are satisfied. Let I be invariant
and let XN be a solution of P . Then for Xcrit

N and each maximal component H
of TQ we have

E
(
(i.e.r.)|

∧
H

)
≤ αmax .

Proof. Recall that αmax = {α(ϕN); ϕ ∈ XN ∩RQ} and that sentences from RQ
attain only the values 0 or 1. Let I(Xcrit

N )∩RQ∗ = {ϕ1, . . . , ϕk} and let Φ1, . . . , Φk

be the corresponding theoretical pairs (Φi = 〈Φoi, ΦAi〉). Assuming
∧H we have

(i.e.r.)(Mσ) =
1

k

∑
Φoi∈H

‖ϕi‖Mσ
.

Hence, for each Mσ, i.e.r. attains its maximum under the assumption
∧H0.

Then, for each sample,

E
(
(i.e.r.)|

∧
H0

)
= E

(
1

k

k∑
i=1

‖ϕi‖|
∧
H0

)
≤ 1

k

k∑
i=1

P ({σ; ‖ϕi‖Mσ
= 1}|Φoi)

≤ 1

k
kαmax .

8.2.11 Discussion. If our aim is to obtain information on the given data which
is as complete as possible, and if we do not intend to make reliable conclusions
depending directly on the simultaneous correctness of inferences based on RQ ∩
Tr(N), then it is appropriate to consider inferencewise error rates (cf. [Cox]).
The original aim of GUHA-methods was to give such complete information (see
Postcript), and thus a possibility of the choice of some interesting hypotheses for
further testing.
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On the other hand, if we point out the reliability of the conclusions based on
the whole or on part of RQ ∩ Tr(N), we can use the most rigorous error rate
which is the following first experimentwise error rate:

(I. e.e.r.) =
number of erroneous inferences

number of experiments
.

We have a model M , i.e., the output of one experiment (in the sense of which
the above “experiment” is to be interpreted). Then, under

∧H0, we have

(I. e.e.r)(Mσ) =
k∑

i=1

‖ϕi‖Mσ
.

8.2.12 Theorem. Under the assumptions of 8.2.10, if αϕ ≤ α
k

for each ϕ ∈
I(XN) ∩RQ, then for Xcrit

N and each maximal component we have

E
(
(I.e.e.r)|

∧
H

)
≤ α

Proof. Apply Lemma 8.2.7 (1) to Xcrit
N and follow the proof of Theorem 8.2.10.

8.2.13 Discussion and conclusions. The present concept of error rate corre-
sponds to R.A.Fisher’s concept of error rate in multiple comparison tests.

It seems to be quite impossible in real situations to satisfy the condition
αϕ ≤ α

k
for each ϕ ∈ I(XN) ∩ RQ for the simple reason that I(XN) ∩ RQ is

supposed to be large. In such situations, we can restrict and strengthen the
result of Theorem 8.2.12 in the following way. Note that this way is general and
does not depend on the structure of TQ and RQ.

If we have a solution XN , we see immediately I(XN)∩RQ. We can choose a set
of “very important” statements S ⊆ I(XN)∩RQ and infer from these. From the
point of view of error rates, this is the same as if we had tested {Φ; τ−1(Φ) ∈ S}
only. Then:

(1) If each ϕ ∈ S is on the level ≤ α
k
, then E ((I.e.e.r)|∧H) ≤ α (where (I.e.e.r)

and H corresponds to S, i.e., they are restricted).

(2) Moreover, we can use the following consideration:
Let XN ↓ S be a minimal subset of XN such that S ⊆ I(XN ↓ S). Then
we apply 8.2.12 to X ↓ Scrit

N .

(3) Moreover, we can use Lemma 8.2.7 (2) and Remark 8.2.8, i.e. we require∑
ϕ∈S

αϕ ≤ α.
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Note that this is a weaker condition than αϕ ≤ α
k

for each ϕ ∈ S (k = card S),
which was required in (2) above. Then we prove by 8.2.7 (2) that, for I((XN ↓
S)crit

N ),

E
(
(I.e.e.r)|

∧
H

)
≤ α .

On the other hand, the structure of RQ (i.e., some relations, e.g. deduction
rules on RQ) can be used for the investigation of the second experimentwise error
rate:

(II. e.e.r.) =
number of experiments with one or more erroneous inferences

number of experiments

(In many cases, moreover, use can be made of the deductive structure of TQ,
cf. [Gabriel], [Miller].)

Considering the expectation of (II. e.e.r.) under ∧H, we fact consider PI(XN).
For the sake of simplicity, assume first that our deduction rules are transitive

and simple (i.e. that they consist only of pairs ϕ
ψ
, where ϕ, ψ ∈ RQ); hence, we

can obtain direct solutions only. Now let such a solution XN be given.
A set of sentences C from RQ ∩ I(XN) is called coverable if there is sentence

ϕ0 ∈ I(XN) ∩RQ, such that

C ⊆
{

ϕ ∈ RQ ∩ I(XN);
ϕ

ϕ0

∈ I

}

and I(C ∩XN) ⊇ C.
Then we say that C is coverable with the help of ϕ0.
The set BC = C ∩XN is called the base of C (w.r.t XN) and ϕ0. (If there is

any danger of a misunderstanding, we shall write C(ϕ0, XN) and BC(ϕ0, XN).)
Denote H0(C) = {τ(ϕ)0; ϕ ∈ C}.

We can illustrate this notion by the following graph, oriented edges denote
the relation I, nodes denote the sentences.

C:

1
j

2
j

3
j

0
j

4
j
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The whole of the above graph is a coverable set C, BC = {ϕ1, ϕ2, ϕ3, ϕ4}.

8.2.14 Theorem. Under the above conditions, let XN be a direct solution of a
given r-problem P = 〈RQ, V0, I〉 and let I be invariant.

Consider a set C ⊆ RQ ∩ I(XN), coverable with the help of a sentence ϕ0.
Denote α1 = max{α(ϕ,N); ϕ ∈ BC} and

C = {ϕ(α); ϕ ∈ C and α = min{α′ ∈ Tϕ(α′) ∈ I(BCcrit
N )}} .

Then

P
(
{σ; C ∩ Tr(Mσ) 6= ∅}|

∧
H0(C)

)
≤ α1 .

Proof. (Note that C 6= Ccrit
N .) For each M and each ϕ ∈ C, ϕ ∈ Tr(Mσ) implies

ϕ0(α
1) ∈ Tr(M). (Use the full monotonicity of classes of tests and the invariance

property of I.)
Hence, for each given sample M ,

⋃
ϕ∈C

{σ; ϕ ∈ Tr(Mσ)} ⊆ {σ; ϕ0(α
1) ∈ Tr(Mσ)} .

Then

P
(
{σ; C ∩ Tr(Mσ) 6= ∅}|

∧
H0(C)

)
≤ P

(
{σ; ϕ0(α

1) ∈ Tr(Mσ)}|
∧
H0(C)

)
.

But, since ϕ0(α
1) is a test on the significance level α1, the left-hand side of the

above inequality is less that or equal to α1.

8.2.15 Discussion

(1) The assertion of the previous theorem signifies that the probability that
I(XN) ∩RQ rejects one or more true hypotheses from

H0(C) = {τ(ϕ)0; ϕ ∈ C}

is less than or equal to α1.

(2) Apply the result of the above theorem to simple problems (cf. 7.2.6). Re-
member that then ϕ

ψ
∈ I iff ϕ ≤ ψ. Consider now the simplest case of

coverable sets.

For each ϕ ∈ RQ, define a ≤-interval [ϕ, ϕ′] with the least element ϕ as
follows:
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[ϕ, ϕ′] = {ψ, ϕ ≤ ψ ≤ ϕ′} .

We know that XN is the set of all ≤-minimal elements of RQ ∩ Tr(N).
I(XN) can be thought of as a union of ≤-intervals with least elements
in XN . Note that each reasonable coverable set C is of the form

C(ϕ0, XN) =
⋃

ψ∈BC(ϕ0,XN )

C(ϕ0, {ψ})

where C(ϕ0, {ψ}) is a ≤-interval. By reasonable we mean the following: If
a set C is coverable, then it is a part os a coverable set of the above form;
hence, it is reasonable to consider coverable sets of the above form only.

We may apply 8.2.14 to such sets: in particular, let

C(ϕ0, {ψ}) = [ψ, ϕ0] = {ψ, ϕ1, . . . , ϕk−1, ϕ0}
(of course, for each i = 1, . . . , k − 1 we have ψ ≤ ϕi ≤ ϕ0), then

α1 = α(ψ,N)

and

C(ϕ0, {ψ}) = {ψ(α1), ϕ1(α
1), . . . , ϕk−1(α

1), ϕ0(α
1)} .

(Note that, for each ϕ ∈ C(ϕ0, {ψ}), α(ϕ,N) ≤ α1; this is useful for local
interpretation.)

The reader can easily consider more complicated cases of coverable sets, as
mentioned above, i.e., cases in which one has to consider ≤-intervals with
various least elements and some common members.

(3) Try to generalize Theorem 8.2.14 now to the case of r-problems with indirect
solutions. The notion of an invariant rule for such a case was described
in 8.1.18 (2). Consider, particularly, a tuft problem w.r.t. an ordering ≤
(cf. 7.2.9). Then RQ ∩ TrV0(N) is a union of tufts Y1, . . . , Yk. Consider
one of these tufts. Let ϕ0 be the largest element and ϕ1, . . . , ϕk minimal
elements; denote this tuft by Y (ϕ0). Then ϕ1, . . . , ϕk ∈ XN and ϕ0 in N -
obtainable from each ϕi, i = 1, . . . , k. Hence, using the invariance of I, we
have ϕ0(α

1) ∈ Tr(N), where α1 = max{α(ϕi, N); i = 1, . . . , k}. Define

Y (ϕ0) = {ϕ(α); ϕ ∈ Y (ϕ0) and

α = min{α′ ∈ T ; ϕ(α′) is N − obtainable from Xcrit
N }} .
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But, generally,

⋃

ϕ∈Y (ϕ0)

{σ; ϕ ∈ Tr(Mσ)} * {σ; ϕ0(α
1) ∈ Tr(Mσ)} .

Note that if ψ is N -obtainable from ϕ then we can have

{σ; ϕ ∈ Tr(Mσ)} * {σ; ψ ∈ Tr(Mσ)} .

It may happen that ϕ ∈ Tr(Mσ), but ψ 6∈ Tr(Mσ) and, hence, aux 6∈
Tr(Mσ). Note that

{σ; ϕ ∈ Tr(Mσ)& aux ∈ Tr(Mσ)} ⊆ {σ; ψ ∈ Tr(Mσ)} ,

but this is of little use if aux is of a non-statistical nature; and we know that
there are good reasons to use auxiliary sentences of non-statistical nature.

8.2.16 Remark. If I is not transitive but the other assumptions of 8.2.14
hold, one can generalize 8.2.14 in the following manner. A set C ⊆ RQ ∩
I(XN) is coverable if there is a ϕ0 ∈ RQ ∩ I(XN) such that C ⊆ {ϕ; ϕ `I

ϕ0} and C ∩ XN `I C, α1 and C can be defined as above and we obtain

P
({σ,C ∩ Tr(Mσ) 6= ∅}|∧H0(C)

) ≤ α1 again. For C ⊆
{

ϕ; ϕ
ϕ0
∈ I

}
, we then

have our assertion as a particular case. See Problem (3) and (4).

8.2.17 Discussion. It is usual, in statistics, to investigate an asymptotical
consistency of the procedures used. Consider now regular random structures
with domain U which satisfy a frame assumption. Consider a sequence {Mn}n

of disjoint samples from U .

Note that for any statistic f the sequence of variates fM1 , fM2 , . . . is stochas-
tically independent. Now let {Xn} be a sequence of solutions based on these
samples and (i.e.r) n the corresponding error rates under

∧H0.

We can assume that the number of inferences made for each model Mσ is
finite and bounded (by a number Ĉ).

Now, we formulate a theorem concerning this error rate (cf. [Miller] and,
independently and perhaps slightly more precisely, [Havránek 1974]). For other
error rates such results are even more trivial.

8.2.18 Theorem. Let E ((i.e.r)n|
∧H0) ≤ αn and let there be an α ∈ (0, 0.5]

such that αn ≤ α for each n ∈ N. Consider the global error rate
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gl (i.e.r.)n =

n∑
j=1

mj

n∑
j=1

nj

,

where nj and mj are the numbers of inferences and errorneous inferences from Mj

respectively.

Then (a.s) lim
n→+∞

gl (i.e.r.)n ≤ α.

Proof. There is a number C such that VAR(i.e.r)j ≤ C for each j ∈ N.

We have

n∑
j=1

mj

n∑
j=1

nj

=

n∑
j=1

nj
mj

nj

n∑
j=1

nj

=

n∑
j=1

njYj

n∑
j=1

nj

.

By the Kolmogorov inequality we obtain

P


 max

1≤j≤n

∣∣∣∣∣∣∣∣

n∑
j=1

njYj

n∑
j=1

nj

−

n∑
j=1

njαj

n∑
j=1

nj

∣∣∣∣∣∣∣∣
≥ ε


 ≤

C
n∑

j=1

n2
j

(
n∑

j=1

nj

)2 ·
1

ε2

We know that

lim
n→+∞

n∑
j=1

n2
j

(
n∑

j=1

nj

)2 = 0

and

lim
n→+∞

n∑
j=1

njαj

n∑
j=1

nj

≤ α .

8.2.19 Key words: Global interpretation; global error of the first kind; error
rates.
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8.3 Some questions for statistics

What significance can the methods described in the present book have for statis-
tics?

It is clear that they cannot substitute statistics in data processing. But they
can multiply its power; they can help, on the hand, to find relevant and reli-
able statistical statements about data, and, on the other hand, they can help
in the orientation in immense empirical data and suggest a large number of hy-
potheses for further investigations on newly obtained experimental data, on new
experimental evidence.

Hypotheses obtained by our methods can be utilized, in this sense, for fur-
ther statistical testing and/or as an impulse for deeper factual analysis, i.e. for
investigations of real processes that caused the inference of a certain group of
statements.

What other practical questions arise from the application of suggested AI-
methods for statistics, besides those mentioned in the preceding chapters? We
shall try to explain this in the discussion and examples in the following three
sections.

In the present section we assume a deeper knowledge of statistical theory.

8.3.1. Discussion. In statistics, one frequently considers transformations of a
sample space; these transformations are usually required to satisfy some condi-
tions (cf. [Lehmann], [Fergusson]):

Consider a V -structure. Let M be a finite set of object and denote by MM

the set of all V -structures (of the given type) with domain M . Let U be a random
structure such that M ⊆ U . U defines a distribution of probabilities on MM .
Consider one-one mappings of MM as admissible transformations.

For the sake of convenience, we restrict ourselves to the case of d-homogeneous
structures of a given type 〈1n〉. As we saw above, usually a frame assumption –
distributional statement – is specified in a statistical consideration (in a statistical
task). Such a statement Φ can be defined by declaring (U |= Φ iff DU ∈ DT ),
where DT = {Dt}t∈T is a system of distribution functions. Null and alternative
hypotheses are described by sets T0 and TA (T0 ∩ TA = ∅; usually T0 ∪ TA = T is
assumed).

Denote now by Pt({σ; Mσ ∈ B}) the probability PU({σ; Mσ ∈ B}) under the
condition DU = Dt.

Consider random structures satisfying a frame assumption described by DT .
Let g be a one-to-one mapping on MM . DT is invariant w.r.t. g if there is a
uniquely determined mapping g of T into itself such that Pt({σ; g(Mσ) ∈ B}) =
Pg(t)({σ; Mσ ∈ B}) for each Borel set B. No we can say that T is invariant
w.r.t g if g(T ) = T . It is easy to see (cf. [Lehmann], 6.1) that the following holds:

If T is invariant w.r.t g and g′, then T is invariant w.r.t g′ ◦ g and g−1 and we
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have g′ ◦ g = g′ ◦ g and (g−1) = (g)−1 (◦ denotes composition). Moreover, we say
that a testing problem is invariant (w.r.t. g) if

g(T ) = T and g(T0) = To . (∗)
If G is a class of functions satisfying (*) then it is natural to take into account the
least group G∗ containing G. From the preceding considerations we know that if
a testing problem is invariant w.r.t. elements of G then it is invariant w.r.t. the
whole of G∗. Hence, naturally, having a problem invariant w.r.t. G∗ we define a
test to be invariant w.r.t G∗ iff for the test statistic f the following holds:
for each g ∈ G∗ nad each M ,

f(g(M)) ∈ V0 iff f(M) ∈ V0 .

In this sense tests of the hypothesis H0 against ASL are invariant w.r.t. strictly
increasing transformations of the second functions in model (cf. 5.4.13).

Such a concept of invariance leads to deduction rules on observational sen-
tences of a very specific kind.

Assuming that the test in question is of type 〈1, 1〉 we obtain a quantifier of
type 〈1, 1, 〉. Let ϕ1, ϕ2 and ψ1, ψ2 be appropriate designated open formulae such
that there is a g ∈ G∗ for which the following holds: for each model M ,

〈M, ‖ϕ1‖M , ‖ϕ2‖M〉 = g (〈M, ‖ψ1‖M , ‖ψ2‖M〉) .

Then one could deduce in both directions:

q(ϕ1, ϕ2)

q(ψ1, ψ2)
and

q(ψ1, ψ2)

q(ϕ1, ϕ2)
.

Hence we obtain deduction rules having the form of an equivalence.
The set of all models can be partitioned to equivalence classes w.r.t G∗:

M1 ≈ M2 if (∃g ∈ G∗)(g(M1) = M2)

(≈ denotes the equivalence relation).
Let us compare this notion of invariance with our considerations.
One has a quasiordering on the class of all models of the given type; denote

such an ordering by ≤ and a test statistic in question by t. Then the following
condition is required to hold:

if M1 ≤ M2 then t(M1) ∈ V0 implies t(M2) ∈ V0 .

This property can be called the one-sided invariance of the test t w.r.t ≤. (If
the classical notion of invariance is applied to cases considered in our previous
chapters then g(M1) = M2 always implies M1 6 M2 and M2 6 M1.)
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It is evident, on the one hand, that many statistical procedures, for example
rank correlation coefficients and other rank methods, were inspired by intuitive
notions of invariance. On the other hand, such properties have not yet been
investigated for many tests, for example, for tests of independence in contingency
tables.

In general, the question here is the description of a class of tests by their
properties (or behaviour) on observational data.

Where does the ordering ≤ in particular cases come from?

It can be derived:

(1) form intuitive considerations of the behaviour of “reasonable” statistics on
data (e.g., rank correlation coefficients) and/or

(2) form theoretical considerations of an alternative hypothesis in question (i.e.,
from probabilistic considerations concerning the behaviour of “reasonable”
statistics under the alternative hypothesis).

The method of obtaining this ordering can be less straightforward than the
one in the case of usual invariance; for example, for the associational contingency
tests the ordering of alternative hypotheses determined by theoretical interactions
is natural. The ordering of models defined as follows corresponds to the above
mentioned theoretical ordering:

M1 ≤ M2 iff
aM1

dM1

bM1
cM1

≤ aM2
dM2

bM2
cM2

.

we can see that this ordering does not have satisfactory properties for the most
frequently used tests.

What are the questions for Mathematical Statistics here?

(1) If one has such an ordering, is there a known test invariant with respect to
this ordering?
(Such questions are solved frequently in the present book, cf. 4.5.2, 4.5.3,
5.3.6 and 5.3.2.)

(2) If one has such an ordering, what is the relation to the alternative hypothesis
in question? The relation to the null hypothesis in question is given by the
invariance condition.

For example, for contingency tests the following has to hold:

If M2 is a-better that M1 then

P ({σ; Mσ = M1}/H0) ≥ P ({σ; Mσ = M2}/H0) .
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(3) If one has a class of tests for a test problem, find an appropriate ordering
with respect to which the tests are invariant. (This question is closely
related to the first one, cf. our considerations concerning the associativity
and rank tests in Chapter 4 and 5 respectively.)

(4) If one has an ordering, construct one-sided invariant tests with respect to
this ordering, i.e. construct tests for which non-trivial deduction could be
used.

8.3.2 Example. Frequently, the investigation of the properties of tests discussed
above, for example one-sided invariance, could be less simple. Moreover, these
properties can not hold for all models or all α ∈ (0, 0.5] (or α ∈ T , where T
is a net, cf. 8.1.16). As an example, the interaction quantifier ∼3

α can be used
(cf. Problem (11) of Chapter 4):

(Theorem) Let α ∈ T and consider the quantifier ∼3
α. Then there is a num-

ber D(α) such that the following holds:
Let M1, M2 be two models of type 〈1, 1〉 such that M1 is a-better than M2

and bM2
≥ D(α), cM2

≥ D(α). Then Asf∼3
α
(M2) = 1 implies Asf∼3

α
(M1) = 1.

Remark

(1) For α = 0.05 we have D(α) = 0 (Convention: if one of the numbers a, b,
c, d is 0 we replace it by 1/2 in the definition of Asf.) For a, b, c, d > 0 we
have the following result

α D(α)
0.01 1
0.001 2
0.0005 3
0.00005 4
0.000005 5

For the method of obtaining the numbers D(α) see the proof of the theorem.

(2) Note that we need no conditions on a and d.

(3) The test corresponding to ∼3
α is asymptotical. It is recommended to be

applied if frequencies a, b, c, d are not small e.g. a, b, c, d ≤ 5. It is easy to
see that ∼3

α is “practically associational” in this field of applicability.
(We can say that ∼3

α is asymptotically associational; but we have the exact
bounds of its domain of associationality for each α.)
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Proof. [D.Pokorný]. First, it is easy to see that it suffices to restrict ourselves
to consider whether the inequality

log ad/bc√
1
a

+ 1
b
+ 1

c
+ 1

d

≥ Nα (+)

still holds if we substitute a + 1 for a or b − 1 for b. In the first case it is clear
that the answer is positive. In the second case it is easy to see that the following
inequality need not hold

log ad/bc√
1
a

+ 1
b
+ 1

c
+ 1

d

≤ log ad/b− 1c√
1
a

+ 1
b−1

+ 1
c

+ 1
d

.

The idea of the following proof is that monotonicity is violated for those num-
bers a, b− 1, c, d for which both sides of the previous inequality are greater than
or equal to Nα (for some values of α).

For the sake of convenience, we shall study the preservation of the inequal-
ity (+) if b + 1 is changed to b. Denote

S(a, b, c, d) = (log ad/bc)

(
1

a
+

1

b
+

1

c
+

1

d

)−1/2

and N+ = N − {0} .

We shall consider the set

K = {〈a, b, c, d〉; 0 < S(a, b, c, d) ≤ S(a, b + 1, c, d)} .

For a given value b we put K = {〈a, c, d〉; 〈a, b, c, d〉 ∈ K} and for given b and q
we put

Kq
b =

{
〈a, c, d〉; 〈a, c, d〉 ∈ Kb and

1

a
+

1

c
+

1

d
= q

}
.

The aim now is to find the infimum of the set

{S(a, b, c, d); 〈a, c, d〉 ∈ Kb}
and to find a number α such that inf(Sb) ≥ Nα.

Note that trivially

Sb =
⋃
q∈Q

Sq
b ,

where
Sq

b = {S(a, b, c, d); 〈a, c, d〉 ∈ Kq
b }

and Q is the set of possible values of q = 1
a

+ 1
c

+ 1
d

for 〈a, c, d〉 ∈ N+.
Then inf(Sb) = inf

q∈Q
(inf(Sq

b )). It can be seen that
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Sq
b =





log A/b√
q + 1

b

;
log A/b√

q + 1
b

≥ log(b + 1)− log b√
q + 1

b
−

√
q 1

b+1

and A ∈ Aq





where

Aq =

{
A; A > 1 and (∃a, c, d ∈ N+)

(
1

a
+

1

c
+

1

d
= q&ad/c = A

)}
.

Now we have immediately that

(Sq
b ) ≥

log(b + 1)− log b√
q + 1

b
−

√
q 1

b+1

.

An easy calculation then gives

inf(Sb) ≥
√

b(b + 1)√
b + 1− b

log
b + 1

b
.

The left hand side of the previous inequality is denoted LB(b). Note that for
b1 ≥ b2 we have LB(b1) ≥ LB(b2). It remains to compare the values of LB(b)
with quantiles Nα. For the further generalizations see Problem (6).

8.3.3 Discussion. The next question to be answered in connection with ap-
plicability of statistical tests in the computability (or decidability) problem. It
asks whether, for a statistics t in question and a critical region V0, t(M) ∈ V0 is
effectively decidable for each possible model M .

The first step is to introduce here the notion of computability based on recur-
sive functions (cf. Chapter 4); hence we restrict ourselves to recursive functions
on recursive sets V ∩Q.

Usually in statistics one considers a very broad class of tests, namely (in non-
randomized case) all measurable functions from the sample space {0, 1} (satisfy-
ing conditions on the probability of an error of the first kind). In such a class
one then looks for an “optimal” test w.r.t some rationality criteria.

Obviously if the optimal test is computable in the above sense then it is
optimal the the subclass of all computable tests for the test problem in question.
Hence we can restrict ourselves to the investigation whether the particular test
obtained by the usual statistical methods is computable.

Such problems can occur in applying tests of {0, 1}-structures too. It is clear
that computability is only one of the properties of really applicable tests: for
practical reasons, in mechanized discovery one needs to take into account a large
number of further questions related to the accuracy of the computations (round-
off errors), with the occurrence of under-flowing and over-flowing (remember our
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tests with binomial coefficients) etc. It would seem to be useful in the future to
investigate some complexity hierarchies of tests and to take such a hierarchy into
the considerations of the optimality of tests.

8.3.4 Example. For large classes of tests we can prove computability trivially
(for example, for the tests based on the Neymann-Pearson lemma concerning
distributions of the exponential class with the monotone likelihood ratio we can
avoid the usage of the exponential function, cf. [Lehmann]).

In other cases the solution is not so simple. As an example we use the inter-
action quantifier again.

(Theorem) The interaction quantifier is observational.

Proof. We have to decide whether, for given a, b, c, d ∈ N+

log ad/bc√
1
a

+ 1
b
+ 1

c
+ 1

d

≥ Nα

assuming Nα is rational. This means deciding whether

(∗) log A/
√

B ≥ C for A,B, C ∈ Q and C > 0

is recursive relation. Note that (*) is equivalent to A > 1 and (log a)2 ≥ C2B.
The question remains whether (log A)2 ≥ D is a recursive relation on Q2.

We use two known facts:

(1) if A is rational and A > 1 then log A is a transcendental number;

(2) the function log A for A > 1 can be expressed by the following expansion:

log A = 2
∞∑

n=1

ξ(A)2n−1

2n− 1
where ξ(A) =

A + 1

A− 1

Moreover, the series converges in such a way that (a) the sequence

Sk(A) =
k∑

n=1

2
ξ(A)2n−1

2n− 1

is strictly increasing and (b) the residual error for Sk(a) is less than

Rk = 2
ξ(A)2k+1

2k + 1

1

1− ξ(A)
.

Hence if (log A)2 > D then (∃k)((Sk(A))2 > D) and if (log A)2 < D then
(∃k)((Sk(A) + Rk)

2 < D). From (1) we know that equality cannot occur. Hence
the relation (log A)2 ≥ D is recursive.
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8.3.5 Discussion. The last question that we are going to discuss concerns the
simultaneous inference problem. On the one hand, the reader could use GUHA
and similar methods as methods for hypothesis formation only and hence he need
not worry about simultaneous inference. He can understand results as working
hypotheses which are to be investigated further.

On the other hand, if the reader wants to draw, from a number of obtained
results, some general and reliable conclusions, he has to consider the reliability
of such inferences, he has to consider the probabilities of global errors and hence
he has to take in account problems of simultaneous inference in the sense of the
previous section.

Our test are not stochastically independent, i.e. if ϕ1, . . . , ϕk are correspond-
ing observational sentences, in general we have

P ({σ; ‖ϕ1‖Mσ
∈ V0} ∩ . . . ∩ {σ; ‖ϕk‖Mσ

∈ V0}) 6=
P ({σ; ‖ϕ1‖Mσ

∈ V0} . . . P{σ; ‖ϕk‖Mσ
∈ V0}) .

In the considerations of the previous section we did not use this fact. They
are applicable without the knowledge as to whether such dependence occurs and
what form is really has and without any specific assumptions on the stochastic
behaviour of the tests used.

The task for statisticians are, hence, the following:

(1) If one has some test which is used in practical and is applicable in mech-
anized discovery, to investigate whether it is possible to describe the form
of stochastical dependence and to use this dependence or some other prob-
abilistic properties of tests to improve (at least asymptotically) the simul-
taneous inference properties of the test.

(2) Constructing new tests having useful properties in the discussed direction.

8.3.6 Example. A great deal of work has been done in this direction for a multi-
dimensional contingency table and generalized interaction tests (see Problem (7))
by J. Anděl [1973]. For χ2-test in 2 × 2 tables derived from 2 × C contingency
tables, a similar result has been obtained by Sugiura and Otake. Both results are
based on Šidák’s inequality [Šidák 1962].

We can define a “two-sided” associational quantifier ≈ of type 〈1, 1〉 with the
associated function

Asf≈α(M) = 1 iff
log(aMdM/bMcM)√

1
aM

+ 1
bM

+ 1
cM

+ 1
dM

≥ Nα/2 .

This quantifier corresponds to a test of independence (δ = 0) against two-sided
alternative (δ 6= 0).
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This is an example of quantifiers that could be called “two-sided” associational
quantifiers, namely it satisfies the following conditions:

Asf≈α(M) = 1, M ≤a M ′ and aMdM ≥ bMcM implies Asf≈α(M ′) = 1 ;

Asf≈α(M) = 1, M ′ ≤a M and aMdM ≤ bMcM implies Asf≈α(M ′) = 1 .

Such quantifiers should be studied in a systematic way. GUHA methods using
two sided associational quantifiers would be very useful since many two-sided
associational quantifiers correspond to various two-sided tests of independence in
contingency tables.

We now prove a modification of Anděl’s Theorem 2 for the quantifier ≈. First,
some preliminary considerations and notation.

Consider pairs 〈ϕi, ψi〉 (i = 1, . . . , k) of designated open formulae. Now let
a d-homogeneous random {0, 1}-structure U = 〈U,Q1, . . . , Qn〉 be given. We
denote

Pi1,...in = PU({σ; Q1(o, σ) = i1, . . . , Qn(o, σ) = in})
for each 〈i1, . . . , in〉 ∈ {0, 1}n. So we obtain a 2n-tuple of probabilities p =
〈p1,...,1, p1,...,1,0, . . . p0,...,0〉 which corresponds to 2n-dimensional multinomial distri-
bution with possible events 〈i1, . . . in〉. Similarly, for a model M we denote mM =
〈m1,...,1, . . . , m0,...,0〉 where mi1,...,in is the number of cards CM(o) = 〈i1, . . . , in〉.
Instead of mM we shall write m only.

For a designated open formula ϕ we put

∑
ϕ

(m) =
∑

{〈i1,...,in〉;ϕ∗〈i1,...,in〉=1}
mi1,...,in ,

where ϕ∗ is the Boolean function corresponding to ϕ.

(ϕ∗(CM(o)) = 1 iff ‖ϕ‖M [o] = 1 .)

We see immediately that, for a pair of designated open formulae

‖ϕi ≈α ψi‖ = 1 iff
gi(m)

si(m)
≥ Nα/2 ,

where

gi(m) = log
∑

ϕi&ψi

(m)− log
∑

ϕi&¬ψi

(m)− log
∑

¬ϕi&ψi

(m) + log
∑

¬ϕi&¬ψi

and
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si(m) =

√√√√ 1∑
ϕi&ψi

(m)
+

1∑
ϕi&¬ψi

(m)
+

1∑
¬ϕi&ψi

(m)
+

1∑
¬ϕi&¬ψi

(m)

As we mentioned in Section 4.1 the probability PU({σ; t(Mσ) ∈ V0}), where t is
a statistic and V0 a regular set, is the same for all samples M of equal cardinality.

Hence we consider

lim
m→+∞

PU({σ; t(Mσ) ∈ V0}) ,

independently of the particular choice of the sample M . If

lim
m→+∞

PU({σ; t(Mσ) ∈ V0}) ≤ α

we say that the probability of this event is asymptotically less than or equal to α.
Now we can formulate and prove the desired theorem.

(Theorem.) Consider an r-problem with

RQ(α) = {ϕ ≈α ψ; 〈ϕ, ψ〉 ∈ PF} ,

where PF is a set of disjointed designated open formulae. Let a model N be
given. Consider a subset S ⊆ I(XN) ∩ RQ(α). Suppose S = {ϕ1(α), . . . , ϕk(α)}
where ϕ1(α) = ϕi ≈α ψi. Put

αS = 1−
k∏

i=1

(1− α(ϕ1N)) .

Then the probability of a global error of the first kind is asymptotically (in the
cardinality of sample) less than or equal to αS.

We have now to formulate and prove a lemma. Notation is from Rao’s book.

(Lemma.) Let θ = 〈θ1, . . . , θk〉 be a real vector. Let Tn be a k-dimensional statis-
tic 〈T1n, . . . , Tkn〉 such that the asymptotical distribution of 〈√n(T1n − θ1), . . .,√

n(Tkn − θk)〉 is k-variete normal with mean zero and dispersion matrix Σ =
(σij(θ)). Let g1, . . . , gq be totally differentiable functions. Denote by G the ma-

trix
(

∂gi

∂θj

)
i,j

and denote by Vi(θ) the diagonal elements of GΣG′, i.e.

Vi(θ) =
∑

r

∑
s

σrs(θ)
∂gi

∂θr

∂gi

∂θs

.

(Then Vi(Tn) is the value of Vi(θ) if we put θ = Tn.) Let Σ and G be continuous
functions of θ.

Then asymptotical distribution of
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√
n(gi(Tn)− gi(θ)√

Vi(Tn)
,

i = 1, . . . , q, is q-variate normal with a dispersion matrix having diagonal elements
equal to 1.

Proof of the lemma. By 6.a.2 (iii) in [Rao] we have that
√

nu1n, . . . ,
√

nuqn,
where uin = (gi(Tn) − gi(θ)), has an asymptotical distribution q-variate normal
with zero mean and dispersion matrix. Hence

〈 √
nu1n√
V1(θ)

, . . . ,

√
nuqn√Vq(θ)

〉

has aymptotically q-variate normal distribution with zero mean and a dispersion
matrix having diagonal elements equal to 1. Using the continuity of Σ and G we
obtain

∣∣∣∣∣
√

nuin√
Vi(θ)

−
√

nuin√
Vi(Tn)

∣∣∣∣∣
P−→ 0

for i = 1, . . . , q. Hence, by 2.c.4 (ix) from [Rao] for vector variates, both vector
variates have the same asymptotical distribution function.

Proof of the theorem

(1) Note that m is a statistic having 2n-dimensional multinomial distribution.
Hence

〈√m(m1,...,1/m− p1,...,1), . . . ,
√

m(m0,...,0/m− p0,...,0)〉

has asymptotically a 2n-variate normal distribution with zero mean and
dispersion matrix

V =




p1,...,1(1− p1,...,1), −p1,...,1p1,...,0), . . .
−p1,...,0p1,...,1, p1,...,0p1,...,0, . . .
...

...
. . . , p0,...,0p0,...,0




(2) To
〈√

mg1

(
m
m

)− g1(p), . . . ,
√

mgk

(
m
m

)− gk(p)
〉

we apply the lemma. Here,
we have

Vi(p) =
∑

〈i1,...,in〉〈j1,...,jn〉

∑

〈i1,...,in〉〈j1,...,jn〉
V ∂gi(p)

∂pi1,...,in

∂gi(p)

∂pj1,...,jn
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where V〈i1,...,in〉〈j1,...,jn〉 are elements of the variance matrix V (by m
m

we mean〈m1,...,1

m
, . . . , m0,...,0

m

〉
).

(3) For gi corresponding to 〈ϕi, ψi〉 we have Vi(p) = s2
i (p), i.e.,

Vi(p) =
1∑

ϕi&ψi

(p)
+

1∑
¬ϕi&ψi

(p)
+

1∑
ϕi&¬ψi

(p)
+

1∑
¬ϕi&¬ψi

(p)

(the proof is an essentially elementary but rather cumbersome algebraic
excersise). Note that under our null hypothesis we have Vi(p) = 0 for
i = 1, . . . , k. Moreover, we have

s2
i

(
m

m

)
= ms2

i (m) and gi

(
m

m

)
= gi(m) .

Hence (by the lemma)

〈√
mg1(m/m)

s1(m/m)
, . . . ,

√
mgk(m/m)

sk(m/m)

〉
=

〈
g1(m)

s1(m)
, . . . ,

gk(m)

sk(m)

〉

has an asymptotically q-variate normal distribution with exceptation 0 =
〈0, . . . , 0〉 and diagonal elements of the dispersion matrix equal to 1.

(4) Lemma [Šidák]. If the variates V1, . . . ,Vk have k-variate normal distribu-
tion, then

P (|V1| < c1, . . . , |Vk| < ck) ≥ P (|V1| > c1) . . . P (|Vk| > ck) .

Hence

P

(
k⋃

i=1

|Vi| ≥ ci

)
≤ 1−

k∏
i=1

(1− P (|Vi| ≥ ci)) . (x)

(5) If α1, . . . , αk are the desired critical levels then, if we consider multinormal
variates V1, . . . ,Vk with VAR (Vi) = 1 we obtain, by (x),

P

(
k⋃

i=1

|Vi| ≥ Nαi/2

)
≤ 1−

k∏
i=1

(1− αi) .
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(6) Applying point (3) we have

lim
m→+∞

∣∣∣∣∣P
(

k⋃
i=1

|gi(m)| ≥ Nαi/2si(m)

)
− P

(
k⋃

i=1

|Vi| ≥ Nαi/2

)∣∣∣∣∣ = 0 .

This completes the proof.

(Remark.) Note that we incidentally proved that ≈α is an asymptotical obser-
vational test of the null hypothesis of independence.

8.3.9 Let us make some concluding remarks on the relation of statistics to mech-
anized hypothesis formation. It is well known that “statistical theory is poor in
such suggestion (i.e. suggesting hypotheses); hypotheses are usually assumed to
be formulated before statistical theory is invoked. This is a weakness in statistical
theory, regarded as a part of scientific method, consequently some new results in
this direction should be of interest”. This is due to Good [1963]. In this paper,
Good made an important contribution concerning the apriori formation of null
hypotheses using a theoretical principle of maximum entropy. In mechanized
hypothesis formation, we are interested mostly in the formation of alternative
hypotheses on the basis of observational data suitable for further statistical anal-
ysis.

As far as data of a statistical nature is concerned, many of the methods
presented in this book apply to analysis of multidimensional contingency tables.
The reader should observe that we mean tables having indeed many dimensions,
say thirty. Complete and correct statistical analysis of such a table needs the
computation of all frequencies up to the 30th order – saturated model in the
statistical meaning; cf. Bishop [1974]. This is obviously practically impossible
and one has to confine oneself to some simple information derived from the table.

And this is indeed what the GUHA method described in Chapter 7 (Sect. 1-3)
does; it does it in a way optimized from the logical and computational point of
view. Needless to say, in the present versions of the GUHA method we could
not apply everything from the statistics of contingency tables. There are new
important results in the statistics of contingency tables, published only after this
book was written. But we hope that our approach in connection with some
deeper statistical methods may prove to be yet more efficient. The development
of exact tests of higher order dependencies in contingency tables, as initiated
by Zelen [1971], seems to be particularly promising. Further development of
Hypothesis Formation in this direction may bring essentially new impulses for
interdisciplinary studies in logic, computer science and statistics.

8.3.10 Key words: Invariant tests, one-sided invariance, simultaneous proce-
dure using probabilistic properties of tests; relation of GUHA-methods to statis-
tics.

296



PROBLEMS AND SUPPLEMENTS TO CHAPTER 8

(1) Consider d-homogeneous random 〈V1, . . . , Vn〉-structures and appropriate
MOPC’s as in Sect. 3.2. Then the following distributional statements are
equivalent:

(i) For each κ ∈ EC, pU
κ > 0.

(ii) For each 〈j1, . . . , jn〉, where ji ∈ Vi,

pU
(j1)F1&...&(jn)Fn

> 0

(i.e., all the joint multinomial probabilities are non-zero).

Prove this.

(2) We present here some remarks concerning our particular MOPC’s with
associational and helpful quantifiers as described in Chapter 6. Consider
corresponding random structures satisfying the global condition of 8.1.7.
We can define, for each 〈κ, λ〉 ∈ CPF,

∆(κ, λ) =
pκ&λp¬κ&¬λ

pκ&¬λp¬κ&λ

as in 4.4.18. Note that we can define a theoretical sentence (κ, λ) ≤th
a (κ′, λ′)

such that U |= (κ, λ) ≤th
a (κ′, λ′) iff U |= ∆(κ, λ) ≤ ∆(κ′, λ′). Similarly for

≤th
i and pδ/κ ≤ pδ′/κ′ .

Lemma. (i) Consider (X)F , (Y )F ; then (X ⊆ Y ) implies p(X)F ≤ p(Y )F ,
(ii) κ ⊆ λ implies pκ ≥ pλ, (iii) κ v λ implies pκ ≥ pλ, (iv) κ ← λ implies
pκ ≥ pλ, and (v) δ1 ¢ δ2 implies pδ1 ≤ pδ2 .

Remember the ordering ≤c on {0, 1}2 and define similarly the ordering ≤c′

on [0, 1]2. Then 〈κ, λ〉 ←← 〈κ′, λ′〉 implies 〈pκ, pλ〉 ≥c′ 〈pκ′ , pλ′〉.
The obvious proof is left to the reader.

Discussion. One could investigate ≤th
a as a helpful quantifier on the the-

oretical level, but the obstacle is that one cannot verify whether U |=
(κ, λ) ≤th

a (κ′, λ′) or not. One could use an inference rule of the form

{
(κ, λ) ¿ (κ′, λ′)
(κ, λ) ≤th

a (κ′, λ′)
; 〈κ, λ〉 ←← 〈κ′, λ′〉

}
,

where ¿ is a helpful quantifier in the sense of Chapter 6; but, statistically,
this is an inference based only on point estimation. Hence, this course is
inappropriate for our concept based on hypothesis testing.
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Nevertheless, we can modify an a-helpful quantifier ¿ to be a test (on
the level α) with the alternative hypothesis (κ, λ) ≤th

a (κ′, λ′). (Then,
‖(κ, λ) ¿α (κ′, λ′)‖M ∈ V .) It is easy to see that a procedure for test-
ing ∆(κ′, λ′) > 1 using such a quantifier ¿α will be less powerful than our
procedures. In fact, we have to obtain the same set RQ ∩ TrV0(Mσ) but
the solutions will be greater.

Hence, we use as auxiliary questions only sentences of a non-statistical, i.e.,
observational, nature.

(3) Remember Section 3.4. Define a theoretical notion of incompressibility: κ is
U -incompressible if there is no κ0 & κ such that pU

κo
= pU

κ . If U satisfies (i),
then each κ ∈ EC is incompressible. (Prove this.)

(4) Prove the assertion of Remark 8.2.16.

(5) In [Havránek 1974], one finds a slightly stronger form of the assertion of
Remark 8.2.16. There, coverable sets C(ϕ0, XN) for which τ(ϕ0)0 implies
τ(ϕ)0 for each ϕ ∈ C(ϕ0, XN) were considered. Then we have

P ({σ; C ∩ Tr(Mσ) 6= ∅}| τ(ϕ0)0) ≤ α1 .

Prove this assertion. It can be applied to many situations; remember the
global hypothesis of independence.

(6) Let V1,V2, . . . be a sequence of variates and E a number. We say that {Vn}
converges almost surely to E ((a.s.) lim

n→+∞
Vn = E) if P ({σ; lim

n→+∞
Vn(σ) =

E}) = 1. (Note that if σ is an elementary random event then {Vi(σ); i ∈ N}
is a sequence of real numbers; observe that for each E the set of all σ for
which the above sequence converges to E is in the σ-field R. (2) it has the
probability 1.)

(7) Consider d-homogeneous random 〈V1, V2〉-structures with two quantities
such that V1 = {0, . . . , h1 − 1}, V2 = {0, . . . , h2 − 1}. We can consider
the hypothesis of independence of Q1 and Q2 against alternative hypothe-
ses described in the following way:

Let A be a h1 × h2 matrix such that for each row and each column its sum
is zero, i.e.

∑
i

aij = 0 for each i, j. Let pij = P (Q1 = i ∩ Q2 = j). We

define logarithmic interaction of Q1 and Q2 w.r.t. A as follows:

δ(A) = log
∏

i

∏
j

p
aij

ij .
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Then the null hypothesis is δ(A) = 0 and the alternative hypothesis is
δ(A) > 0. A test can be defined as follows:

t(M) = 1 if

log
∏
i

∏
j

m
aij

ij

√∑
i

∑
j

a2
ij/mij

≥ Nα .

Let M1, M2 be two models of the corresponding type. We say that M1 is
A-better than M2 if

mij(M1) ≥ mij(M2) for aij ≥ 0

and
mij(M1) ≤ mij(M2) for aij ≤ 0 .

(a) Prove that the test defined above is a one-sided invariant test w.r.t.
the A-better ordering, i.e. prove generalized associativity. Hint: the
proof is a generalization of the proof of Theorem 8.3.2; cf. [Pokorný].

(b) Construct appropriate observational calculi and r-problems (open).

(8) We can define conditional associational quantifiers; they are ternary. Con-
sider models ({0, 1}) of type 〈1, 1, 1〉; we define conditional associational
quantifiers to be associational for the partialized models M ′ = 〈M ′, f1, f2〉,
where M ′ = {o ∈ M ; f3(o) = 1}.
Let g be the cardinality of {o ∈ M ; f3(o) = 1‖. Prove that, if g! ≤ 1/α
then Asf∼αc(M) = 0 for each conditional associational quantifier ∼c

α based
on ∼α, ∼2

α or ∼3
α.

(9) Define ternary associational quantifiers corresponding to tests of 2 × 2 ×
2 tables studied in [Anděl 1973]. Apply to this case Theorem 3 from
[Anděl 1973]. [Pokorný 1975] proved that Asf∼3

α
(M) = 1 implies Asf∼2

α
(M) =

1, and there is a non-empty set of models for which Asf∼3
α
(M) = 0 and

Asf∼2
α
(M) = 1. Hence the χ2-test is strictly simultaneously more powerful

than the interaction test.

The lesson from this result is the following:

It is meaningful, from a statistical point of view, to investigate observational
properties; we can obtain valuable pure statistical results.

(10) Remember that ∼α denotes the Fisher quantifier. Does Asf∼2
rα

(M) = 1
imply Asf∼α(M) = 1 or does Asf∼rα(M) = 1 imply Asf∼2

α
(M) = 1 for an

r ∈ [1, 2]? (Open.)

(11) Are there similar relations between distinctive quantifiers based on rank
tests? (Open.)
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Postscript: Some Remarks on the
History of the GUHA Method
and Its Logic of Discovery

Let us distinguish (a) the principle of the GUHA method, (b) particular realiza-
tions, (c) the theory on which the method is base and to which it gives rise.

(a) The principle of the method was discussed in detail in Chapter 6, Sect. 1:
it can be briefly formulated as the principle of “everything important” or
the principle of automatic listing of important observational statements.
Obviously, it has two contrasting aspects: the principle of exhaustiveness
(everything) and the principle of relevance and optimization (importance).
The idea of using the formulational possibilities of logic for the automatic
investigation of all assertations of a certain syntactic form as to truthful-
ness on given concrete material (the principle of exhaustiveness) is due
to Metoděj K. Chytil. He performed his experiments based on proposi-
tional calculus in 1964. When P. Hájek (the first author of of the present
book) met Chytil at the end in 1964, and saw his experiments, he suggested
making use of the deductive possibilities of logic to find true formulae as
powerful as possible (important, relevant, interesting) Cf. Hájek, Havel,
Chytil [1966b] and/or [1966a] ([1966a] is the English version of [1966b] and
Hájek, Havel, Chytil [1967]). As I. Havel is an expert in computer data
processing he was invited to take part in discussion on the possibility of
a computer implementation and if possible to write a computer program.
It was only in 1974 that our attention was drawn to Leinfellner’s book
and we realized that Leinfellner had in fact arrived at the same idea. He
wants everything (“wahllos einfache Hypothesen bilden”) but only every-
thing important (“auf keinen Fall ohne nachherige Selektion”). However,
Leinfellner considered an “Induktionsmachine” to be merely fictitions at
that time (“heute noch fiktiv”). In contrast, [Hájek and al. 1966b] already
contains a particular (although primitive) method which existed at that
time in the form of a computer program.
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(b) Particular methods. A particular GUHA-method is divided into the
method of determining inputs, the method of machine processing (the core
method), and the method of interpreting results. This division was formu-
lated by Chytil; and the fact remains that as yet it was almost exclusively
the core methods which were theoretically discussed in publications. The
following is a summary of implemented methods:

(1) Method with true disjunctions (Hájek-Havel-Chytil [1966b], Havel is
the author of the MINSK 22 program).

(2) Almost true disjunctions (Hájek-Havel-Chytil [1967], a MINSK 22 pro-
gram and an IBM 7040 FORTRAN program by Havel).

(3) Fisher association (Hájek [1968], Part II, MINSK 22 and IBM 7040
programs by Havel).

(4) Statistical modification of (1) and (2) (Havránek [1971],a program for
CELLATRON by Havránek).

(5) Three-valued modification of (2) and (3) (Hájek, Bendová, and Renc [1971],
a program by Rauch in FORTRAN – it has never been in practical
operation).

(6) Associational and implicational quantifiers (Hájek [1973, 1974], Part III,
programs by Havel and Rauch for IBM 370, in FORTRAN).

The last method contains and generalizes all the previous ones. It is a
particular case of the method in Chapter 7 of the present book (it is not
possible to restrict oneself to incompressible formulae). For method (6) a
textbook has been written (Hájek, Havel, Havránek, -Chytil, Rauch, Renc)
which is, in essence, a “directions for use” – instruction on the application
of a particular method with the necessary theory.

A number of informal ideas on the methodological elaboration of the inputs
(i.e., of procedures suitable for deciding whether, in a particular situations,
the application of the method is adequate and in what manner is should be
applied) and of the interpretation, i.e., of the forms of the communication
of the computer results and their utilization, are contained in numerous
unpublished comments by Chytil; however, up to now they have not been
systematically elaborated with the exception of [Chytil 1969] and some
parts of the above mentioned textbook. The chapter on interpretation in
it, written by Havránek and Renc, is also particaly based on Chytil’s ideas.

(c) Theoretical background. The original version of the GUHA method was
based throughout on elementary logical theory (in [Hájek, Havel-Chytil,[1966a],
we read: “From the mathematical point of view, the method does not con-
tain any innovations”.)
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However, later it became clear that the investigation into the possibilities of
realizing the above mentioned principle requires a specific autonomous theory.
Now it seems that this autonomous Theory of Automated Discovery possesses its
own importance and its own sphere of problems even independently of the GUHA-
methods. Below, we give a summary of the existing theoretical development.

(1) Logic. A first attempt aiming at a general theoretical framework is found
in [Hájek 1968] (in the language of second order logic). The foundations
of the logic of automated discovery were laid down in a series of papers
[Hájek 1973a, 1974]: the formulation and the study of the concepts of the se-
mantic system, problem and solution, formal definition of a GUHA-method,
function calculi, particularly cross-nominal calculi, the application of the
concept of a generalized quantifier (operator) in the Mostowski-Lindström
sense, the introduction of the concepts of associational and implicational
quantifiers. See also [Hájek 1973c, 1975c]; [Hájek 1974 and Hájek 1975b]
are written from the point of view of “pure” logic.

(2) Statistics. Developed by Havránek, the second author of the present book.
The points are (a) the introduction of particular statistically motivated
quantifier in [Havránek 1971] although not in the terminology of quantifiers,
and (b) the development of the theory of error rates with respect to the
problems of local and global interpretation [Havránek 1974]. It can be said
that (a) is an application of statistics to logic while (b) is an application of
logic to statistics.

(3) Methodology (philosophy of science). Besides Chytil’s comments, men-
tioned above, there is a models contribution in [Hájek 1973a]. Method-
ological aspects are studied in more detail in Chapter 3 (Hájek-Havránek-
Chytil)of the prepared textbook. Note that the thesis of Buchanan [1966]
contains numerous considerations that are of basis importance in the de-
velopment of the philosophical logic of automated discovery.

(4) Computer science. We believe that all points mentioned in 1-3 are rele-
vant to Artificial Intelligence, especially to Hypothesis Formation; we have
here a metatheory of hypothesis Formations. Moreover, it can be seen
that investigation of the relations between the logic of observational calculi
and the problems of computational complexity is wortwhile (Hájek [1975b],
Pudlák; see Chapter 3 Section 5, of the present book).

EXAMPLE OF AN INDUSTRIAL APPLICATION

We illustrate the theory presented here an example of a particular application
of the GUHA method with associational quantifiers to a problem from industry.
The task was to analyse possible causes of simultaneous overflashing of the gen-
erator and motor of dieselelectric locomotives of a certain type. (The application
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of the GUHA method was done by E. Pavĺıková – Technical Universtiy Žilina,
in collaboration with M. Rabǐska and I. Šulcek – ČKD Prague, with I. Havel
– Mathematical Institute, ČSAV Prague, Z. Renc – Department of Mathemat-
ics, Charles University Prague and the present authors. The example has been
slightly simplified.)1

Objects: locomotives in the moment of overflashing on the generator.

Attributes as follows:

Remark:
1) Velocity (km/hour) V1 = {0, 1, 2} 0 :≤ 60

1: between 60 and 80
2 :≥ 80

2) Kilometer performance V2 = {0, 1, 2} 0 : (0, 100 000]
1: (100 000, 200 000]
3: (200 000, 300 000]

3) Throttle position of V3 = {0, 1, 2}
the master controller

4) Load V4 = {0, 1}

5) Change of the position V5 = {0, 1}

6) Exciting of traction V6 = {0, 1, 2, 3}
motors

7) Switching of the relay V7 = {0, 1}

8) Weather V8 = {0, 1, 2} 0: dark
1: fog
2: rain

9) Air temperature V0 = {0, 1} 0: under 5◦C

10) Track character; V10 = {0, 1}
gradient

11) Track character; V11 = {0, 1}
curve

1E. Pavĺıková, Aplikácia metod automatizovaného výskumu v doprave a spojoch, VŠD Žilina
(Czechoslovakia), research report P04-533-081-00-03 (1975).
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12) Type of train V12 = {0, 1} 0: local train
1: fast train

13)-18) Descriptions V13 − V18 = {0, 1}
of various break-downs
of the generator

19) Overflashing of the motor V19 = {0, 1}

The model was selected by random sampling using tests of representative-
ness. One selected 33 objects – locomotives in the moment of overflashing on the
generator. It should be clear that such a model can serve only for systematic
inspiration (cf. Chapter 8).

Now we can specify our r-problem in terms of Chapter 7. (Details of imple-
mentation are disregarded here.)

Remember that the parameter of the GUHA method used decomposes into
three parts, p = 〈CALC, QUEST, HELP〉.
Here CALC = 〈CHAR, KQUANT, PQUANT〉. In our example we have the
following:

(a) CHAR = (aa) number of function symbols – 19,
(ab) for each function symbol, its set of regular

values – as given above.
(ac) our model has complete information.

(b) KQUANT = SYMNEG our quantifiers will satisfy the rules SYM
and NEG (cf. 32.)

(c) PQUANT = the Fisher quantifier with α = 0.05

Next we specify QUEST = 〈KRPF, FORQ, SYNTR〉:
(a) KRPF = CPF (conjunctive pairs of formulae),
(b) KORQ = SIMPLE (relevant questions have the form ϕ ∼ ψ where

〈ϕ, ψ〉 varies over relevant pairs),
(c) SYNTR = (ca) The succedent is fixed as (1)F19.

(cb) F19 must not occur in any antecedent.
(cc) Only one-element coefficients are allowed.
(cd) Maximal number of function symbols occurring in our

antecedents is 3.

HELP: helpful quantifiers are not used.
This completes the specification of parameters.

The model was processed on the MINSK 22 computer on September 9, 1975.
(Duration under one hour.)
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Output:
8 sentences of the form ϕ ∼ (1)F19 where ϕ is a literal,
64 sentences of the form ϕ ∼ (1)F19 where ϕ is a conjunction of two literals,
125 sentences of the form ϕ ∼ (1)F19 where ϕ is a conjunction of three literals.

For each output sentence ϕ ∼ (1)F19 we have the table

1 F19 0 F19

ϕ a b r
¬ϕ c d s

k l

Note that k is constant since the succedent is fixed; in our example k = 20
and k + 1 = r + s = 33. For each output sentence the following numerical
characteristics are printed:

αcrit, a, r, (a/r) 100 .

Let us present some examples of results:

∼ (1)F19 αcrit a r (a/r)100
1) (2) F1 .04681 8 9 88
2) (3) F6 .04712 10 12 83
3) (1) F12 .00059 17 20 85
4) (0) F4 & (2) F1 .03499 6 6 100
5) (2) F12 & (0) F4 .00029 12 13 90
6) (1) F12 & (0) F9 .02558 9 10 90
7) (1) F12 & (1) F18 .00907 8 8 100

The computer produced a long list of such results, 197 output sentences.
They serve as a source of hypotheses for further investigations (cf. Chapter 8).
Observe the dependence of (1) F19 (overflashing on the motor) on the property
that the train hauled by the locomotive is a fast train. This property occurs in
output sentences both alone (in a sentence with one-element antecedent) and in
conjunction with other factors (low air temperature, low load some particular
break-downs etc.). One must be careful in interpreting the results since e.g. low
load may imply a fast train. Similarly for (2) F1 (high velocity).

Further, the most important factors occurring output sentences are of tech-
nical character and give little information to a layman. The core of the results
consists in the combination of some functional states of the machine and the
complex fast train – low load – high speed. The importance of the fact that some
factors do not occur in the results (e.g. the kilometer performance) should not
be overlooked.
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recursive, 1.2.10
power, 4.3.5
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full, 3.4.7
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of tests, 8.1.16

ε-net, 8.1.16
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induced, 4.1.6
probability space, 4.1.5
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NP -problem, 3.5.7
universal NP -problems concerning inference rules and problems, 6.1.26,
6.1.27

P/NP -problem, 3.5.7
observational research r-problem, 6.1.5

combined, 7.2.14
simple, 6.2.6
tuft, 7.2.9
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with correlational quantifiers, 7.4.4

proof, 1.2.7
quantifier,

antecedent, 6.3.13
associational, 3.2.2, 3.3.19

simple, 3.1.27
saturated, 3.2.23

chi-square, 4.4.23
classical, 2.2.24
closure, 6.2.10
correlational, 5.4.1
distinctive d-quantifier, 5.3.4
d-executive, 5.3.9
essentially two valued, 3.4.12
essentially three valued, 3.4.15
executive, 5.3.8
Fisher, 4.4.23
helpful, 6.2.10
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implicational,
improving, 3.2.10, 3.3.22, 6.2.10
interaction, IV, Problem 11
of level, 5.3.9
of likely p-implication, 4.4.12
of p-implication, 4.4.27
of suspicious p-implication, 4.4.12
of strong equivalence, 3.3.9
rank, 5.4.13

regression, 7.4.10
secured, 5.4.14

correlational, 5.4.17
strong, 5.4.13

satisfies modus ponens, 6.2.10
succedent, 6.3.13

random event, 4.1.6
random variate, 4.1.6

enumerating, 5.1.8
rank correlational coefficient,

Spearmen’s and Kendall’s, 5.2.10
rank equivalence, 5.1.14

weak, 5.2.9
recursive set, 1.2.10
recursively enumerable set, 1.2.10
reduction, 3.2.0
regular set, 4.2.8
relation,

a-better, 3.2.2
c-better, 5.4.1
d-better, 5.3.4
i-better, 3.2.10
hidden, 3.4.21
hoops, 3.4.21
included, 3.4.21
poorer, 3.4.21
positive expansion, 7.4.6

relevant questions, 6.1.5
realizability in polynomial time, 6.1.8
rule,

deduction, 1.2
V -complete, 1.2.7
despecifying-dereducing SpRd, 3.2.20

invariant, 8.1.16
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of simultaneous negation NEG, 3.2.17
of symmetry SYM, 3.2.17

inference, 1.2.1
inductive, 1.2.23

deterministic, 1.2.25
rational, 1.2.25, 2.1.8

recursive, 1.2.1
regular, 1.1
sound, 1.2.7
transitive, 1.1

semantic system, 1.2.5
V -decidable and V -axiomatizable, 1.2.12
observational, 1.2.18

sentence, 1.2.5
canonical, 3.1.7
classically expressible, 3.1.26
distributional, 4.3.1
M -obtainable, 6.2.1
prime, 6.1.6
proper, 2.3.6

M -sequence, 2.2.6
set of sentences,

coverable, 8.2.13
sufficient, independent, 6.1.12

significance level, 4.3.5
solution, 6.1.5

on a level, 8.1.16
specification, 3.2.20
state dependent variable, 2.1.6
statement,

observational, theoretical, 1.1.3
statistic,

continuous computable (cc), 4.2.13, 5.1.2
almost continuous computable (acc), 5.1.2
median, 5.1.23
rank, 5.1.14

simple linear, 5.1.18
strong, 5.2.9

Wilcoxon, 5.1.23
statistical inference, 4.2.11

simultaneous, 8.2.9, 8.3.5
stochastical independence, 4.1.9
structure,
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V -structure, 2.1.2
observational, 2.1.4
state dependent, 2.1.6
sample, 2.1.6

regular random, 4.2.1
d-homogeneous, 4.2.4

enumeration, 5.3.1
succedent, 1.2.1
tautology, 1.2.7

associational, 3.2.26
test

asymptotical, 4.3.8
based on incomplete information, 4.5.5
invariant, 8.3.1
observational, 4.3.5

tuft, 6.2.13
type, 2.1.2
uniform distribution,

to induce a uniform distribution, 5.1.8
unijunction, 7.4.5
values,

designated, 1.2.7
of formulae, 2.3.5
regular, singular, 3.3.1

variables,
free, bound, 2.2.2

variety, 3.5.3
projective, elementary, 1-projective, 3.5.5
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Büchi J.R. [1960]: Weak second order arithemetic and finite automata, Zeitschrift
für mathematische Logik und Grundlagen der Mathematik 6, 66-92

Burril C.W. [1972]: Measure, integration and probability, McGraw-Hill, New
York

Carnap R. [1935]: Testability and meaning, Philosophy and Science, vol. III,
Williams and Wickins, Baltimore

Chang C.C., Keisler H. [1966]: Continuous model theory, Princeton

Church A. [1956]: Introduction to mathematical logic, Volume I., Princeton
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Fraissé R. [1965]: A hypothesis concerning the extension of finite relations
and its verification in certain special cases, The theory of models, ed.
J.W.Addison, L.Henkin, A.Tarski, 364-375

315



Freiberger W., Grenader U. [1971]: A short course in computational prob-
ability and statistics, Applied mathematical science 6, Springer, New York
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Havránek T. [1971]: The statistical modification and interpretation of the
GUHA Method, Kybernetika 7, 13-21

Havránek T. [1974]: Some aspect of automatic systems of statistical inference,
Proceedings of the European Meeting of Statisticians, Prague (to appear)
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Havránek T. [1975d]: A note on simultaneous inference in contingency tables,
(submitted)

Hempel C.G. [1965]: Aspects of scientific explanation, Free Press, New York
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demii Nauk SSR vol 191, 279-282. (English translation: Enumerable sets
are diophantine, Soviet Mathematics 11 no 2 [2970], 354-357

McCarthy J., Hayes P. [1964]: Some philosophical problems from the point
of view of Artificial Intelligence, Machine Intelligence 4

Meltzer B. [1970a]: Generation of hypotheses and theoreties, Nature, 225,972

Meltzer B. [1970b]: Power amplification for theorem provers, Machine Intel-
ligence 5, 165-179

Medelsohn E. [1964]: Introduction to mathematical logic, Van Nostrand, New
York

Meyer A.R. [1973]: Weak monadic second order theory of successors is not
elementary recursive, MAC Technical Memorandum, MIT

318



Miller R.G. [1967]: Simultaneous statistical inference, McGraw-Hill, New
York

Minsky M. [1974]: A framework for representing knowledge, AI memo nr. 305,
MIT

Morgan C.G. [1971]: Hypothesis generation by machine, Artificial Intelli-
gence 2, 179-187

Mostowski A. [1957]: On a generalization of quantifiers, Fundamenta math-
ematice 44, 12-36

Nariaki S., Masanori O. [1973]: Approximate distribution of the maximum
of c − 1χ2 – statistic 2 × 2 derived from a 2 × C contingency table, Com-
munications in Statistics 1, 9-16

Nilsson N.J. [1971]: Problem solving methods in Artificial Intelligence, McGraw-
Hill, New York

O’Neil R.O., Weitheril G.B. [1971]: The present state of multiple compar-
isons methods, Journal of the Royal Statistical Society, ser. B, 33, 218-250

Pearson E.S., Hartley H.O. [1972]: Biometrika tables for statisticians,
vol. II, Cambridge University Press

Plotkin G.D. [1971]: A further note on inductive generalization, Machine
Intelligence 6, 101-124
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na konečnych klassach (Impossibility of an algorithm for the decision prob-
lem on finite classes), Doklady Akademii Nauk SSSR vol. 70, 569-572
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